001     1049806
005     20260108204824.0
024 7 _ |a 10.1007/JHEP10(2025)158
|2 doi
024 7 _ |a 1126-6708
|2 ISSN
024 7 _ |a 1029-8479
|2 ISSN
024 7 _ |a 1127-2236
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-05590
|2 datacite_doi
037 _ _ |a FZJ-2025-05590
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Altherr, A.
|0 0000-0001-9703-5506
|b 0
245 _ _ |a Comparing QCD+QED via full simulation versus the RM123 method: U-spin window contribution to $${a}_{\mu }^{\text{HVP}}$$
260 _ _ |a Heidelberg
|c 2025
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767858564_29667
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Electromagnetic corrections to hadronic vacuum polarization contribute significantly to the uncertainty of the Standard Model prediction of the muon anomaly, which poses conceptual and numerical challenges for ab initio lattice determinations. In this study, we compute the non-singlet contribution from intermediate Euclidean current separations in quantum chromo- and electrodynamics (QCD+QED) using $C^{\star}$ boundary conditions in two ways: either non-perturbatively by sampling the joint probability distribution directly or by perturbatively expanding from an isospin-symmetric theory. This allows us to compare the predictions and their uncertainties at a fixed lattice spacing and volume, including fully the sea quarks effects in both cases. Treating carefully the uncertainty due to tuning to the same renormalized theory with $N_{\text{f}}= 1 + 2 + 1$ quarks, albeit with unphysical masses, we find it advantageous to simulate the full QCD+QED distribution given a fixed number of samples. This study lays the ground-work for further applications of $C^{\star}$ boundary conditions to study QCD+QED at the physical point, essential for the next generation of precision tests of the Standard Model.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a GRK 2575 - GRK 2575: Überdenken der Quantenfeldtheorie (417533893)
|0 G:(GEPRIS)417533893
|c 417533893
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Campos, I.
|0 0000-0002-9350-0383
|b 1
700 1 _ |a Cotellucci, Alessandro
|0 P:(DE-Juel1)207074
|b 2
|u fzj
700 1 _ |a Gruber, R.
|0 0000-0003-1132-3799
|b 3
700 1 _ |a Harris, T.
|0 0000-0001-9628-130X
|b 4
700 1 _ |a Komijani, J.
|0 0000-0002-6943-8735
|b 5
700 1 _ |a Margari, F.
|0 0000-0003-2155-7679
|b 6
700 1 _ |a Marinkovic, M. K.
|0 0000-0002-9883-7866
|b 7
700 1 _ |a Parato, L.
|0 0000-0001-7500-6747
|b 8
700 1 _ |a Patella, A.
|0 0000-0002-5500-6544
|b 9
700 1 _ |a Rosso, S.
|0 0009-0008-6734-4883
|b 10
700 1 _ |a Tantalo, N.
|0 0000-0001-5571-7971
|b 11
700 1 _ |a Tavella, P.
|0 0009-0009-8843-2249
|b 12
|e Corresponding author
773 _ _ |a 10.1007/JHEP10(2025)158
|g Vol. 2025, no. 10, p. 158
|0 PERI:(DE-600)2027350-2
|n 10
|p 158
|t Journal of high energy physics
|v 2025
|y 2025
|x 1126-6708
856 4 _ |u https://juser.fz-juelich.de/record/1049806/files/JHEP10%282025%29158.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1049806
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)207074
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J HIGH ENERGY PHYS : 2022
|d 2024-12-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J HIGH ENERGY PHYS : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:05:11Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:05:11Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a SCOAP3
|0 StatID:(DE-HGF)0570
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-16
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T09:05:11Z
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21