001049775 001__ 1049775
001049775 005__ 20251217202232.0
001049775 037__ $$aFZJ-2025-05559
001049775 1001_ $$0P:(DE-Juel1)198866$$aJerome, Gbenga$$b0$$eCorresponding author$$ufzj
001049775 1112_ $$aSOC Große Runde$$cJülich$$d2025-12-10 - 2025-12-10$$wGermany
001049775 245__ $$aComparative analysis of solid oxide co-electrolysis designs: Syngas composition for methanol synthesis and energy optimization using pinch analysis
001049775 260__ $$c2025
001049775 3367_ $$033$$2EndNote$$aConference Paper
001049775 3367_ $$2DataCite$$aOther
001049775 3367_ $$2BibTeX$$aINPROCEEDINGS
001049775 3367_ $$2ORCID$$aLECTURE_SPEECH
001049775 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1765991816_9816$$xOther
001049775 3367_ $$2DINI$$aOther
001049775 520__ $$aSolid oxide electrolysis cells (SOECs) operating in co-electrolysis mode risk carbon deposition which degrade system performance and reliability. Careful operation is therefore essential to prevent carbon deposition. This presentation examines two SOEC system designs-a low utilization and high utilization configuration each employing different strategies to mitigate carbon deposition. Both design were optimized to produce methanol-grade synthesis gas (syngas). The study evaluated the impact of operating temperature on system efficiency for each configuration and applies a pinch analysis to identify further opportunity for heat integration and energy recovery. This study provides insight into SOEC system performance and approach for improving the energy efficiency of both designs using pinch analysis tool.
001049775 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001049775 536__ $$0G:(DE-Juel1)BMBF-03SF0716$$aBMBF-03SF0716A - Verbundvorhaben DryHy: Wasserbewusste Erzeugung von Wasserstoff und e-Fuels in trockenen Regionen (Phase 1), Teilvorhaben: Vorbereitung der Demonstationsphase durch Untersuchung und Entwicklung der Einzeltechnologien (BMBF-03SF0716)$$cBMBF-03SF0716$$x1
001049775 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
001049775 909CO $$ooai:juser.fz-juelich.de:1049775$$pVDB
001049775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)198866$$aForschungszentrum Jülich$$b0$$kFZJ
001049775 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)198866$$aRWTH Aachen$$b0$$kRWTH
001049775 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001049775 9141_ $$y2025
001049775 920__ $$lyes
001049775 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001049775 980__ $$atalk
001049775 980__ $$aVDB
001049775 980__ $$aI:(DE-Juel1)IET-1-20110218
001049775 980__ $$aUNRESTRICTED