001     1049767
005     20251229163326.0
037 _ _ |a FZJ-2025-05551
100 1 _ |a Lu, Han
|0 P:(DE-Juel1)204237
|b 0
111 2 _ |a ISC High Performance 2025
|g ISC25
|c Hamburg
|d 2025-06-10 - 2025-06-13
|w Germany
245 _ _ |a Accelerating Brain Simulations using High Performance Computing
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1767021475_15178
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a High-performance computing (HPC) has become an indispensable tool for scientific research, enabling the simulation, analysis, and visualization of complex systems across a wide range of disciplines. In neuroscience, HPC empowers researchers to explore the intricate mechanisms of brain functions, from single-cell dynamics to whole-brain network interactions. Our work leverages HPC to model neural dynamics across multiple scales, utilizing state-of-the-art simulation tools. At the microscale, we employ the Arbor simulator to investigate the dynamics of individual neurons, capturing detailed biophysical processes. At the mesoscale, we use the NEST simulator to model large-scale neural networks with synaptic plasticity, shedding light on mechanisms underlying learning and memory. At the macroscale, we utilize The Virtual Brain (TVB) platform to study whole-brain dynamics, providing insights into emergent brain processes by integrating structural and functional dynamics. The platform incorporates a GPU-accelerated framework to alleviate the computational burden associated with exploring large parameter spaces in brain simulations. To further advance our understanding of brain function, we have recently begun integrating these scales through co-simulation approaches. For instance, we have combined NEST and TVB to study interactions between large-scale network activity and whole-brain dynamics. Similarly, Arbor-TVB co-simulations enable us to bridge detailed cellular processes with system-level behavior. These multiscale models provide a more comprehensive understanding of the brain’s fundamental mechanisms, offering new perspectives on both healthy and pathological conditions such as epilepsy and Alzheimer’s disease. A substantial part of our work involves translating neuroscientific models into code that can be efficiently distributed on HPC systems. This requires a strong understanding of both the underlying neuroscience and parallel programming. By presenting our work at ISC 2025, we aim to advance the use of HPC in neuroscience and bring researchers together to tackle pressing challenges, such as memory constraints in large-scale brain simulations.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 1
536 _ _ |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|0 G:(DE-Juel1)HGF-SMHB-2013-2017
|c HGF-SMHB-2013-2017
|f SMHB
|x 2
700 1 _ |a Fotiadou, Sinovia
|0 P:(DE-Juel1)203512
|b 1
700 1 _ |a Frings, Maren
|0 P:(DE-Juel1)172652
|b 2
700 1 _ |a Diaz, Sandra
|0 P:(DE-Juel1)165859
|b 3
700 1 _ |a Hater, Thorsten
|0 P:(DE-Juel1)176815
|b 4
700 1 _ |a Zossimova, Ekaterina
|0 P:(DE-Juel1)204540
|b 5
|e Corresponding author
700 1 _ |a van der Vlag, Michiel
|0 P:(DE-Juel1)179447
|b 6
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/1049767/files/ISC2025_poster_scientific_applications.pptx.pdf
|y Restricted
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)204237
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)203512
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172652
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165859
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)176815
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)204540
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)179447
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a conf
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21