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Abstract: Electromagnetic corrections to hadronic vacuum polarization contribute signif-
icantly to the uncertainty of the Standard Model prediction of the muon anomaly, which
poses conceptual and numerical challenges for ab initio lattice determinations. In this study,
we compute the non-singlet contribution from intermediate Euclidean current separations
in quantum chromo- and electrodynamics (QCD+QED) using C⋆ boundary conditions in
two ways: either non-perturbatively by sampling the joint probability distribution directly or
by perturbatively expanding from an isospin-symmetric theory. This allows us to compare
the predictions and their uncertainties at a fixed lattice spacing and volume, including fully
the sea quarks effects in both cases. Treating carefully the uncertainty due to tuning to the
same renormalized theory with Nf = 1 + 2 + 1 quarks, albeit with unphysical masses, we
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find it advantageous to simulate the full QCD+QED distribution given a fixed number of
samples. This study lays the ground-work for further applications of C⋆ boundary conditions
to study QCD+QED at the physical point, essential for the next generation of precision
tests of the Standard Model.
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1 Introduction

The Standard Model (SM) prediction for the muon anomalous magnetic moment aµ = (g −
2)µ/2 [1, 2] is coming into sharper focus since several lattice quantum chromodynamics (QCD)
studies [3–6] have shown internal consistency and further highlighted the tension between
lattice and data-driven dispersive evaluations indicated in ref. [3]. The lattice QCD [3–6]
results1 including a recent high-precision hybrid calculation [7] point towards compatibility

1For a recent updated SM prediction by the Muon g − 2 Theory Initiative see [2].
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with the experimental results from BNL and Fermilab [8–11], and the no new physics scenario.
Further tensions in the e+e− → hadrons cross sections have arisen in light of the CMD-3
data [12], which call for scrutiny of all assumptions underpinning the SM predictions from
the data-driven determination of the HVP contribution [1, 13].

While an impressive array of lattice computations have been able to pin down sub-
contributions to the HVP [14–24], in particular from small and intermediate Euclidean
separations, the so-called short-distance and window quantities, certain lacunae still exist. In
particular, the final result from Fermilab’s E989 experiment has now achieved a precision
of 127 parts per billion (ppb) [11], thereby reinforcing the need for a per mille theoretical
determination of the HVP contribution that matches the experimental accuracy. Consequently,
the inclusion of leading QED corrections in such ab initio computations remains essential.
On the lattice, this requires either computing the corrections to the leading-order (in QED)
result, defined usually in a scheme which naturally incorporates isospin symmetry such
that the corrections become so-called isospin-breaking effects, or else computing directly
in QCD+QED without an intermediate determination in the isospin-symmetric theory. In
either case, the incorporation of QED is challenging on the lattice for a number of conceptual
and technical reasons, a contributing factor to the BMW computation remaining the only
complete computation of the muon anomaly in QCD+QED that incorporates all dynamical
isospin-breaking effects.

To compute hadronic quantities and their electromagnetic corrections in numerical lattice
simulations, it is convenient, although not necessary, to use the same cutoff provided by the
lattice size L and lattice spacing a for both QCD and QED. Alternative infinite-volume QED
approaches have also been explored [25–29]. The implementation of QED in a finite volume is,
however, not trivial due to constraints imposed by the long-range nature of electromagnetism,
which forbid the existence of charged states. This has been overcome in many ways [30–37],
and in this work we make use of C⋆ boundary conditions, which permit a local and gauge-
invariant formulation of finite-volume QED [38]. These properties likely result in reduced
finite-volume effects compared to other formulations for certain observables like meson masses
and the HVP [38–41] and good scaling behaviour towards the continuum [42], making this
setup ideal in the pursuit of per mille accuracy on the gold-plated hadronic quantities that
form the input for precision tests of the SM.

In this work, we consider an observable closely related to the muon’s HVP contribution
in the intermediate window defined by the correlator of the U -spin vector current

Vµ(x) =
1
2{s̄(x)γµs(x)− d̄(x)γµd(x)}, (1.1)

which is flavour non-singlet when md = ms even when isospin-symmetry is explicitly broken, as
in the setup we use in this work. Due to its flavour quantum numbers, its correlation function
is represented by quark-line connected diagrams which are significantly less complicated to
compute than the full electromagnetic current correlator, whose isospin-violating contributions
have been recently considered in ref. [43]. If the full SU(3) symmetry of the light quarks is
manifest, the contribution of this current correlator represents exactly 75% of their contribution
to the hadronic vacuum polarization. In addition to this simplification, the intermediate
window we investigate is dominated by current separations between 0.4–1.0 fm, meaning it is
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neither afflicted by either large finite-volume effects nor discretization effects. Therefore, this
contribution to the muon anomaly, denoted aU,w

µ , represents a very good quantity to use as a
probe observable to test our approach to QCD+QED using C⋆ boundary conditions.

In the following, we compare and contrast two implementations of QCD+QED with C⋆

boundary conditions, consistent at next-to-leading order in the electromagnetic coupling, to
test their efficiency and utility. On one hand, we expand around an action defined by QCD
in the isospin-symmetric limit, à la Rome-123 (RM123) [44, 45], while on the other hand we
simulate directly the joint QCD+QED distribution non-perturbatively. In both cases, all
effects from the sea quarks are completely included, making the comparison unambiguous at
leading order in the expansion parameters. We make the comparison in two ways: (i) by fixing
the bare parameters of the simulations in both implementations and comparing the resulting
predictions for both aU,w

µ as well as the hadronic observables used to define the renormalized
theory, and (ii) by fixing the line of constant physics using those same hadronic observables
and propagating their uncertainty to the physical prediction of the muon anomaly. Our final
results incorporating the uncertainty due to fixing to the same lines of constant physics are

aU,w
µ × 1011 =

1094(21) RM123
1085(7) non-perturbative

.

We find the uncertainty in the RM123 method completely dominated by the statistical
uncertainty in the estimation of the isospin-breaking effects due to the sea quarks. This
uncertainty can only be reduced by sampling more gauge-field configurations. Moreover,
the variance is expected to grow linearly with the volume in lattice units, up to logarithmic
corrections in the lattice spacing, making the reduction of this uncertainty very costly toward
the infinite-volume and continuum limits. This work provides the first experience on the
computation of physical predictions with this setup and lays the crucial groundwork for
future computations and moving closer to the physical point.

The rest of this paper is organized as follows. In section 2, we describe the renormalization
scheme used to define QCD+QED and isospin-symmetric QCD parameters. Section 3 provides
the details of the lattice setup and the discretization of the observable with C⋆ boundary
conditions. In section 4, we derive in detail the isospin-breaking corrections through the
RM123 approach. The numerical implementation is described in section 5 while the analysis
and results are discussed in section 6, followed by our concluding remarks.

2 Parameterization of QCD+QED and isospin-symmetric QCD

The QCD+QED action with Nf = 4 quark flavors f = u, d, s, c contains six bare parameters:
four quark masses mf and the electromagnetic and strong couplings e2

0 and g2
0. The renor-

malized theory is defined by introducing constraints which fix the bare masses along the lines
of constant physics. Physical predictions for QCD+QED are then unambiguous in the contin-
uum limit once the lattice scale has been set and ignoring the running of the electromagnetic
coupling, which goes beyond the target accuracy of state-of-the-art computations.

In this work, we follow the hadronic renormalization scheme of ref. [46] to set the lattice
scale and fix the quark masses. The lattice spacing is set using the gradient-flow scale

√
8t0.
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The bare masses of the up, down, strange, and charm quarks are tuned by fixing the following
set of dimensionless hadronic quantities

ϕ0 = 8t0(M2
K± −M2

π±),
ϕ1 = 8t0(M2

K± +M2
π± +M2

K0),
ϕ2 = 8t0(M2

K0 −M2
K±)/αR,

ϕ3 =
√
8t0(MD±

s
+MD± +MD0),

(2.1)

where αR is the renormalized electromagnetic coupling computed at flow time t0, and the
masses denote those of the light π±,K±,0 and charmed D±,0, D±

s pseudoscalar mesons.
The ϕi quantities are particularly sensitive to certain combinations of quark masses, as
discussed for example in refs. [47, 48]. Specifically, ϕ0, ϕ1, ϕ2, and ϕ3 probe (ms − md),
(mu +md +ms), α−1

R (md −mu), and mc, respectively. As we are only concerned with the
theory accurate to next-to-leading order in the electromagnetic coupling, which is more than
sufficient for the target precision, we can safely set the bare parameter e2

0 to its physical value
e2 = 4πα = 0.091701237 in the Thomson limit. In the following, we will use the notation
e2 or α to refer to the bare parameters for brevity.

The renormalization conditions we use to define our theory at unphysical quark masses
are given by matching the above quantities to the values

ϕ⋆0 = 0, ϕ⋆1 = 2.11, ϕ⋆2 = 2.36, ϕ⋆3 = 12.1, (2.2)

which do not match their physical values. We set the gradient-flow scale to the central value
of the Nf = 3 CLS determination [49]√

8t⋆0 = 0.415 fm. (2.3)

The specific choices for the ϕi and the scale correspond to a pseudoscalar mass of approximately
Mπ± ≈ MK± ≈ 400MeV in physical units. In QCD+QED, where isospin symmetry is
explicitly broken, the condition ϕ0 = 0 corresponds to setting md = ms and there remains
a SU(2) flavour symmetry between the down and strange quarks, which we refer to as
U -spin symmetry.

We now turn our attention to QCD in the isospin-symmetric limit, which forms the
practical starting point of the perturbative approach to QCD+QED. While the parameteriza-
tion of QCD+QED is unambiguous at the level of accuracy that can be probed in Nature
and the renormalization scheme can be chosen as a matter of convenience, the same is not
true for QCD at the target percent level of precision. In ref. [50], a prescription for lattice
computations has been proposed to facilitate comparisons between high-precision lattice QCD
computations. In this work, because our renormalized theory is still far from the physical
point, where such considerations are important, we impose for isospin-symmetric QCD the
same conditions defined by the values in eq. (2.2) and take the limit of α→ 0 at a constant
ϕ2, leading to mu = md = ms. In the following, we denote the corresponding theory by
isoQCD for brevity. While the definition of a renormalized isoQCD theory is not strictly
necessary to use as a starting point for QCD+QED computations as we perform in this study,
it is required for computing renormalized results for isospin-breaking effects.
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In this work, we will not examine the isospin-breaking effects directly but compare results
for a specific probe observable, aU,w

µ , described in detail in section 3.2, computed in QCD+QED
using either the perturbative expansion around the isoQCD action or the non-perturbative
simulation of the joint distribution of QCD+QED. Details about the implementation of
the perturbative approach, originally proposed by the RM123 Collaboration [44, 45], are
contained in section 4. Firstly, we will compare the results for the scale-setting quantities
t0/a

2 and ϕi and for aU,w
µ at fixed bare parameters: in this case, both the target observable

and the scale-setting quantities will carry an uncertainty. Secondly, we will compare results
for aU,w

µ at fixed renormalization scheme: this requires propagating the uncertainty on the
scale-setting quantities to our target observable.

3 QCD+QED on the lattice with C⋆ boundary conditions

Implementing QED on a finite lattice presents additional challenges due to the zero modes
of the photon field, see e.g. ref. [42] for a discussion. One approach for handling these zero
modes is the application of C⋆ boundary conditions, also known as C-periodic boundary
conditions [33–35, 38]. This method provides a rigorous way to simulate QED on a lattice
without compromising the theory’s locality or requiring an additional regulator, such as a mass
term for the photon field. Although using C⋆ boundary conditions increases computational
cost due to the need to effectively double the volume in the orbifold construction, studies
suggest that finite volume effects are relatively suppressed in such simulations, compensating
at least part of the additional cost [39]. Here, we briefly outline our implementation of C⋆

boundary conditions; for a comprehensive review, we refer the reader to ref. [38].
On a lattice with a finite size L in k̂ direction, C⋆ boundary conditions on fermionic

and gauge fields are defined using charge conjugation matrix C as

ψf (x+ Lk̂) = ψC
f (x) := C−1ψ̄⊤

f (x),
ψ̄f (x+ Lk̂) = ψ̄C(x) := −ψ⊤

f (x)C,
Uµ(x+ Lk̂) = UC

µ (x) := U∗
µ(x),

Aµ(x+ Lk̂) = AC
µ(x) := −Aµ(x).

(3.1)

Here, ψf and ψ̄f are the fermionic fields of flavour f , Uµ(x) ∈ SU(3) are the QCD lattice
gauge fields, and Aµ(x) is the photon gauge field. The symbols C, ⊤, and ∗ denote charge
conjugation, transposition, and complex conjugation, respectively. Also note that in our
convention the charge conjugation matrix C obeys CγµC−1 = −γ⊤µ with the Euclidean
gamma matrices γµ. By imposing the C⋆ boundary conditions in one or more directions,
the photon field Aµ(x) is antiperiodic in those directions, and therefore the zero-modes are
excluded by construction. In this work, we impose C⋆ boundary conditions in three spatial
directions. The details of the computational implementation of C⋆ boundary conditions
are discussed in ref. [51].

3.1 Lattice action

To simulate QCD+QED we discretize the Euclidean path integral of the theory,

Z =
∫

DψDψ̄DUDz e−SF[U,z,ψ̄,ψ] e−Sg,SU(3)[U ] e−Sg,U(1)[z], (3.2)
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on a (T/a)× (L/a)3 lattice using (anti-)periodic boundary conditions in the time direction
and C⋆ boundary conditions in the spatial directions. For the SU(3) gauge field we employ
the Lüscher-Weisz discretization of the action [52, 53], while for the U(1) gauge field we use
the Wilson plaquette action in the compact formulation

Sg,U(1)(z) =
1

8πq2
elα

∑
x

∑
µ ̸=ν

[1− PU(1)
µν (x)], (3.3)

where PU(1)
µν represents the plaquette built using the U(1) links zµ(x) = eieaqelAµ(x). While

the parameter qel drops out of the action in the continuum limit, at finite lattice spacing, the
compact formulation implies that the electric charge is quantized: only states with a charge
that is an integer multiple of the parameter qel exist in the Hilbert space of the theory. In
finite volume with C⋆ boundary conditions, we use qel = 1/6 to construct gauge-invariant
interpolating operators for charged hadrons, as explained in ref. [38].

The fermionic part of the QCD+QED action has to be modified because of the effect of
the C⋆ boundary conditions. Indeed, the boundaries mix the ψ and ψ̄ degrees of freedom
such that the Dirac operator does not act as a linear operator on the field ψ. The problem
is overcome by defining an extended spinor that contains both the fermion field and its
charge conjugate, i.e.

χ(x) =
(
ψ(x)
ψC(x)

)
, (3.4)

for which the boundary conditions in the spatial directions are set by

χ(x+ Lk̂) = Kχ(x), K =
(
0 1
1 0

)
. (3.5)

In this new formulation, the measure of the path integral can be simply re-written as
Dχ = DψDψ̄, and the action reads

SF = −
∑
f

a4∑
x

1
2χ

⊤
f (x)KCDfχf (x). (3.6)

The massive O(a)-improved Wilson-Dirac operator is defined by

Df = Dw,f + δDsw,f +mf , (3.7)

where the Wilson-Dirac term is defined as

Dw,f =
3∑

µ=0

1
2

[
γµ(∇f

µ +∇f∗
µ )− a∇f∗

µ ∇f
µ

]
, (3.8)

with the covariant forward finite-difference operator acting on the spinor as

∇f
µχf (x) = a−1

[(
Uµ(x)z

q̂f
µ (x) 0

0 U∗
µ(x)z

−q̂f
µ (x)

)
χf (x+ aµ̂)− χf (x)

]
. (3.9)

– 6 –



J
H
E
P
1
0
(
2
0
2
5
)
1
5
8

The covariant derivative is not universal for all quarks due to the presence of the compact U(1)
link zq̂f

µ , with q̂f being the electric charge of the quark of flavour f in units of the elementary
charge qel. The second term in equation (3.7) is the Sheikholeslami-Wohlert (SW) term

δDsw,f = ia

4

3∑
µ,ν=0

σµν

{
cSU(3)

sw

(
Ĝµν 0
0 Ĝ∗

µν

)
+ qfc

U(1)
sw

(
F̂µν 0
0 F̂∗

µν

)}
, (3.10)

which removes O(a) discretization effects from the action with appropriately chosen coefficients.
Ĝµν and F̂µν are the clover discretizations of the anti-hermitian SU(3) and U(1) tensors. The
SU(3) tensor is defined as in ref. [54] while the U(1) tensor is constructed as

F̂µν(x) =
i

4a2qel
Im{zµν(x) + zµν(x− aµ̂) + zµν(x− aν̂) + zµν(x− aµ̂− aν̂)}, (3.11)

with zµν(x) = exp{ieqela[Aµ(x) +Aν(x+ aµ̂)−Aµ(x+ aν̂)−Aν(x)]}.
The action of the Dirac operator on the doublet field χf may then be given through

Dfχf (x) =
(
mf +

4
a

)
χf (x)−

1
2a
∑
µ

(1− γµ)
[
eieqfaAµτ3Wµ

]
(x)χf (x+ aµ̂)

− 1
2a
∑
µ

(1 + γµ)
[
eieqfaAµτ3Wµ

]
(x− aµ̂)†χf (x− aµ̂) + δDsw,f χf (x), (3.12)

where eieqfaAµτ3Wµ is the SU(3) × U(1) field, with the following definitions of the SU(3)
parallel transporter Wµ and the matrix τ3:

Wµ(x) =
(
Uµ(x) 0

0 U∗
µ(x)

)
, τ3 =

(
1 0
0 −1

)
. (3.13)

The same action is used for isoQCD simulations with the electromagnetic charge of the
quarks in eq. (3.12) set to zero.

3.2 Flavour non-singlet contribution in the intermediate window

In this work, we consider the U -spin current

Vµ(x) =
1
2
∑
f=d,s

Qf χ̄f (x)γµ
τ3
2 χf (x), (3.14)

defined using the doublet notation introduced in the previous subsection, with χ̄ = −χ⊤KC,
and the charge assignments Qs = 1 = −Qd, and compute the Euclidean-time correlator in
the time-momentum representation [55]

GU(t) = −1
3

3∑
k=1

∫
d3x ⟨Vk(x)Vk(0)⟩ . (3.15)

The intermediate window of this contribution to the muon’s HVP is obtained via the integral

aU,w
µ =

(
α

π

)2 ∫ ∞

0
dtGU(t)K̃(t;mµ)wI(t). (3.16)

– 7 –
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The kernel K̃ is computed following ref. [56], while the intermediate window wI(t) is equal
to the weight function

w(t; t1, t2,∆) = Θ(t, t1,∆)−Θ(t, t2,∆), (3.17)

with the choice t1 = 0.4 fm, t2 = 1 fm,∆ = 0.15 fm [16], and the Θ function defined as

Θ(t, t′,∆) = 1
2
(
1 + tanh[(t− t′)/∆]

)
. (3.18)

The intermediate window selects the contribution less susceptible to finite-volume and lattice
discretization effects, and yet provides a substantial fraction of the total.

With this definition of the current, we examine a contribution which is proportional to the
full light-quark contribution from the electromagnetic current when there is SU(3) symmetry.
At the physical point, the light quarks contribute the most to the HVP, as indeed the charm
and bottom quarks provide only 2% of the total. With SU(3) symmetry, the contribution of
the light quarks to the electromagnetic current is non-singlet thanks to the vanishing sum of
their charges and thus the correlator is represented by a single Wick contraction (a quark-line
connected diagram) once the quark fields have been integrated out. When the SU(3) symmetry
is broken, for example from isospin-breaking effects, quark-line disconnected diagrams, which
are computationally demanding to compute, no longer cancel. In this investigation, even
after including QED, we retain an SU(2) symmetry between the d and s quarks. With this
choice, the current introduced in eq. (3.14) transforms in the non-singlet representation of
SU(2) when md = ms, and we avoid computing the associated disconnected diagrams.

Although the absence of the singlet part of the current prevents us from computing
corrections to the full electromagnetic current correlator, one could still determine the quark-
line connected part of it, which can be defined in a partially-quenched theory. However, we do
not expect that the isospin-breaking effects to that quantity to have any special significance
over the corrections to the non-singlet correlator, especially in the comparison between the
two approaches. Finally, we note that U -spin current is protected from mixing with singlet
operators, so there are no additive renormalizations required in our case, unlike for the
electromagnetic current, cf. ref. [57].

3.3 Lattice discretization of aU,w
µ

On the lattice, we must choose a discretization of the operators and integral appearing in
eq. (3.15). In this work, in addition to the local current defined in eq. (3.14), we make
use of the point-split current

Ṽµ(x) =
1
2
∑
f=d,s

Qf

[
χ̄f (x+ aµ̂)(1 + γµ)

4 e−ieqfaAµ(x)τ3W †
µ(x)τ3χf (x)

− χ̄f (x)
(1− γµ)

4 eieqfaAµ(x)τ3Wµ(x)τ3χf (x+ aµ̂)
]
. (3.19)

While this current satisfies a Ward identity at finite lattice spacing, and automatically has
the correct normalization, the local current in eq. (3.14) requires a finite multiplicative renor-
malization to match it. Furthermore, both currents require O(a) improvement counterterms
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whose coefficients are not yet known for Nf = 4 Wilson fermions and the Lüscher-Weisz
gauge action. Therefore, we use the unimproved currents.

We define the renormalized but unimproved local current via

V R
µ (x) = Zm

V (g2
0, e

2,mf )Vµ(x), (3.20)

where Zm
V (g2

0, e
2,mf ) is the mass-dependent non-singlet renormalization factor. A suitable

renormalization condition to determine Zm
V can be constructed by imposing that the local

and point-split discretizations agree at large Euclidean separations

lim
t→∞

Zm
VG

U,l
bare(t)

GU,c
bare(t)

= 1, (3.21)

where the bare correlator of the local current is defined through

GU,l
bare(t) = −1

3a
3∑

k

∑
x

⟨Vk(x)Vk(0)⟩ (3.22)

and the corresponding one with the point-split discretization at the sink

GU,c
bare(t) = −1

3a
3∑

k

∑
x

〈
Ṽk(x)Vk(0)

〉
. (3.23)

In practice, as our operators are not improved, this condition has the unfortunate feature
that it will be potentially subject to large cut-off effects. As we will use the same condition in
both implementations and compare at finite lattice spacing, this does not pose a particular
problem for our study.

The renormalization thus defined, the two discretizations of the correlator we employ
are one using only the local currents

GU,l(t) = (Zm
V )2GU,l

bare(t) (3.24)

and one using a local and a point-split current

GU,c(t) = Zm
VG

U,c
bare(t). (3.25)

In practice, the normalization condition ensures that they agree at long distances, but in this
study we probe smaller Euclidean separations where they will differ due to cut-off effects.
Thus, we have two estimators for the lattice, finite-volume, U -spin observable

aU,w
µ =

(
α

π

)2
a

T/2∑
t=0

GU,ℓ(t)K̃(t;mµ)wI(t), ℓ = l, c, (3.26)

for either the local or point-split discretizations of the sink current.
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4 Isospin-breaking effects à la RM123

While in the non-perturbative QCD+QED approach the computation of the observables
proceeds identically to isoQCD with no special treatment, the RM123 method requires the
estimation of new classes of diagrams which parameterize the linearization of the observables
in the bare parameters. In this section, we derive the required diagrams that arise from
expanding the lattice action and currents in the bare parameters connecting isoQCD and
QCD+QED, as described in section 2. First, we introduce our notation for the leading
corrections order in the expansion parameters.

By Taylor-expanding an observable X at finite lattice spacing in the changes of the bare
parameters ∆ε = (e2,∆mu,∆md,∆ms,∆mc) as

X(∆ε) = X(0) + e2∂e2X(0) +
∑

f=u,d,s,c
∆mf∂mf

X(0) + O(e4), (4.1)

where we denote the partial derivatives ∂e2 = ∂/∂e2 and ∂mf
= ∂/∂mf , we can estimate

our observable via X(∆ε) ≈ X(0) + δX, where

X(0) = X(0), δX = e2∂e2X(0) +
∑

f=u,d,s,c
∆mf∂mf

X(0). (4.2)

Both terms can be computed in the isoQCD theory defined by ∆ε = 0. We note that given
our definitions of isoQCD and QCD+QED we have ∆mf = O(e2), and so corrections to
the above formula start at second order in that parameter. We recall that both theories are
defined at the same bare coupling g2

0, so no change in this parameter is needed, but isoQCD
and QCD+QED will have different lattice spacings. Furthermore, in the current definition,
no change in the O(a) improvement coefficients are included.

For fixed line of constant physics, the change in the bare masses ∆mf are computed by
expanding the hadronic observables defined in eq. (2.1) at first-order in ∆mf and e2 around
the isoQCD point and imposing the renormalization conditions as before. This amounts
to solving the system of equations

ϕi(0) + e2∂e2ϕi(0) +
∑

f=u,d,s,c
∆mf∂mf

ϕi(0) = ϕ⋆i , (4.3)

where the right-hand side ϕ⋆i are the target values in the full theory, given in eq. (2.2). The
derivatives ∂e2ϕi and ∂mf

ϕi can be related to the derivatives of the pseudoscalar meson
masses that enter the definitions of each ϕi and the derivatives of the scale setting observable
in lattice units t̂0 = t0/a

2.
When the same bare coupling is used in isoQCD and QCD+QED the lattice spacing a

also receives a correction to the value computed in the isoQCD ensemble

a(0) =

√√√√ t⋆0

t̂
(0)
0
,

δa

a(0) = −1
2
δt̂0

t̂
(0)
0

. (4.4)

In the following, we derive the form of the required corrections with C⋆ boundary
conditions and O(a)-improved Wilson fermions, where in practice, we find it more convenient
to expand the path integral after integrating over the Grassmann fields.
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4.1 Derivation with C⋆ boundary conditions

After integrating out the fermion fields, the expectation value of any observable O[U, z] in
QCD+QED with C⋆ boundary conditions may be written

⟨O[U, z]⟩ = Z−1
∫

DUDz
∏
f

Pf(CKDf [U, z])O[U, z] e−Sg,SU(3)[U ]−Sg,U(1)[z], (4.5)

where Pf(CKDf ) denotes the pfaffian of CKDf , whose properties are discussed in ref. [46].
Note that O[U, z] now depends explicitly on the SU(3) and U(1) gauge field variables, but
not on the fermion fields and instead is in general a function of the inverse of the Dirac
operator D−1

f .
With the exception of the gradient flow scale t̂0, all hadronic observables we consider

in this work are extracted from two-point functions of fermion bilinears which result in a
single fermionic trace

O(x, y) = Tr{D−1
f (y|x)ΓAD−1

g (x|y)ΓB} =
f

g

f

g

x y (4.6)

corresponding to quark-line connected diagram, where the trace is taken over the color,
Dirac and doublet spinor space. We stress that, in the doublet formulation introduced in
section 3.1, the Dirac operator and its inverse appearing in eqs. (4.5) and (4.6) are 24× 24
matrices for fixed x, y. The indices f, g denote quark flavours, while A,B = P,V, Ṽ denote
the pseudoscalar density, local vector and point-split vector current defined in eq. (4.8). The
explicit form of the operators ΓP,ΓV is

ΓP = 1
2γ51, ΓV = 1

2γµτ3δfg, (4.7)

while the action of ΓṼ on doublet spinors is

η†f (x)ΓṼϕg(x) = η†f (x+ aµ̂)τ3
(1 + γµ)

4 W †
µ(x)e−ieqfaAµτ3ϕf (x)+

− η†f (x)τ3
(1− γµ)

4 Wµ(x)eieqfaAµτ3ϕf (x+ aµ̂). (4.8)

Given these definitions, it is clear that none of these vertices depends explicitly on the quark
masses, and the only one depending on the electromagnetic coupling is ΓṼ.

In the following, we illustrate how to perturbatively expand the QCD+QED expectation
value ⟨O(x, y)⟩, which requires expanding the inverse Dirac operator, the pfaffian and the
vertex ΓṼ around the isoQCD point. We begin with the expansions of the inverse Dirac
operator

D−1
f = (D(0)

f )−1
[
1 −∆Df (D

(0)
f )−1 +

{
∆Df (D

(0)
f )−1

}2
]
, (4.9)

and the pfaffian

Pf(KCDf ) = Pf(KCD(0)
f )

[
1 + 1

2 Tr
{
(D(0)

f )−1 ∆Df

}
(4.10)

+1
8 Tr

{
(D(0)

f )−1∆Df

}2
− 1

4 Tr
{
(D(0)

f )−1∆Df (D
(0)
f )−1∆Df

}]
,
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which both can be expressed in terms of the Dirac operator at the isoQCD point D(0)
f , and its

leading correction ∆Df . Given the form of the Wilson-Dirac operator Df = Dw,f+δDsw,f+mf

defined through eqs. (3.7), (3.8), and (3.10), we expand the U(1) gauge links up to order e2

and the quark masses to order O(∆mf ), leading to the following three expressions:

Dw,f = D
(0)
w,f + eqfD

(1)
w,f +

1
2e

2q2
fD

(2)
w,f +O(e3), (4.11)

δDsw,f = δD
(0)
sw,f + eqf δD

(1)
sw,f +O(e3), (4.12)

mf = m
(0)
f +∆mf +O((∆m)2), (4.13)

where D(0)
w,f and δD

(0)
sw,f are the terms at the isoQCD point, while qfD

(1)
w,f , qfδD

(1)
sw,f and

q2
fD

(2)
w,f denote the first and second derivatives with respect to e at e = 0. Eq. (4.13) accounts

for the shifts in the quark masses.
We stress that the expansion of the SW term in eq. (4.12) relies solely on the expansion

of the U(1) improvement term. In principle, the SU(3) improvement coefficient cSU(3)
sw could

also be expanded around its isoQCD value. However, since both isoQCD and QCD+QED
simulations are performed with the same value for cSU(3)

sw , in practice, we neglect QED
corrections to this quantity in both approaches. Moreover, it can be shown that the expansion
of eq. (3.11) contains only odd powers of e, which explains the absence of a term ∝ e2q2

fδD
(2)
sw,f .

Thus, δD(0)
sw,f in eq. (4.12) can be matched to the SU(3) improvement term in eq. (3.10),

while eqf δD
(1)
sw,f is the first-order expansion of the U(1) improvement.

By using the definitions in eqs. (4.11)–(4.13), we obtain D
(0)
f and ∆Df as

D
(0)
f = D

(0)
w,f + δD

(0)
sw,f +m

(0)
f , (4.14)

∆Df = ∆mf + eqfD
(1)
f + 1

2e
2q2
fD

(2)
w,f +O(e3), (4.15)

where we have collected the first order derivative D
(1)
f = D

(1)
w,f + δD

(1)
sw,f . After factoriz-

ing out the photon fields, the three operators appearing in eq. (4.15) can be represented
diagrammatically as the following vertices:

f f
= 1δff , (4.16)

f f
=
δD

(1)
f

δAµ
,

f f
=
δD

(2)
w,f

δA2
µ

, (4.17)

where the identity in eq. (4.16) is an identity in Dirac, color and coordinate space. The two
operators in eq. (4.17) depend only on the SU(3) gauge field, and their action on spinor
fields is readily obtained for the first derivative in e

η†(x)
δD

(1)
f

δAµ
ϕ(x) = 1

2iη
†(x)(1− γµ)Wµ(x)τ3ϕ(x+ aµ̂)− 1

2iη
†(x+ aµ̂)(1 + γµ)Wµ(x)†τ3ϕ(x)

− c
U(1)
sw
8

∑
ν

∑
α=±1
β=0,1

αη†(x+ aαν̂ + aβµ̂)σµντ3ϕ(x+ aαν̂ + aβµ̂), (4.18)
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Table 1. Diagrammatic representations of the IB contributions to the valence-quark connected two-
point functions. The diagrams in the top row are those included in the electro-quenched approximation,
while the ones in the lower row represent the IB corrections from sea quarks. Vacuum terms from
the expansion of the denominator in eq. (4.5) must be subtracted from the four diagrams at the
very bottom. The right column collects additional diagrams relevant when the point-split current is
inserted at the sink. The meaning of the various vertices is explained in eqs. (4.16), (4.17), and (4.21):
red triangle, green square and blue diamond for mass, single and double photon insertions from the
expansion of Df ; orange pentagon and yellow star for single and double photon insertion in the sink,
when the point-split current operator ΓṼ is used.

and for the second derivative in e

η†(x)
δD

(2)
w,f

δA2
µ

ϕ(x) = a

2η
†(x)(1−γµ)Wµ(x)ϕ(x+ aµ̂) + a

2η
†(x+ aµ̂)(1+γµ)Wµ(x)†ϕ(x). (4.19)

Although in our simulations we employ the leading order value in e2 of the improvement
coefficient cU(1)

sw = 1, we keep it generic in equation (4.18) to highlight the part of the insertion
that arises from improvement terms.

Finally, we expand ΓṼ in powers of the electromagnetic coupling e:

ΓṼ = Γ(0)
Ṽ + eqf Γ

(1)
Ṽ +

e2q2
f

2 Γ(2)
Ṽ +O(e3), (4.20)

where Γ(0)
Ṽ is the vertex defined in eq. (4.8) with e set to 0, and Γ(1)

Ṽ and Γ(2)
Ṽ are the first

and second derivatives of eq. (4.8) with respect to eqf , evaluated at e = 0. A diagrammatic
expression for the vertices and their derivatives is:

Γ(0)
A = A = P,V, Ṽ ,

δΓ(1)
Ṽ

δAµ
= ,

δΓ(2)
Ṽ

δA2
µ

= . (4.21)

By inserting the expansions in eqs. (4.15) and (4.20) into the expectation value (4.5)
and into the trace (4.6), we obtain all the isospin-breaking corrections. Terms involving
only a single photon vertex vanish when evaluated between vacuum states, and are therefore
discarded. The remaining contributions yield the Feynman diagrams shown in table 1, and
the expression for each diagram is detailed in appendix A. The symbols for vertices used
in the table reflect the operator insertions defined in eqs. (4.16), (4.17), and (4.21). Each
diagram includes only the statistically connected contributions, with vacuum-disconnected
terms from the pfaffian expansion in the denominator of eq. (4.5) being subtracted.
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Ensemble T/a× (L/a)3 β = 6/g2
0 α κu κd = κs κc

A400a00 64 × 323 3.24 0 0.13440733 0.13440733 0.12784
A380a07 64 × 323 3.24 0.007299 0.13457969 0.13443525 0.12806355

Table 2. Parameters of the two ensembles used in this work. The A400a00 ensemble has κu = κd = κs,
while the A380a07 ensemble has κu > κd = κs. The improvement coefficients used in the action are
c

SU(3)
sw = 2.18859 and c

U(1)
sw = 1 for both cases.

5 Computational details

In this section, we describe the two ensembles used in this work and provide details about
the numerical implementation of the RM123 approach.

5.1 Ensembles

For this work, we perform measurements on two ensembles generated by the collaboration
using the openQ*D code [58]. The parameters of the ensembles are summarized in table 2.
The two ensembles, here labeled A400a00 and A380a07, correspond to A400a00b324 and
A380a07b324+RW1 in ref. [46]. For the latter, a non-perturbative reweighting in the bare
mass has been implemented to improve the consistency with the line of constant physics.
The bare hopping parameters of A380a07 shown in table 2 are the target quark hopping
parameters obtained through the reweighting procedure. All quantities computed in this
work on A380a07 take into account this reweighting factor.

Both ensembles have the same lattice volume and value of the strong coupling constant
β = 6/g2

0, while they differ for the electromagnetic coupling constant α and the hopping
parameters. A380a07 is an ensemble close to the physical value of α, and with an (unphysical)
SU(2) symmetry in the down-strange quark sector. On the other side, A400a00 is an ensemble
generated following the line of constant physics with αR = 0 and degenerate masses for the
up and down quarks. This leads to the SU(3)-symmetric point κu = κd = κs.

We use the SU(3) improvement coefficient cSU(3)
sw = 2.18859 tuned in isosymmetric

QCD [59] for both ensembles, and the tree-level U(1) coefficient cU(1)
sw = 1 for the QCD+QED

ensemble. In this way, we do not fully remove O(a) effects in QCD+QED in this work, as
this requires a non-perturbative determination of the coefficients in QCD+QED. However,
the goal of this work is to compare the non-perturbative and perturbative implementations
of QCD+QED at the same finite lattice spacing. As the definition of the action and the
value of the improvement coefficients used in the two methods are identical, the comparison
is fair up to O(α). Therefore, we do not expect the specific choices made for the improvement
coefficients to impact the conclusions of our study.

5.2 Computation of the RM123 diagrams

In the perturbative RM123 approach, we use the non-compact formulation of the U(1)
gauge action

Snc
g,U(1) =

a4

4
∑
x

3∑
µ,ν=0

F 2
µν(x), (5.1)
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where the discretization of the field-strength tensor is chosen to be Fµν(x) = ∂µAν(x) −
(µ↔ ν), in terms of the forward finite-difference operator ∂µf(x) = a−1{f(x+ aµ̂)− f(x)}.
This formulation requires us to fix the gauge, and on the lattice we adopt an analogue of
the Coulomb gauge fixing condition

3∑
k=1

∂∗kAk(x) = 0, (5.2)

where ∂∗µ is the backward finite-difference operator ∂∗µf(x) = a−1{f(x)− f(x− aµ̂)}. While
all physical observables are independent of this choice, intermediate quantities may be
gauge dependent. In the non-compact formulation, the action is quadratic in the gauge
potential, and the photon field can be integrated out by hand. Nevertheless, a stochastic
representation is useful to estimate the integrals over the vertices, where samples of the
photon field distributed according to the lattice action including the gauge-fixing term are
generated by using the momentum-space representation. The coordinate-space fields can
then be efficiently computed using the fast Fourier transform.

In the rest of this section, we describe briefly the computation of the diagrams required for
the non-perturbative QCD+QED computation and the diagrams in the R123 approach listed
in table 1. Using translation invariance, it is sufficient to fix one of the coordinates in eq. (4.6),
which we choose to be y. To reduce the variance we use an additional three translations of
the coordinate on every gauge field configuration for all diagrams, i.e. we use Ns = 4 point
sources for every diagram required for both the non-perturbative and RM123 approaches.

In the perturbative RM123 approach, the diagrams with additional vertices integrated
over the space-time volume must be included as shown in table 1. Diagrams with a single
fermion trace and just one insertion, i.e. the first two diagrams in the first row, require just
one additional inversion via the sequential propagator method, and therefore, in addition to
the last diagram of the first row, can be computed exactly without further special treatment.
The remaining single fermion trace diagrams are computed with one sample of the stochastic
photon field at the vertex. These diagrams constitute the contributions that remain in the
so-called electro-quenched approximation and require only the stochastic estimation of the
photon line to integrate exactly the additional vertices.

On the other hand, the diagrams in the second and third rows, which arise from the
expansion of the pfaffian, involve at least two fermion traces and are referred to as sea-valence
(second row) and sea-sea (third row). Thanks to the SU(3) symmetry of the isoQCD theory
in our setup and the vanishing sum of the light quarks’ charges,

∑
f=u,d,s qf = 0, only the

charm quark contributes to the additional traces in the sea-valence diagrams and the final
sea-sea diagram. The additional fermion traces for all of diagrams involving the sea quarks are
estimated stochastically using pseudofermion fields. The hopping parameter expansion was
used for the charm-quark propagator where the first few hopping terms have been estimated
exactly using probing vectors [60, 61]. One level of frequency-splitting was also applied for
the light-quark propagators [62]. For the third diagram of the third row, only one of the
two sea-quark fermion propagators was estimated using one level of frequency splitting, and
only pseudofermion sources were used for the charm quark propagator. A fixed number of
Nη = 160 pseudofermion sources were used for all estimators to reach the gauge noise where
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Theory Ensemble a (fm) mπ± (MeV) mK± (MeV) Ncfg
isoQCD A400a00 0.05393(24) 398.5(4.7) 398.5(4.7) 2000

QCD+QED A380a07 0.05349(27) 398.8(3.7) 403.1(3.8) 2000

Table 3. Physics parameters of the ensembles used in this work and presented in ref. [46]. Note
that there the two ensembles are referred to as A400a00b324 and A380a07b324+RW1, with the latter
including a mass-reweighting factor.

the variance is dominated by the fluctuations of the gauge field. The approach to the gauge
variance for the corresponding contributions to our final observable is illustrated in figure 6.

The photon propagators were also estimated differently for the sea-valence and sea-sea
diagrams. For the sea-valence diagrams, the convolution of the photon propagator and the
additional fermion trace was computed using the fast Fourier transform and this product
was then inserted into the sequential propagator [63]. In the sea-sea case, the stochastic
photon field was used for the third and fourth diagrams. For the third diagram, an inversion
is required for every photon field and every pseudofermion field, so one photon field was used
per pseudofermion field. For the final diagram, the estimation of the photon propagator is
independent of the traces, and in this case we also choose NA = 160 samples for the photon
field. In the last diagram, clearly the photon propagator could have been estimated exactly
by a convolution as in the sea-valence case.

In this work, the cost of the stochastic estimators was not optimized. As will be illustrated
later, we show, however, that the stochastic estimation is sufficient to reach the gauge noise,
and therefore, the dominant fluctuations are driven by the fluctuations of the QCD gauge
fields. The gauge noise itself is expected to be large for the sea-sea effects, in particular the
variance will diverge with (L/a)4. For a detailed study and discussion, we refer to [64]. Even
disregarding the extra cost of the sea-sea diagrams, which are reused for every observable, the
valence-valence and sea-valence diagrams require at least 5 additional sequential propagators
for every isoQCD propagator, without further differentiating the individual terms, greatly
increasing the computational cost of the measurement of the observables.

6 Analysis and results

In this section, we present our analysis and results for the observables ϕi defining the line of
constant physics and aU,w

µ in QCD+QED using either the perturbative expansion around
isoQCD or the fully non-perturbative QCD+QED simulation. This enables us to compare
the two implementations that we perform at a single lattice spacing and volume. The physics
parameters of the ensembles tuned to isoQCD and QCD+QED are provided in table 3, which
of course may differ before matching.

As can be seen from table 4, where we present the measured ϕi as in ref. [46], even
after a reweighting in the bare mass, there is still a slight mistuning of the bare parameters
compared with the target line of constant physics for the A380a07 ensemble. Since in this
work our goal is to compare the two implementations at fixed lattice spacing, which will not
depend on the precise definition of the line of constant physics, we modify the renormalization
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ϕi LCP A400a00 A380a07
ϕ1 2.11 2.107(50) 2.126(39)
ϕ2 2.36 − 2.13(17)
ϕ3 12.1 12.068(36) 12.122(47)

Table 4. ϕi measured on the A400a00 and A380a07 ensembles, together with the target values used
to define the lines of constant physics [46].

condition, so the target matches the central value of the measured values on the A380a07
ensemble and no further correction is required.

Explicitly expanding in the bare parameters to leading order around the simulated
parameters of the A400a00 ensemble, then we have the conditions

ϕ0 + e2∂e2ϕ0 +
∑
f

∆mf ∂mf
ϕ0 −∆Lϕ0 = 0,

ϕ1 + e2∂e2ϕ1 +
∑
f

∆mf ∂mf
ϕ1 −∆Lϕ1 = 2.126,

ϕ2 + e2∂e2ϕ2 +
∑
f

∆mf ∂mf
ϕ2 −∆Lϕ2 = 2.13,

ϕ3 + e2∂e2ϕ3 +
∑
f

∆mf ∂mf
ϕ3 −∆Lϕ3 = 12.122,

(6.1)

where the target values are slightly modified with respect to eq. (2.2). The last term on the
left-hand side of each condition accounts for the subtraction of the universal QED finite-
volume effects of the charged meson masses, which have already been subtracted for the
ϕi quantities computed on A380a07. The finite-volume effects on the hadron masses in the
case of C⋆ boundary conditions have been derived in ref. [38]. From the equations in (6.1),
the shifts in the bare mass parameters can be determined. We reiterate that no corrections
have been considered to the O(a) improvement coefficients in either approach, so that the
coefficients of the two ensembles are identical.

When performing the comparison of the two methods at fixed line of constant physics,
in both the perturbative and non-perturbative approaches, we incorporate the uncertainty
derived from fixing to the lines of constant physics. In the perturbative approach, this is
straightforwardly implemented by propagating the uncertainty on the bare mass shifts obtained
by solving the system of eqs. (6.1). In the non-perturbative approach, however, we propagate
the errors from the determination of the ϕi and t̂0 to aU,w

µ assuming Gaussian statistics

(daU,w
µ )2 =

∑
f

(
∂mf

aU,w
µ

)2
(dmf )2, dmf (ϕ⃗) =

∑
i

(J−1)fi dϕi, (6.2)

where dϕi denotes the statistical uncertainty on the measured values in table 4 and J−1

is the inverse Jacobian of the change of variables from the hadronic quantities to the bare
quark masses. In practice, the derivatives of aU,w

µ will be the ones computed on the A400a00
ensemble, and any associated error is higher order in the expansion in the bare parameters,
so it can be safely ignored.

An alternative way to compare the two strategies for making predictions in QCD+QED
is simply to fix the same bare parameters in the approaches and compare the predictions

– 17 –



J
H
E
P
1
0
(
2
0
2
5
)
1
5
8

for the ϕi and the scale t̂0 as well as aU,w
µ . In this interpretation, the perturbative and non-

perturbative approaches are simply two algorithms for computing at fixed bare parameters,
and such a comparison uses exactly the same data as fixing to the lines of constant physics,
presented in a different manner. In the former approach, all of the uncertainties are combined,
whereas in the latter, the uncertainties related to the tuning to the lines of constant physics
are presented separately. Given that we find both presentations useful, we present both
in the following. In particular, we show the results obtained for aU,w

µ in isoQCD and non-
perturbative QCD+QED in section 6.1. In sections 6.2 and 6.3, we present the corrections to
the scale-setting quantity and to the hadronic observables defining the line of constant physics,
then the corrections to aU,w

µ are discussed in section 6.4. In sections 6.5 and 6.6 we compare
the final results first at fixed bare parameters, followed by fixed line of constant physics.

6.1 Non-perturbative determination of aU,w
µ

As the analysis of the correlation functions in the non-perturbative QCD+QED and isoQCD
computations is identical, we present the two together.

As described in section 3.3, we have to determine the renormalization constant of
the local U -spin current. The renormalization factor is computed via the renormalization
condition (3.21), which translates in the following relation between the bare correlators GU,ℓ

bare

Zm
V = lim

t→∞

GU,c
bare(t)

GU,l
bare(t)

. (6.3)

The renormalization constant is obtained by fitting the right-hand side at large t. The results
of the fit are shown in figure 1 for both ensembles and two different fit ranges. We obtain
the following result for the isoQCD theory

Z
m,(0)
V = 0.6767(10), (6.4)

while using the same renormalization condition for the QCD+QED theory we have

Zm
V = 0.6776(12). (6.5)

The mean values and the errors are computed by combining the fit results for the different
fit ranges, based on the associated AIC weights, as in ref. [65]. We stress that the isoQCD
result represents only the leading-order piece of the renormalization factor.

We compute aU,w
µ using the local-local and the point-split local discretization of the

correlator defined in eq. (3.26). In figure 2, we show the plots of the (renormalized) integrands
for the two ensembles and discretizations used in this work. We do not need any extrapolation
or model for the data at large distances since employing the intermediate window already
removes this noisy region of the correlator. The results obtained by integrating in time are
shown in table 5. From comparing the two plots and the results in the table, we see that
there are no visible differences between the local-local and the conserved-local estimators.
We also notice that the signals on the two ensembles agree with each other within the errors,
although we have not yet considered the corrections for the ensemble A400a00. Thus, we
expect that these effects will not significantly change the central value of aU,w

µ , but they could
still have an impact on the errors when computing them using the RM123 approach.
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Figure 1. Renormalization constant of the local vector current computed on A400a00 (left) and
A380a07 (right) according to the renormalization condition in eq. (3.21).
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Figure 2. Integrand I(t̂) = (α/π)2ĜU,ℓ(t̂) ˆ̃K(t̂)wI(t̂) computed on the two ensembles A400a00 and
A380a07 using the local-local (LL) and conserved-local (CL) discretization of the bare correlator. The
hatted notation used here to denote lattice units is introduced in section 6.4.

aU,w
µ × 1011

ℓ = l c
isoQCD 1083(6) 1086(5)

non-perturbative QCD+QED 1082(7) 1085(7)

Table 5. Results obtained for aU,w
µ × 1011, computed either in isoQCD or QCD+QED non-

perturbatively.

In the next sections, we present the corrections in the bare parameters that connect
the A400a00 to the A380a07 ensemble, obtained by linearizing all of the observables and
computing the derivatives with the method of insertions à la RM123, as described in section 4.
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t̂
(0)
0 ∂amu t̂0 ∂amc t̂0 ∂e2 t̂0

7.400(69) −76(24) −26.5(8.1) −6.1(1.9)

Table 6. Leading-order value of the dimensionless scale t̂0 ≡ t0/a
2 and its derivatives ∂εi

t̂0 evaluated
at the isoQCD point for the ensemble A400a00. Due to the SU(3) symmetry of the ensemble, the
derivatives with respect to the light quark masses amu, ams and ams have the same value.

6.2 Corrections to the gradient-flow scale t0

In this work, we employ the gradient-flow scale t0 for the scale setting. Its value is defined
implicitly through the condition

t20 ⟨E(t0)⟩ = 0.3, (6.6)

where E(t) is the action density at flow time t. In the perturbative approach, the QCD+QED
expectation value on the left-hand side of eq. (6.6) is expanded around the isoQCD point as
explained in section 4.1, leading to scale corrections. As E(t) is an observable independent of
the bare quark masses and the electromagnetic coupling, the corrections to t0 arise exclusively
from the expansion of the pfaffian.

In table 6, we show the results in lattice units for the scale at leading-order and its
derivatives with respect to a bare parameter εi = mf , e

2. The errors are statistical and
computed by using the Γ-method described in ref. [66] and exploiting the implementation of
the pyerrors package [67]. This applies to all statistical errors computed in our analysis.

6.3 Corrections to the hadronic observables ϕi

In the perturbative approach, we have to compute the derivatives of the hadronic observables
defining the parametrization of QCD+QED. By employing the definitions in eq. (2.1), we
obtain the explicit form of the derivatives with respect to the quark masses

∂mf
ϕ0 = 16t0Mπ

(
∂MK+

∂mf
− ∂Mπ+

∂mf

)
,

∂mf
ϕ1 = 16t0Mπ

(
∂Mπ+

∂mf
+ ∂MK+

∂mf
+ ∂MK0

∂mf
+ 3Mπ

2t0
∂t0
∂mf

)
,

∂mf
ϕ2 = 16t0Mπ

α

(
∂MK0

∂mf
− ∂MK+

∂mf

)
,

∂mf
ϕ3 =

√
8t0

(
∂MD+

∂mf
+
∂MD+

s

∂mf
+ ∂MD0

∂mf
+ 3MD

2t0
∂t0
∂mf

)
,

(6.7)

and the derivatives with respect to e2

∂e2ϕ0 = 16t0Mπ

(
∂MK+

∂e2 − ∂Mπ+

∂e2

)
,

∂e2ϕ1 = 16t0Mπ

(
∂Mπ+

∂e2 + ∂MK+

∂e2 + ∂MK0

∂e2 + 3
2Mπ

∂t0
∂e2

)
,

∂e2ϕ2 = 16t0Mπ

α

(
∂MK0

∂e2 − ∂MK+

∂e2

)
,

∂e2ϕ3 =
√
8t0

(
∂MD+

∂e2 +
∂MD+

s

∂e2 + ∂MD0

∂e2 + 3MD

2t0
∂t0
∂e2

)
.

(6.8)
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In the above equations, we exploit the SU(3) symmetry of the isoQCD ensemble to simplify
the expressions, and denote Mπ =Mπ+ =MK+ =MK0 and MD =MD+ =MD0 =MD+

s
for

the leading-order light and charmed meson masses. In addition, the contribution from the
scale derivatives cancels out in ϕ0 and ϕ2 as they depend on the mass difference of mesons
that are degenerate at the SU(3)-symmetric point.

To construct the quantities in eqs. (6.7) and (6.8), we compute the derivatives of the
scale and meson masses and combine them. The computation of the scale derivatives was
explained in the previous subsection, leading to the results of table 6. Here we focus on the
meson mass derivatives. We consider the flavor-charged pseudoscalar correlator projected
to zero momentum in the doublet notation

C(t) ≡ a3∑
x⃗

〈
Ofg(t, x⃗)Ofg,†(0)

〉
= −a3∑

x⃗

〈
χ̄f (t, x⃗)γ5

2 χ
g(t, x⃗)χ̄g(0)γ5

2 χ
f (0)

〉
. (6.9)

At large times, the correlator is dominated by the lowest-energy state in the spectrum. By
taking into account the periodic boundary conditions in the temporal direction of the lattice,
it follows that, in the large time limit,

C(t) → A(e−M(t−T/2) + eM(t−T/2)), (6.10)

where A and M are the amplitude of the correlator and the mass of the interpolated meson.
Assuming that the isospin-breaking corrections to the meson mass and the amplitude are
small, the correlator in equation (6.10) expands as follows

C(t) ≃ C(0)(t) + δC(t), (6.11)

with

C(0)(t) = A(0) cosh (M (0)(t− T/2)) (6.12)

and

δC(t) = C(0)(t)
{
δA

A(0) − δM

(
t− T

2

)
tanh

[
M (0)

(
T

2 − t

)]}
. (6.13)

The effective derivatives with respect to a bare parameter εi as functions of t are derived
from equation (6.13) and take the form

∂εiM(t) =
[
∂εiC(t)
C(0)(t)

− ∂εiC(t+ 1)
C(0)(t+ 1)

]
×
[
(T/2− t) tanh

(
M (0)(T/2− t)

)
−(T/2− (t+ 1)) tanh

(
M (0)(T/2− (t+ 1))

)]−1
.

(6.14)

The derivatives of the meson masses are computed by fitting the quantity on the r.h.s. to a
constant. The fits take as input the leading-order mass M (0) extracted from

C(0)(t)
C(0)(t+ 1)

= cosh (M (0)(t− T/2))
cosh (M (0)(t+ 1− T/2))

. (6.15)

The results of the fits to eq. (6.14) are shown in the appendix B.
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Figure 3. Fits of the ϕi derivatives with respect to the bare parameters amu, amd/s, amc, e
2,

computed on A400a00. Note that all the other derivatives are identically zero.

Here, we adopt a different strategy to compute the derivatives of ϕi. In particular, we
notice that we can replace all the meson mass derivatives in eqs. (6.7)–(6.8) with the corre-
sponding time-dependent expressions in eq. (6.14), obtaining the time-dependent quantities
∂εiϕ(t), which can be directly fitted to a constant at large t. This strategy is preferred here
because it enforces the cancellation of the sea-sea diagrams that contribute to ϕ0, ϕ2, due to
the linearity of ∂εiM(t) in the correlator derivatives ∂εiC(t) and the SU(3) symmetry of the
ensemble. Figure 3 shows the fits to the derivatives of the hadronic quantities and the results
obtained by the fitting procedure are in table 7. We use two fit ranges for each quantity
and combine them based on the associated AIC weights [65].

To compute the corrections to the hadronic quantities, together with the derivatives, we
need to determine the finite-volume effects appearing in eq. (6.1), which are obtained from
the universal finite-volume corrections to the meson masses. In the case of C⋆ boundary
conditions, these finite-volume effects have been derived in [38] and read:

∆M(L) = e2

4π

(
ζ(1)
2L + ζ(2)

πML2

)
, (6.16)
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ε amu amd ams amc e2

∂εϕ0 0 −67.4(9) 67.4(9) 0 0
∂εϕ1 204(11) 204(11) 204(11) 33(6) 17(1)
∂εϕ2 −9234(121) 9234(121) 0 0 −370(5)
∂εϕ3 −27(25) −27(25) −27(25) 22(7) 0.2(1.5)

Table 7. Derivatives of the ϕi computed on the ensemble A400a00. The errors are obtained by
summing in quadrature the statistical and systematic uncertainties. The former is computed using
the Γ-method, while the latter is estimated by considering several fit-ranges for each meson mass’s
derivative. In all cases, we find that the statistical uncertainty is the dominant one.

∆Lϕ1 ∆Lϕ2 ∆Lϕ3
−0.00651(4) 0.446(3) −0.00323(2)

Table 8. Results for the universal QED finite-volume effects contribution to the ϕi, computed on
A400a00.

where ζ(1) and ζ(2) are boundary-dependent numerical coefficients. For C⋆ boundary
conditions in three spatial directions, their values are

ζ(1) = −1.7475645946, ζ(2) = −2.5193561521. (6.17)

By using equation (6.16), we derive the explicit form of the universal finite-volume effects
to the ϕ observables. These contributions on our SU(3)-symmetric ensemble are given by

∆Lϕ0 = 0,

∆Lϕ1 = e2 8t0Mπ

π

(
ζ(1)
2L + ζ(2)

πMπL2

)
,

∆Lϕ2 = −e2 4t0Mπ

απ

(
ζ(1)
2L + ζ(2)

πMπL2

)
,

∆Lϕ3 = e2
√
8t0
2π

(
ζ(1)
2L + ζ(2)

πMDL2

)
,

(6.18)

and the results are shown in table 8.

6.4 Corrections to aU,w
µ

The derivation of the isospin-breaking corrections to aU,w
µ , namely

δaU,w
µ =

∑
i

∆εi∂εia
U,w
µ , (6.19)

requires computing the derivatives of the renormalized U -spin correlator defined in eq. (3.26)
and considering the effect of the scale corrections.

In particular, we write the correction to the observable in the form

δaU,w
µ = δGa

U,w
µ + δZV

aU,w
µ + δaa

U,w
µ , (6.20)

where the three contributions δGaU,w
µ , δZV

aU,w
µ , and δaa

U,w
µ denote the corrections arising

from the bare correlator, the renormalization constant and the scale. We stress that this

– 23 –



J
H
E
P
1
0
(
2
0
2
5
)
1
5
8

decomposition is unphysical as the individual contributions do not have a well-defined
continuum limit. However, the separation highlights the role of the scale correction, which
is neglected when the sea-quark effects are not considered.

To give an explicit expression for these contributions, we introduce the following quantities
in lattice units

t = at̂, GU,ℓ(t) =
ĜU,ℓ

(
t̂
)

a3 , K̃(t;mµ) =
ˆ̃K
(
t̂; amµ

)
a2 , (6.21)

and write the point-split local estimator of the observable as

aU,w
µ =

(
α

π

)2 T̂ /2∑
t̂=0

ˆ̃K
(
t̂; amµ

)
wI
(
at̂
)
Zm

V Ĝ
U,c
bare

(
t̂
)

(6.22)

and the local-local as

aU,w
µ =

(
α

π

)2 T̂ /2∑
t̂=0

ˆ̃K
(
t̂; amµ

)
wI
(
at̂
)
(Zm

V )2ĜU,l
bare

(
t̂
)
, (6.23)

where the intermediate window is defined as in eq. (3.17).
We define the contribution from the bare current correlator appearing in eq. (6.20) as

follows: for the point-split local estimator we have

δGa
U,w
µ ≡

(
α

π

)2 T̂ /2∑
t̂=0

ˆ̃K
(
t̂; a(0)mµ

)
wI(a(0)t̂)Zm

V δĜ
U,c
bare

(
t̂
)
, (6.24)

and for the local-local one

δGa
U,w
µ ≡

(
α

π

)2 T̂ /2∑
t̂=0

ˆ̃K
(
t̂; a(0)mµ

)
wI(a(0)t̂)(Zm

V )2δĜU,l
bare

(
t̂
)
. (6.25)

The derivatives of ĜU,ℓ
bare(t̂) with respect to the bare parameters are combinations of the

diagrams in table 1. We obtain δGa
U,w
µ by integrating in time the signals shown in figure 4.

Each subplot represents the contribution from a different bare parameter, computed with the
two discretizations of the correlator. We observe that, in general, the signal corresponding
to the point-split local discretization is larger in magnitude than the local-local one. This
difference is compensated by the different signs of the mf - and e2-insertion diagrams and by
the effect of the renormalization constant’s correction in (6.26)–(6.27).

Secondly, the contribution to the observable from the renormalization constant is given by

δZV
aU,w
µ ≡

(
α

π

)2 T̂ /2∑
t̂=0

ˆ̃K
(
t̂; a(0)mµ

)
wI(a(0)t̂)δZm

V Ĝ
U,c
bare

(
t̂
)

(6.26)

for the point-split local discretization, and

δZV
aU,w
µ ≡ 2

(
α

π

)2 T̂ /2∑
t̂=0

ˆ̃K
(
t̂; a(0)mµ

)
wI(a(0)t̂)Zm

V δZ
m
V Ĝ

U,l
bare

(
t̂
)
, (6.27)
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Figure 4. Corrections to the integrand I(t̂) = (α/π)2ĜU(t̂) ˆ̃K(t̂)wI(t̂) due to the bare correlator
correction δĜU

bare(t̂), computed using the local-local (green triangles) and conserved-local (red dots)
discretization. The four plots show the contributions from the different bare parameters. To indicate
the relative magnitude of the contributions, we have multiplied the correlator’s derivatives by the
exact quark mass shifts defined in (6.31).

∂amuZ
m
V ∂amdZ

m
V ∂amsZ

m
V ∂amcZ

m
V ∂e2Zm

V

−1.30(26) −1.75(27) −1.75(27) −0.39(10) −0.11(2)

Table 9. Derivatives of the renormalization constant Zm
V with respect to the bare parameters

computed on the ensemble A400a00.

for the local-local one. We obtain the derivative of the renormalization constant with respect
to a bare parameter by differentiating equation (6.3), which leads to

∂εiZ
m
V = lim

t→∞

[
∂GU,c

bare
∂εi

(t)−GU,c
bare(t)

(
GU,l

bare(t)
)−1 ∂GU,l

bare
∂εi

(t)
] (
GU,l

bare(t)
)−1

. (6.28)

As the renormalization condition involves the correlators, it is computed using the same
graphs that contribute to the corrections of the bare correlators. We perform again a constant
fit of the right-hand side of equation (6.28), choosing appropriate fit ranges. In table 9, we
show the derivatives of Zm

V , obtained through the fit procedure.
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Figure 5. Derivative of the integrand I(t̂) = (α/π)2ĜU(t̂) ˆ̃K(t̂)wI(t̂) with respect to the lattice spacing
a, computed using the local-local (blue triangles) and conserved-local (orange dots) discretization of
the correlator.

Finally, the last contribution in eq. (6.20) arises from the correction to the scale and reads

δaa
U,w
µ =

(
α

π

)2 T̂ /2∑
t̂=0

δ
[ ˆ̃K (

t̂; amµ

)
wI(at̂)

]
ĜU,ℓ

(
t̂
)
, (6.29)

with

δ
[ ˆ̃K (

t̂; amµ

)
wI(at̂)

]
= δa× ∂

∂a

[ ˆ̃K (
t̂; amµ

)
wI(at̂)

]
. (6.30)

The correction to the lattice spacing δa is defined in eq. (4.4), while the derivative of
ˆ̃K(t̂; amµ)wI(at̂) is computed as finite difference at each timeslice. Although our observable
is dimensionless, its definition depends on an external scale via the muon mass mµ and
therefore on our scale setting. The signal corresponding to the derivative of the integrand
is shown in figure 5. The integrand has the same behavior for the two discretizations since
they only differ in discretization effects, which are reduced in the intermediate window. Also,
the relative errors are the same as for the leading-order correlators. The main contribution
to the error on δaa

U,w
µ will come instead from the uncertainty on δa. We stress again that

the corrections to the scale arise from the expansion of the pfaffian, and therefore are due
only to sea-sea effects given our definition of the lattice scale.

6.5 Comparison at fixed bare parameters

Now we turn to the first comparison between the two implementations of QCD+QED,
obtained by fixing the bare parameters and comparing the results for the observables ϕi
defining the renormalization scheme, the hadronic scale t̂0 and the observable aU,w

µ . The
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aU,w
µ × 10−11

t̂0 ϕ1 ϕ2 ϕ3 ℓ = l c
isoQCD+RM123|eq 7.400(69) 2.257(34) 2.20(14) 12.100(44) 1078(5) 1080(5)
isoQCD+RM123 7.502(81) 2.198(92) 2.53(14) 12.151(66) 1090(18) 1092(18)

non-perturbative QCD+QED 7.523(94) 2.128(34) 2.37(12) 12.103(47) 1082(7) 1085(7)

Table 10. Results obtained for the hadronic quantities t̂0, ϕ1, ϕ2, ϕ3 and aU,w
µ computed either

non-perturbatively or by exploiting the RM123 method with the local current ℓ = l or conserved
current ℓ = c at the sink. For the latter, we show results both in the electro-quenched setup and
including the contributions from sea quarks. In both cases, we incorporate the corrections at fixed
bare parameters, using the shifts in eq. (6.31).

bare parameter shifts between the A400a00 and A380a07 ensembles can be worked out from
table 2 and are explicitly

a∆mu = −0.00476435, a∆md,s = −0.00077259, a∆mc = −0.00682735. (6.31)

In the perturbative approach, we use these values for the shifts and obtain predictions to
compare with the corresponding quantities measured in the non-perturbative QCD+QED
approach.

We show the results of this first comparison in table 10. The values in the first row are
computed using the perturbative approach in the electro-quenched setup. In this case, the
scale t0 does not receive corrections, and the other observables are computed by neglecting
the sea-quark effects. The isoQCD+RM123 results in the second row include the effect of
the sea quarks and are obtained by adding the corrections, computed as described in the
previous subsections, to the isoQCD values of tables 4 and 5. The non-perturbative results
are instead obtained from direct calculation on the A380a07 ensemble. The errors are given
by the quadrature of the statistical uncertainties, computed using the Γ-method [66, 67],
and the systematic errors, estimated by varying the fit range in all fit procedures involved
in the computation and then computing their standard deviation.

We observe a good agreement between the two approaches for the scale parameter t̂0 and
ϕi quantities. Specifically, the results for t̂0 computed through the perturbative approach
perfectly agree with the non-perturbative value, and the errors are of similar size. In addition,
by comparing the precision of the full and electro-quenched results, we see that the impact of
the sea-quark effects on t̂0 and ϕ observables is relatively small, except for ϕ1, where including
the sea-quark effects results in almost three times larger error.

The electro-quenched results for aU,w
µ have the same precision as the observable computed

at the isoQCD point. The non-perturbative results for aU,w
µ also show sub-percent precision,

confirming that the non-perturbative QCD+QED simulations at the physical value of α yield
precision comparable to that of the isoQCD computations, as previously observed [46, 68].
In contrast, by using the perturbative approach including also the sea-quark effects, we
obtain results in agreement with the non-perturbative computation but with 2.5–2.6 larger
relative errors. In particular, the final uncertainty on the perturbative result amounts to
1.6% of the central value and is dominated by the isospin-breaking correction term. A closer
examination shows us that the sea-quark effects are unequivocally the dominant source
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Figure 6. Variance of the sea-sea contribution to δaU,w
µ as a function of the number of pseudofermions

sources for 2000 configurations.

of errors for the correction, as it is clear from the comparison with the electro-quenched
results. A numerical comparison of the different sea-quark diagrams contributing to δaU,w

µ

is provided in appendix A.4. We stress that the uncertainty due to sea-quark effects can
only be reduced by sampling more gauge-field configurations, as the number of stochastic
sources used for estimating the sea-sea diagrams is sufficient to reach the gauge noise in
this setup. This is displayed in figure 6, where we plot the variance of aU,w

µ due to sea-sea
contributions and rescaled by the number of pseudofermion sources Nη as a function of Nη

for a fixed number of configurations. We observe that the variance saturates for Nη ≳ 100.
In this work, we employ Nη = 160.

We also want to highlight that the ϕ observables in isoQCD and non-perturbative
QCD+QED, and their derivatives used for the RM123 approach, have been computed in
this work using the same setup as our main observable aU,w

µ , i.e., by employing 4 quark
point sources per configuration.

For completeness, in table 11, we provide the results for the individual corrections δGaU,w
µ ,

δZV
aU,w
µ and δaa

U,w
µ , as introduced in equation (6.20), together with the total correction.

The two columns correspond to the two discretizations employed for the vector correlator.
We observe that the three contributions are of the same order of magnitude and partially
cancel out. At the current precision, the correction to aU,w

µ amounts to (0.6± 1.7)% of the
leading-order value and so is consistent with zero.

6.6 Comparison at fixed line of constant physics

In the previous section, we compared the quantities computed in QCD+QED with fixed bare
parameters. Typically, in a lattice simulation, to approach the continuum limit we prefer
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units of 10−11 ℓ = l c
δGa

U,w
µ 11(16) 12(17)

δZa
U,w
µ 3.8(3.4) 1.9(1.7)

δaa
U,w
µ −8.4(2.3) −8.4(2.4)

δaU,w
µ 7(18) 6(18)

Table 11. Results obtained for the corrections to aU,w
µ × 1011 computed by exploiting the RM123

method. We incorporate the isospin-breaking corrections at fixed bare parameters. The three
corrections come from three sources: derivatives of the bare correlator, derivatives of the renormalization
constant, and derivatives of the scale.

units of 10−11 ℓ = l c
δGa

U,w
µ 15(18) 17(19)

δZa
U,w
µ 6(5) 3(2)

δaa
U,w
µ −12(6) −12(6)

δaU,w
µ 9(19) 8(19)

Table 12. Results obtained for the corrections to aU,w
µ × 1011 computed by exploiting the RM123

method. We incorporate the isospin-breaking corrections at fixed line of constant physics. The three
contributions arise from derivatives of the bare correlator, derivatives of the renormalization constant,
and derivatives of the scale.

to fix the lines of constant physics defined by the renormalization scheme and propagate
the associated uncertainty to the physical prediction, to avoid a joint extrapolation to the
physical point. Here, we do such an exercise, which combines the resulting uncertainty
onto our physical prediction.

In the RM123 approach, this is simple to implement, given that we can fix to any scheme
a posteriori. The quark mass shifts are obtained by solving the system in eq. (6.1) using
the target values and the derivatives of the ϕi in tables 4 and 7. We derive the following
quark mass shifts

a∆mu = −0.00477(17)stat(4)sys,

a∆md,s = −0.00082(17)stat(4)sys,

a∆mc = −0.0083(28)stat(5)sys,

(6.32)

which, as expected, agree with those shown in eq. (6.31) within the quoted uncertainty. The
results for the individual contributions δGaU,w

µ , δZV
aU,w
µ and δaa

U,w
µ , together with the total

correction, are shown in table 12.
For the non-perturbative prediction we consider the uncertainties on the ϕi observable

and propagate them to aU,w
µ via eq. (6.2). To this aim, we reuse the derivative of the ϕi

and the derivatives of aU,w
µ computed at the isoQCD point (see tables 7 and 13). This

approximation is valid at first order in the bare parameters. For both discretizations of the
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ℓ ∂amua
U,w
µ ∂amda

U,w
µ ∂amsa

U,w
µ ∂amca

U,w
µ ∂e2aU,w

µ

l −12(31) −113(32) −113(32) −9(15) −2.5(3.4)
c −11(31) −112(32) −112(32) −9(15) −2.5(3.4)

Table 13. Derivatives of aU,w
µ × 109 computed on the ensemble A400a00.

aU,w
µ × 1011 ℓ = l c

isoQCD+RM123|eq 1084(5) 1087(5)
isoQCD+RM123 1093(20) 1094(21)

non-perturbative QCD+QED 1082(8) 1085(7)

Table 14. Final results obtained for aU,w
µ × 1011, computed either in the full theory or by exploiting

the RM123 method. For the latter, we show results both in the electro-quenched setup and including
the contributions from sea quarks. In both cases, we incorporate the corrections at fixed line of
constant physics, using the shifts derived by solving the system in eq. (6.1).

sink operator, we obtain the same result

daU,w
µ = 2(3)× 10−11. (6.33)

Since this value is consistent with zero, we take the 1σ error 3 × 10−11 as an estimate of
the uncertainty due to the inexact tuning to the line of constant physics. This uncertainty
is summed in quadrature with the errors on aU,w

µ in the last row of table 10. The effect
turns out to be negligible.

In table 14, we show the final results for aU,w
µ , including the uncertainties from the tuning

propagated as described above. By comparing with the results in table 10, we observe that the
relative error on the isoQCD+RM123 results goes from 1.6% to 1.9%, while the relative error
on the QCD+QED results remain stable to 0.6–0.7%. Thus, we find a reduction in the total
uncertainty of 2.5–3 when using the non-perturbative simulation compared to the RM123
method including carefully the tuning to the same line of constant physics. We stress that this
factor considers only the different precision obtained on the final observable using the same
statistics, i.e., number of quark sources per configuration and number of configurations, while
the differing computational costs and costs associated with tuning are not taken into account.

7 Conclusions

In this work, we computed the window contribution for a flavour non-singlet current to the
muon magnetic anomaly, aU,w

µ , with Nf = 1 + 2 + 1 quarks using two implementations of
QCD+QED. The lattice simulations were based on two ensembles generated by the RC⋆

collaboration: one QCD+QED ensemble and one isoQCD ensemble used as the starting point
for the perturbative RM123 approach. Both employ C⋆ boundary conditions in the spatial
directions that allow the photon field to be included in a local, gauge-invariant formulation,
which also preserves lattice translational symmetry. The two ensembles share the same
fermion discretization and lattice volume and have similar bare parameters. Therefore, it
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is possible to compare the results obtained in the non-perturbative QCD+QED setup to
the ones obtained with the RM123 approach by matching either the bare parameters or the
renormalization conditions defining a fixed line of constant physics.

In the perturbative approach, we considered all effects at order O(∆mf ) and O(e2),
including the complete contributions from sea quarks, which represent the most numerically
challenging components of the RM123 method. Given the renormalization schemes we used
for defining isoQCD and QCD+QED, we find the expected 1% correction to the isoQCD
result. Here we focus on the prediction of the full result in QCD+QED and the comparison
between the two implementations as the definition of the isospin-breaking corrections is
delicate at finite lattice spacing, and our simulated pion mass of around 400MeV is far from
the physical point needed for phenomenological predictions.

In the first instance, we match the bare parameters of the QCD+QED simulation and
compare the result for aU,w

µ along with the hadronic quantities defining the renormalized
theory ϕi and the lattice scale t̂0. On one hand, we find good compatibility between the
full QCD+QED results from the RM123 method aU,w

µ = 1092(18) × 10−11 and the non-
perturbative simulation aU,w

µ = 1085(7)× 10−11, in this case for the point-split discretization
of the sink current. On the other hand, we see that the RM123 method has a 2.5 times
larger uncertainty, which can be understood to originate from the sea-quark diagrams, given
that the electro-quenched result aU,w

µ |eq = 1080(5) × 10−11, where they are neglected, has
a similar uncertainty to the non-perturbative result. The hadronic observables ϕi and the
lattice scale t̂0 that define our line of constant physics all exhibit good consistency between
both approaches. The observable ϕ1, related to the squared (hyper-)charged pseudoscalar
meson masses, has a 4% uncertainty in the RM123 approach in contrast to a 1.6% relative
precision in the non-perturbative simulation, which is again due to the sea-quark effects by
comparing to the electro-quenched result.

In order to determine the significance of the determination of the lines of constant physics,
in the second comparison we impose the same renormalization conditions described in the
text in both setups and propagate the uncertainty from the hadronic quantities ϕi and t̂0 to
our prediction for aU,w

µ . After this exercise, we see a mild increase in the uncertainty in the
RM123 method prediction aU,w

µ = 1094(21)× 10−11, but no change in the relative uncertainty
in the non-perturbative approach, where we obtain aU,w

µ = 1085(7)× 10−11. Therefore, we
find a final result with 1.9% uncertainty in the RM123 method and 0.6% precision with
non-perturbative QCD+QED. To perform this exercise, we use the same derivatives for the
non-perturbative QCD+QED ensemble as those worked out in the isoQCD ensemble for
convenience, but in principle they could be estimated in many other ways, and likely they
do not need to be precise in any case.

We would like to emphasize that we have so far compared the total uncertainty in both
methods with a fixed number of gauge field configurations, but have made no attempt to
quantify the true cost of both approaches, which is subtle and likely not universal. The cost
of generating the gauge field configurations has been investigated in ref. [46] for the specific
ensembles used in this work, which estimated that the generation of the non-perturbative
QCD+QED simulations costs a factor 2.5 times more than isoQCD, given the orbifold
construction used here. This estimate, however, refers to our setup with unphysical quark
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masses, and it is not yet clear how the relative cost will change when approaching the physical
pion mass. Moreover, the relative cost factor above does not account for the fact that the
tuning of the non-perturbative simulation with more parameters is an onerous task and,
in practice, even here we needed to include a small reweighting in the bare masses as in a
realistic situation. Instead, in the RM123 method, the cost of computing the required extra
diagrams is not negligible: the valence diagrams need to be computed for every observable,
and while the sea-sea may be reused, typically the cost to reach the gauge noise is extensive,
given the approximations required to perform the volume averages. While some suggestions
have been put forward to reduce the cost [63], it is expected that the gauge variance will be
large in large volumes [63, 64]. In particular, in our setup with SU(3) flavour symmetry in
the isoQCD setup, some classes of diagrams do not contribute at all in the RM123 method.
Therefore, we expect the RM123 method to become challenging close to the physical point
and in large volumes, even though the variances of the diagrams presented here should be
largely insensitive to the quark mass.

As a final remark, in the non-perturbative QCD+QED case, we applied bare-mass
reweighting to ensemble A380a07, reproducing a typical step when tuning an ensemble to
specific lines of constant physics. This reweighting has hardly any impact on the statistical
uncertainty of the observables we compute. In contrast, the precision lost from applying
the RM123 method including all sea effects to the isoQCD ensemble is significantly larger,
although this may depend on the scheme used to define the isoQCD point. To ensure the
generality of our results, it would be valuable to explore how different definitions of isoQCD
affect our conclusions and whether certain trajectories in the parameters space are more
favorable for the RM123 method. We leave this exploration for future work.

This work represents one of the first experiences in making predictions in QCD+QED
with C⋆ boundary conditions. The main conclusion that can be drawn is the apparent
advantage of the non-perturbative simulation method over the RM123 approach, as may be
expected on theoretical grounds. While our study focuses on C⋆ boundary conditionswe do
not expect the outcome to change significantly if another regularization, such as QEDL, is
employed, although a dedicated investigation would be required to confirm this.

The difficulty in the non-perturbative tuning of the simulation parameters with more bare
parameters is an issue that still needs to be addressed. The RC⋆ collaboration is generating
new ensembles with smaller lattice spacings, larger volumes, and smaller quark masses to
approach the physical point and have an impact on state-of-the-art and phenomenogically-
relevant computations for precision physics of the Standard Model. In particular, for the
muon anomaly, the extension to compute the full electromagnetic current correlator including
singlet contributions is essential, as well as extending the work to the long-distance window,
where QED effects remain very challenging [2].
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A Isospin-breaking corrections

In this appendix, we provide the expressions for the isospin-breaking diagrams represented in
table 1. We recall that our goal is to compute the QCD+QED expectation value

⟨O(x, y)⟩ =
〈
Tr
[
D−1
f (y|x)ΓAD−1

g (x|y)ΓB
]〉

(A.1)

using the perturbative approach, at leading order in e2 and ∆mf . To simplify the notation,
and given that e2 ∼ ∆mf , we adopt the convention that O((∆mf )k) = O(e2k); thus, terms of
O(e3) also account for higher-order mass corrections. We recall that the specific interpolators
ΓA,B used in this work are the pseudoscalar (ΓP), and the local and point-split vector currents
(ΓV and ΓṼ) defined in eqs. (4.7) and (4.8).

By using the expansions in eqs. (4.9) and (4.20), we can write the observable as

O = O0 +O1 +O2 +O(e3). (A.2)

The operator O0 represents the isoQCD observable

O0(x, y) = Tr
[
(D(0)

f )−1(y|x)Γ(0)
A (D(0)

g )−1(x|y)Γ(0)
B

]
, (A.3)

while Ok denotes the correction at order ek. Γ(0)
A,B coincide with ΓA,B for pseudoscalar and

local vector interpolators. We also define the reweighting factor

R =
∏
f Pf(CKDf )∏
f Pf(CKD

(0)
f )

, (A.4)

where the nominator is expanded according to eq. (4.10), leading to

R = 1 +R1 +R2 +O(e3), (A.5)

where Rk is the correction at order ek.
Given eqs. (A.2)–(A.4), we write the perturbative expansion for (A.1) as

⟨O⟩ = ⟨O0⟩0 + ⟨O2⟩0+γ + ⟨O1R1⟩0+γ + ⟨O0R2⟩0+γ,c +O(e4), (A.6)
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where ⟨⟩0 , ⟨⟩γ denote the expectation value in isoQCD and over the free photon field dis-
tribution. The subscript c refers to the connected expectation value, where the vacuum-
disconnected term has been subtracted.

In writing the equation above, we have noticed that O0 does not depend on the photon
field, while R1 and O1 are linear in the photon field, and therefore, the expectation values
⟨O0R1⟩0+γ and ⟨O1⟩0+γ vanish. The correction term ⟨O2⟩0+γ arises purely from the expansion
of the observable and is dubbed valence-valence contribution. We refer to the correction term
⟨O1R1⟩0+γ as sea-valence contribution, since it involves a photon propagator connecting a
quark line in the observable to the quark line arising from the pfaffian. Finally, we refer to
the correction term ⟨O0R2⟩0+γ as sea-sea contribution. The latter involves either a mass
term or a photon propagator connecting quark lines from the fermionic pfaffian.

A.1 Valence-valence diagrams

The first set of diagrams comes from the expansion of the inverse Dirac operators (quark
propagators) or the Γ in the trace (A.1). We first consider the cases where ΓA,ΓB = ΓP,ΓP
or ΓA,ΓB = ΓV,ΓV, i.e., none of the Γ depends on e. Diagrammatically, we have the
following expression:

⟨O2(x, y)⟩γ =−∆mf
g

f

x y − e2q2
f

g

f

x y + e2q2
f

g

f

x y (A.7)

+ {x↔ y, f ↔ g} + e2qfqg
g

f

x y ,

which applies for any f ̸= g for the pseudoscalar correlator or any f = g for the local-local
vector correlator. We give explicit expressions for the diagrams:

g

f

x y = Tr
{[

(D(0)
f )−1(D(0)

f )−1
]
(y|x)ΓA(D(0)

g )−1(x|y)ΓB
}
, (A.8)

g

f

x y = 1
2
∑
wµ

Λµµ(0)Tr
{[

(D(0)
f )−1 δD

(2)
f

δA2
µ

(w)(D(0)
f )−1

]
(y|x)

× ΓA(D(0)
g )−1(x|y)ΓB

}
, (A.9)

g

f

x y =
∑
wzµν

Λµν(w − z) Tr
{[

(D(0)
f )−1 δD

(1)
f

δAµ
(w)(D(0)

f )−1 δD
(1)
f

δAν
(z)(D(0)

f )−1
]
(y|x)

× ΓA(D(0)
g )−1(x|y)ΓB

}
, (A.10)

g

f

x y =
∑
wzµν

Λµν(w − z) Tr
{[

(D(0)
f )−1 δD

(1)
f

δAµ
(w)(D(0)

f )−1
]
(y|x)

× ΓA
[
(D(0)

g )−1 δD
(1)
f

δAν
(z)(D(0)

g )−1
]
(x|y)ΓB

}
, (A.11)
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where Λµν(x− y) = ⟨Aµ(x)Aν(y)⟩γ The remaining diagrams are obtained from the first three
by exchanging x ↔ y and f ↔ g.

For f = g and A,B = Ṽ,V, there are three additional diagrams contributing to ⟨O2⟩γ
with coefficient −e2q2

f , which are the following two

x
g

y

f

= 1
2Λµµ(0)Tr

{
(D(0)

f )−1(y|x)Γ(2)
Ṽ,µ(D

(0)
g )−1(x|y)ΓV,ν

}
(A.12)

x
g

y

f

=
∑
zρ

Λµρ(x− z) Tr
{[

(D(0)
f )−1 δD

(1)
f

δAµ
(z)(D(0)

f )−1
]
(y|x)

× Γ(1)
Ṽ,µ(D

(0)
g )−1(x|y)ΓV,ν

}
, (A.13)

and the last one is obtained from (A.13) with x ↔ y and f ↔ g.

A.2 Sea-valence diagrams

The sea-valence contributions are obtained by combining the O(e) contributions from the
observable and the pfaffian

⟨O1(x, y)R1⟩γ = − e2qf
∑
h

qh x
g

y

f

h

− e2qg
∑
h

qh x
g

y

f

h

, (A.14)

The first diagram has the following explicit expression

x
g

y

f

h

= 1
2
∑
wzµν

Tr
{[

(D(0)
f )−1 δD

(1)
f

δAµ
(w)(D(0)

f )−1
]
(y|x)ΓA(D(0)

g )−1(x|y)ΓB
}

× Λµν(w − z) Tr
{
(D(0)

f )−1 δD
(1)
f

δAν
(z)
}
, (A.15)

while the second diagram is obtained from the first one by exchanging x↔ y and f ↔ g.
When A,B = Ṽ,V, an additional diagram should be added to eq. (A.14), leading to

⟨O1(x, y)R1⟩γ = −2e2qf
∑
h

qh Re
[

x

f

y

f
h ]

− e2qf
∑
h

qh x

f

y
f

h

(A.16)

where

x

f

y
f

h

= 1
2
∑
zρ

Tr
{
(D(0)

f )−1(y|x)Γ(1)
Ṽ, µ(D

(0)
f )−1(x|y)ΓV,ν

}

× Λµρ(x− z)Tr
{
(D(0)

f )−1 δD
(1)
f

δAρ
(z)
}
.

(A.17)
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A.3 Sea-sea diagrams

The sea-sea contributions ⟨O0R2⟩0+γ,c can also be written as
〈
O0 ⟨R2⟩γ

〉
0,c

as O0 does not
depend on the photon field. The contribution of the reweighing factor turns out to be:

⟨R2⟩γ =
∑
f

∆mf f + e2∑
f

q2
f f

+ e2∑
f

q2
f

f

f

+ e2∑
fg

qfqg f g , (A.18)

where the diagrams are given by the following explicit expressions

f =1
2
∑
z

Tr
[
(D(0)

f )−1(z|z)
]
, (A.19)

f =1
4
∑
zµ

Λµµ(0)Tr
[
(D(0)

f )−1(z|z)
δD

(2)
f

δA2
µ

(z)
]
, (A.20)

f

f

=− 1
4
∑
zwµν

Λµν(w − z) Tr
[
(D(0)

f )−1(w|z)
δD

(1)
f

δAν
(z)(D(0)

f )−1(z|w)
δD

(1)
f

δAµ
(w)

]
,

(A.21)

f g =1
8
∑
zwµν

Λµν(w − z) Tr
[
(D(0)

f )−1(z|z)
δD

(1)
f

δAν
(z)
]

× Tr
[
(D(0)

g )−1(w|w)
δD

(1)
f

δAµ
(w))

]
. (A.22)

These diagrams are independent of O0, and therefore, they can be computed and recycled
for different observables.

A.4 Sea-quark contributions to δaU,w
µ

In sections 6.5 and 6.6, we find that, in the RM123 approach, the uncertainty on aU,w
µ is largely

driven by the sea-quark effects. This is clear from the difference between the electro-quenched
and full isoQCD+RM123 results in table 10 and 14. Here, we provide further details on
the contribution of sea-quark effects to δaU,w

µ .
First, we decompose the isospin-breaking correction to aU,w

µ shown in table 11 within the
classes of diagrams defined above: valence-valence, sea-valence, and sea-sea contributions.
This decomposition is provided in table 15. We observe that the final uncertainty on δaU,w

µ is
completely dominated by the sea-sea effects, while we obtain for the sea-valence contribution
a relative uncertainty similar to the valence-valence one.

Then, we focus on the sea-sea class and further decompose the correction to the observable
into the contributions from the sea-quark diagrams defined in equations (A.19)–(A.22). This
decomposition is shown in table 16. Although in principle all quark flavours contribute to the
diagrams, in practice the light quark contribution to (A.22) vanishes because of the SU(3)
symmetry of the isoQCD ensemble. By comparing the individual contributions and the total,
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Class ℓ = l c
vv −6.6(4) −6.6(4)
sv −0.24(1) −0.24(1)
ss 14(18) 13(18)

Tot. δaU,w
µ 7(18) 6(18)

Table 15. Results obtained for the correction to aU,w
µ × 1011 computed by exploiting the RM123

method at fixed bare parameters. We separate the contributions from the three classes of diagrams:
valence-valence, sea-valence and sea-sea.

Sea-diagram ℓ = l c

(A.19)
∑
f ∆mf f 14(30) 13(30)

(A.20) e2∑
f q

2
f f −19(43) −18(43)

(A.21) e2∑
f q

2
f

f

f

7(19) 6(19)

(A.22) e2∑
fg qfqg f g 13(14) 12(14)

Total δaU,w
µ (ss) 14(18) 13(18)

Table 16. Numerical comparison of the different sea-diagrams contributing to δaU,w
µ in units of 10−11.

we observe that a large cancellation occurs both for the central value and the error, which
is about three times smaller than the sum in quadrature of the individual terms. To better
understand the nature of this cancellation, we look at the correlation matrix of the terms in
the table. This is shown in figure 7. The first three diagrams appear to be almost completely
correlated, as one may expect based on theoretical grounds. In particular, these contributions
in isolation are UV-divergent, while their sum is UV-finite provided that the quark mass
shifts are properly tuned. This explains the large cancellation between these terms.

B Meson mass derivatives

In this appendix, we show the results of the fits to the meson mass derivatives.
In figure 8, we show example fits for the charged-pion mass derivatives. The plots in

the upper panel show the quantities ∂mu/d
Mπ+ and ∂msMπ+ , the plots in the lower panel

∂mcMπ+ and ∂e2aMπ+ . In each plot, the lattice data and the results of the fit obtained
for two fit ranges are shown. The fitting procedure minimizes the uncorrelated χ2 statistic.
Notice that the derivative with respect to mu/d shown in figure 8(a) receives valence-valence
and sea-sea contributions, while the derivatives with respect to ms and mc, in figures 8(b)
and 8(c) respectively, are due only to sea-sea effects. The derivative with respect to e2

shown in figure 8(d) receives all contributions. Due to the SU(3) symmetry of the ensemble
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Figure 7. Visualization of the correlation matrix between the different sea-sea diagrams contributing
to δaU,w

µ and their sum.
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Figure 8. Fits of the charged-pion mass derivative with respect to the up/down (a), strange (b),
charm (c) quark mass, and to e2 (d), computed on A400a00.
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Figure 9. Fits of the charged D mass derivative with respect to the up/strange (a), down (b), charm
(c) quark mass, and to e2 (d), computed on A400a00.

A400a00, the sea-sea effects from mu,md,ms are equal. Thus, ∂mu/d
Mπ+ is the sum of two

pieces, a quark-line connected graph correpsonding to the valence-valence effects and a sum
of quark-line disconnected graphs for the sea-effects, effectively equal to ∂msMπ+ . Moreover,
as a consequence of the SU(3) symmetry and that

∑
f=u,d,s qf = 0, all sea-valence effects to

∂e2Mπ+ due to light sea quarks cancel out, as well as some of the sea-sea diagrams. The
fact that the absolute errors of ∂mu/d

Mπ+ and ∂msMπ+ are of comparable size indicates that
the uncertainty is dominated by the sea-sea contributions. Similar plots for the charged
D meson are shown in figure 9.

In tables 17 and 18, we show the leading-order value and the derivatives of all meson
masses appearing in the renormalization system (6.1). Some of the derivatives are equal
due to the unphysical SU(3) symmetry of the ensemble. The result for each quantity in
the table is obtained by considering several fit ranges and combining the fit results based
on the associated AIC weights [65].
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aM
(0)
π = aM

(0)
K

∂Mπ+,K+
∂mu

∂Mπ+
∂ms

∂Mπ+,K+,K0
∂mc

a∂Mπ+,K+
∂e2

a∂MK0
∂e2

0.1092(6) 7.55(29) 2.35(27) 1.05(14) 0.564(29) 0.355(28)

Table 17. Leading-order masses and derivatives of the light mesons computed on A400a00. The
derivatives that are not listed can be obtained by using SU(3) flavour symmetry.

aM
(0)
D = aM

(0)
Ds

∂M
D0,D+,D+

s
∂mu,d,s

∂MD0
∂ms

∂M
D0,D+,D+

s
∂mc

a∂MD0
∂e2

a∂MD+
∂e2

0.5240(8) 2.65(22) 0.95(21) 1.88(12) 0.270(31) 0.210(30)

Table 18. Leading-order masses and derivatives of the charmed mesons computed on A400a00. The
derivatives that are not listed can be obtained by using SU(3) flavour symmetry.
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