001049811 001__ 1049811
001049811 005__ 20260107202517.0
001049811 0247_ $$2doi$$a10.5281/ZENODO.17034399
001049811 037__ $$aFZJ-2025-05595
001049811 041__ $$aEnglish
001049811 1001_ $$00000-0002-5699-1793$$aGarcia de Gonzalo, Simon$$b0
001049811 1112_ $$aISC High Performance 2025$$cHamburg$$d2025-05-12 - 2025-05-16$$gISC25$$wGermany
001049811 245__ $$aEfficient Distributed GPU Programming for Exascale
001049811 260__ $$c2025
001049811 3367_ $$033$$2EndNote$$aConference Paper
001049811 3367_ $$2DataCite$$aOther
001049811 3367_ $$2BibTeX$$aINPROCEEDINGS
001049811 3367_ $$2DRIVER$$aconferenceObject
001049811 3367_ $$2ORCID$$aLECTURE_SPEECH
001049811 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1767811564_10044$$xAfter Call
001049811 500__ $$aTutorial
001049811 520__ $$aOver the past decade, GPUs became ubiquitous in HPC installations around the world, delivering the majority of performance of some of the largest supercomputers (e.g. Summit, Sierra, JUWELS Booster). This trend continues in the recently deployed and upcoming Pre-Exascale and Exascale systems (JUPITER, LUMI, Leonardo; El Capitan, Frontier, Aurora): GPUs are chosen as the core computing devices to enter this next era of HPC.To take advantage of future GPU-accelerated systems with tens of thousands of devices, application developers need to have the proper skills and tools to understand, manage, and optimize distributed GPU applications.In this tutorial, participants will learn techniques to efficiently program large-scale multi-GPU systems. While programming multiple GPUs with MPI is explained in detail, also advanced tuning techniques and complementing programming models like NCCL and NVSHMEM are presented. Tools for analysis are shown and used to motivate and implement performance optimizations. The tutorial teaches fundamental concepts that apply to GPU-accelerated systems in general, taking the NVIDIA platform as an example. It is a combination of lectures and hands-on exercises, using a development system for JUPITER (JEDI), for interactive learning and discovery.
001049811 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001049811 536__ $$0G:(DE-HGF)POF4-5122$$a5122 - Future Computing & Big Data Systems (POF4-512)$$cPOF4-512$$fPOF IV$$x1
001049811 536__ $$0G:(DE-Juel-1)ATML-X-DEV$$aATML-X-DEV - ATML Accelerating Devices (ATML-X-DEV)$$cATML-X-DEV$$x2
001049811 588__ $$aDataset connected to DataCite
001049811 7001_ $$0P:(DE-Juel1)145478$$aHerten, Andreas$$b1$$eCorresponding author
001049811 7001_ $$0P:(DE-Juel1)180799$$aHrywniak, Markus$$b2$$ufzj
001049811 7001_ $$0P:(DE-Juel1)137023$$aKraus, Jiri$$b3$$ufzj
001049811 7001_ $$0P:(DE-Juel1)172093$$aOden, Lena$$b4
001049811 773__ $$a10.5281/ZENODO.17034399
001049811 8564_ $$uhttps://github.com/FZJ-JSC/tutorial-multi-gpu/
001049811 909CO $$ooai:juser.fz-juelich.de:1049811$$pVDB
001049811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145478$$aForschungszentrum Jülich$$b1$$kFZJ
001049811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180799$$aForschungszentrum Jülich$$b2$$kFZJ
001049811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)137023$$aForschungszentrum Jülich$$b3$$kFZJ
001049811 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001049811 9131_ $$0G:(DE-HGF)POF4-512$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5122$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vSupercomputing & Big Data Infrastructures$$x1
001049811 920__ $$lyes
001049811 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001049811 980__ $$aconf
001049811 980__ $$aVDB
001049811 980__ $$aI:(DE-Juel1)JSC-20090406
001049811 980__ $$aUNRESTRICTED