001049806 001__ 1049806
001049806 005__ 20260108204824.0
001049806 0247_ $$2doi$$a10.1007/JHEP10(2025)158
001049806 0247_ $$2ISSN$$a1126-6708
001049806 0247_ $$2ISSN$$a1029-8479
001049806 0247_ $$2ISSN$$a1127-2236
001049806 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05590
001049806 037__ $$aFZJ-2025-05590
001049806 041__ $$aEnglish
001049806 082__ $$a530
001049806 1001_ $$00000-0001-9703-5506$$aAltherr, A.$$b0
001049806 245__ $$aComparing QCD+QED via full simulation versus the RM123 method: U-spin window contribution to $${a}_{\mu }^{\text{HVP}}$$
001049806 260__ $$aHeidelberg$$bSpringer$$c2025
001049806 3367_ $$2DRIVER$$aarticle
001049806 3367_ $$2DataCite$$aOutput Types/Journal article
001049806 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767858564_29667
001049806 3367_ $$2BibTeX$$aARTICLE
001049806 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001049806 3367_ $$00$$2EndNote$$aJournal Article
001049806 520__ $$aElectromagnetic corrections to hadronic vacuum polarization contribute significantly to the uncertainty of the Standard Model prediction of the muon anomaly, which poses conceptual and numerical challenges for ab initio lattice determinations. In this study, we compute the non-singlet contribution from intermediate Euclidean current separations in quantum chromo- and electrodynamics (QCD+QED) using $C^{\star}$ boundary conditions in two ways: either non-perturbatively by sampling the joint probability distribution directly or by perturbatively expanding from an isospin-symmetric theory. This allows us to compare the predictions and their uncertainties at a fixed lattice spacing and volume, including fully the sea quarks effects in both cases. Treating carefully the uncertainty due to tuning to the same renormalized theory with $N_{\text{f}}= 1 + 2 + 1$ quarks, albeit with unphysical masses, we find it advantageous to simulate the full QCD+QED distribution given a fixed number of samples. This study lays the ground-work for further applications of $C^{\star}$ boundary conditions to study QCD+QED at the physical point, essential for the next generation of precision tests of the Standard Model.
001049806 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001049806 536__ $$0G:(GEPRIS)417533893$$aGRK 2575 - GRK 2575: Überdenken der Quantenfeldtheorie (417533893)$$c417533893$$x1
001049806 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001049806 7001_ $$00000-0002-9350-0383$$aCampos, I.$$b1
001049806 7001_ $$0P:(DE-Juel1)207074$$aCotellucci, Alessandro$$b2$$ufzj
001049806 7001_ $$00000-0003-1132-3799$$aGruber, R.$$b3
001049806 7001_ $$00000-0001-9628-130X$$aHarris, T.$$b4
001049806 7001_ $$00000-0002-6943-8735$$aKomijani, J.$$b5
001049806 7001_ $$00000-0003-2155-7679$$aMargari, F.$$b6
001049806 7001_ $$00000-0002-9883-7866$$aMarinkovic, M. K.$$b7
001049806 7001_ $$00000-0001-7500-6747$$aParato, L.$$b8
001049806 7001_ $$00000-0002-5500-6544$$aPatella, A.$$b9
001049806 7001_ $$00009-0008-6734-4883$$aRosso, S.$$b10
001049806 7001_ $$00000-0001-5571-7971$$aTantalo, N.$$b11
001049806 7001_ $$00009-0009-8843-2249$$aTavella, P.$$b12$$eCorresponding author
001049806 773__ $$0PERI:(DE-600)2027350-2$$a10.1007/JHEP10(2025)158$$gVol. 2025, no. 10, p. 158$$n10$$p158$$tJournal of high energy physics$$v2025$$x1126-6708$$y2025
001049806 8564_ $$uhttps://juser.fz-juelich.de/record/1049806/files/JHEP10%282025%29158.pdf$$yOpenAccess
001049806 909CO $$ooai:juser.fz-juelich.de:1049806$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001049806 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207074$$aForschungszentrum Jülich$$b2$$kFZJ
001049806 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001049806 9141_ $$y2025
001049806 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
001049806 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
001049806 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001049806 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
001049806 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001049806 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HIGH ENERGY PHYS : 2022$$d2024-12-16
001049806 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ HIGH ENERGY PHYS : 2022$$d2024-12-16
001049806 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:05:11Z
001049806 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:05:11Z
001049806 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
001049806 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
001049806 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
001049806 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
001049806 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2024-12-16
001049806 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
001049806 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-16$$wger
001049806 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
001049806 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T09:05:11Z
001049806 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001049806 980__ $$ajournal
001049806 980__ $$aVDB
001049806 980__ $$aUNRESTRICTED
001049806 980__ $$aI:(DE-Juel1)JSC-20090406
001049806 9801_ $$aFullTexts