001     1049795
005     20251217202233.0
037 _ _ |a FZJ-2025-05579
041 _ _ |a English
100 1 _ |a Jerome, Gbenga
|0 P:(DE-Juel1)198866
|b 0
|e Corresponding author
|u fzj
111 2 _ |a IET-1 PhD Fall Seminar
|c Jülich-Barmen
|d 2025-11-17 - 2025-11-19
|w Germany
245 _ _ |a Optimizing solid oxide co-electrolysis for air-derived methanol
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Talk (non-conference)
|b talk
|m talk
|0 PUB:(DE-HGF)31
|s 1765991941_9816
|2 PUB:(DE-HGF)
|x Other
336 7 _ |a Other
|2 DINI
520 _ _ |a Combining DAC and SOEC powered by renewable energy offers a promising solution for producing methanol in region with abundant renewable energy but with limited fresh water supply. However, there are technical challenges that must be overcome for their implementation, particularly for the SOEC system. SOEC system is a key technology in overall process as it directly governs conversion efficiency, carbon deposition risk and critical for efficient water management. Therefore, SOEC system must be carefully operated to avoid carbon deposition and minimal water utilization.This presentation evaluates two SOEC designs—low and high utilization designs—that were previously proposed. Results demonstrate that the stoichiometric number (SN) can be optimized for the target range of 2.01 to 2.05 required for methanol synthesis by controlling utilization and H2O/CO2 ratio. Heat integration and water recycling further improved the low utilization design by 10.4% in energy efficiency and 42.2% in water management, enabling carbon-safe SOEC operation with minimal freshwater consumption.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
536 _ _ |a BMBF-03SF0716A - Verbundvorhaben DryHy: Wasserbewusste Erzeugung von Wasserstoff und e-Fuels in trockenen Regionen (Phase 1), Teilvorhaben: Vorbereitung der Demonstationsphase durch Untersuchung und Entwicklung der Einzeltechnologien (BMBF-03SF0716)
|0 G:(DE-Juel1)BMBF-03SF0716
|c BMBF-03SF0716
|x 1
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 2
700 1 _ |a Dam, An Phuc
|0 P:(DE-Juel1)209614
|b 1
|u fzj
700 1 _ |a Dirkes, Steffen
|0 P:(DE-Juel1)201445
|b 2
|u fzj
700 1 _ |a Mänken, Christian
|0 P:(DE-Juel1)188978
|b 3
|u fzj
700 1 _ |a Selmert, Victor
|0 P:(DE-Juel1)178824
|b 4
|u fzj
700 1 _ |a Samsun, Remzi Can
|0 P:(DE-Juel1)207065
|b 5
|u fzj
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 6
|u fzj
909 C O |o oai:juser.fz-juelich.de:1049795
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)198866
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)198866
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)209614
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)201445
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)188978
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)178824
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)207065
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a talk
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21