
HPC SOFTWARE – DEBUGGER AND PERFORMANCE

ANALYSIS TOOLS

NOV 12, 2025 I MICHAEL KNOBLOCH I M.KNOBLOCH@FZ-JUELICH.DE

OUTLINE

Make it work,

make it right,

make it fast.
Kent Beck

• Local module setup

• Compilers

• Libraries

Debugger and Correctness

Tools

Performance Analysis Tools

WHY SHOULD YOU CARE ABOUT TOOLS?

NEW APPLICATION?

WORKING WITH LEGACY CODES?

VETERAN HPC USER, BUT NEW TO JSC?

• Assess performance
on a JSC machine

• Compare behavior on
different machines

• Investigate scaling behavior

DEBUGGER & CORRECTNESS TOOLS

WHAT IS DEBUGGING?

ATTENTION: DEBUGGING CAN BE TIME CONSUMING

ATTENTION: DEBUGGING CAN BE FRUSTRATING

BUT: DON‘T BE THESE GUYS

11

DEBUGGING TOOLS (STATUS: NOV 2025)

• Debugger:

• (GDB)

• CUDA-GDB

• TotalView

• LinaroForge - DDT

• Correctness and Memory Analyzer:

• (Valgrind)

• MUST

• Archer

• CUDA Compute Sanitizer

CUDA-GDB

• Part of the CUDA toolkit

• Extension to gdb

• CLI and GUI (Nsight)

• Simultaneously debug on the CPU and multiple GPUs

• Use conditional breakpoints or break automatically on

every kernel launch

• Examine variables, read/write memory and registers

• Inspect GPU state when the application is suspended

• Identify memory access violations

TOTALVIEW

• UNIX Symbolic Debugger for C/C++, Fortran, mixed Python/C++, PGI HPF, assembler programs

• JSC’s “standard” debugger

• Advanced features

• Multi-process and multi-threaded

• Multi-dimensional array data visualization

• Support for parallel debugging (MPI: automatic attach,

message queues, OpenMP, Pthreads)

• Scripting and batch debugging

• Advanced memory debugging

• Reverse debugging

• CUDA and OpenACC support

• Remote debugging

• NOTE: JSC license limited to 2048 processes (shared between all users)

TOTALVIEW: MAIN WINDOW
Toolbar for

common

options

Local

variables

for

selected

stack frame

Source code

window

Break

points

Stack

trace

Thread

control

LINARO FORGE - DDT

• UNIX Graphical Debugger for C/C++, Fortran, and Python programs

• Modern, easy-to-use debugger

• Advanced features

• Multi-process and multi-threaded

• Multi-dimesional array data visualization

• Support for MPI parallel debugging

(automatic attach, message queues)

• Support for OpenMP (Version 2.x and later)

• Support for CUDA and OpenACC

• Job submission from within debugger

• https://linaroforge.com/linaroDdt

• NOTE: JSC license limited to 128 processes (shared between all users)

DDT: MAIN WINDOW

Process

controls

Source

code

Variables

Expression

evaluator

Stack

trace

CUDA

Thread

stepping

GPU Device

information

CUDA

Thread

control

• Next generation MPI correctness and portability checker

• https://www.i12.rwth-aachen.de/go/id/nrbe

• MUST reports

 Errors: violations of the MPI-standard

 Warnings: unusual behavior or possible problems

 Notes: harmless but remarkable behavior

 Potential deadlock detection

• Usage

 Compile with debug information (i.e. use the -g flag)

 Run application under the control of mustrun (requires (at least) one additional MPI process)

 E.g. on JUSUF: mustrun --must:mpiexec srun --must:np -n -n 4 ./app

 Open output html report (might need to copy it to your local machine)

MUST DATATYPE MISMATCH

MUST DEADLOCK DETECTION

ARCHER

• Data race detector for large OpenMP programs

• Combination of static and dynamic techniques

• Low runtime and memory overhead

• Still high accuracy and precision

• Now part of LLVM

• Compile with –fsanitize=thread

• Can be used with GCC, but CLANG OpenMP runtime must be linked

• Creates output in text format

ARCHER EXAMPLE

CUDA COMPUTE SANITIZER

• Valgrind for GPUs

• Monitors hundreds of thousands of threads running concurrently on each

GPU

• Multiple Tools to detect various issues

• Memcheck – Memory error and leak detection tool

• Racecheck – Shared memory data access hazard detection tool

• Initcheck – Uninitialized device global memory access detection tool

• Synccheck – Thread synchronization hazard detection tool

• Included in the CUDA Toolkit

DEBUGGING RECOMMENDATIONS

• Always debug at the lowest possible scale!

• GPU Applications:

• Single Node / Workstation: Use CUDA-GDB

• Multi-Node / Supercomputer: Use TotalView/DDT

• MPI Applications:

• Check with MUST at least once

• Use TotalView/DDT at small scale (if error occurs there), else attach to as few

processes as neccessary

PERFORMANCE ANALYSIS TOOLS

TODAY: THE “FREE LUNCH” IS OVER

■ Moore's law is still in charge, but

■ Clock rates no longer increase

■ Performance gains only through

increased parallelism

■ Optimization of applications more difficult

■ Increasing application complexity

■ Multi-physics

■ Multi-scale

■ Increasing machine complexity

■ Hierarchical networks / memory

■ Many-core CPUs and Accelerators

■ Modular Supercomputing Architecture

 Every doubling of scale reveals a new bottleneck!

PERFORMANCE FACTORS

■ “Sequential” (single core) factors

■ Computation

 Choose right algorithm, use optimizing compiler

■ Vectorization

 Choose right algorithm, use optimizing compiler

■ Cache and memory

 Choose the right data structures and data layout

PERFORMANCE FACTORS

■ “Parallel” (multi core/node) factors

■ Partitioning / decomposition

 Load balancing

■ Communication (i.e., message passing)

■ Multithreading

■ Core binding / NUMA

■ Synchronization / locking

■ I/O

 Often not given enough attention

 Parallel I/O matters

TUNING BASICS

■ Carefully set various tuning parameters

■ The right (parallel) algorithms and libraries

■ Compiler flags and directives

■ Correct machine usage (mapping and bindings)

Get the most performance before tuning!

■ Measurement is better than guessing

■ To determine performance bottlenecks

■ To compare alternatives

■ To validate tuning decisions and optimizations

After each step!

PERFORMANCE ENGINEERING WORKFLOW

■ Prepare application (with symbols),

insert extra code (probes/hooks)

■ Collection of data relevant to

execution performance analysis

■ Calculation of metrics, identification

of performance metrics

■ Presentation of results in an intuitive/understandable form

■ Modifications intended to eliminate/reduce performance

problems

Preparation

Measurement

Analysis

Examination

Optimization

THE 80/20 RULE

■ Programs typically spend 80% of their time in 20% of

the code

Know what matters!

■ Developers typically spend 20% of their effort to get

80% of the total speedup possible for the application

Know when to stop!

■ Don't optimize what does not matter

Make the common case fast!

PERFORMANCE MEASUREMENT

Two dimensions

When performance measurement is triggered

• External trigger (asynchronous)

• Sampling

• Trigger: Timer interrupt OR

Hardware counters overflow

• Internal trigger (synchronous)

• Code instrumentation

(automatic or manual)

How performance data is recorded

• Profile

• Summation of events over time

• Trace

• Sequence of events over time

MEASUREMENT METHODS: PROFILING

• Recording of aggregated information

• Time

• Counts

• Calls

• Hardware counters

• Across program and system entities

• Functions, call sites, loops, basic blocks, …

• Processes, threads

• Statistical information

• Min, max, mean and total number of values

Advantages
+ Works also for

long-running programs

Disadvantages
‒ Variations over time

get lost

PROFILING: ISSUES RELATED TO "AVERAGING"

• Moving bottleneck across processors can "average out" imbalances

• Imbalance changes over time  problem might not appear in short runs!

Iteration N Iteration N+1 Iteration N+2 Iteration N+3

Iteration N Iteration N+1 Iteration N+2 Iteration N+3

MEASUREMENT METHODS: TRACING

• Recording information about significant

points (events) during execution of the program

• Enter/leave a code region (function, loop, …)

• Send/receive a message ...

• Save information in event record

• Timestamp, location ID, event type

• plus event specific information

• Event trace := stream of event records

sorted by time

 Abstract execution model on level of defined events

Advantages
+ Can be used to

reconstruct the
dynamic behavior

+ Profiles can be calculated
out of trace data

Disadvantages
‒ HUGE trace files
‒ Can only be used for

short durations or small
configurations

EVENT TRACING

void foo() {

...

send(B, tag, buf);

...

}

Process A

void bar() {

...

recv(A, tag, buf);

...

}

Process B

MONITOR

MONITOR

s
y
n

c
h

ro
n

iz
e

(d
)

void bar() {

trc_enter("bar");

...

recv(A, tag, buf);

trc_recv(A);

...

trc_exit("bar");

}

void foo() {

trc_enter("foo");

...

trc_send(B);

send(B, tag, buf);

...

trc_exit("foo");

}

instrument

Global trace

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

merge

unify
1 foo

2 bar

...

58 ENTER 1

62 SEND B

64 EXIT 1

...

...

Local trace A

Local trace B

foo1

...

bar1

...

60 ENTER 1

68 RECV A

69 EXIT 1

...

...

EVENT TRACING: “TIMELINE” VISUALIZATION

1 foo

2 bar

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main

foo

bar

58 60 62 64 66 68 70

B

A

CRITICAL ISSUES

■ Accuracy

■ Intrusion overhead

■ Measurement takes time and thus lowers performance

■ Perturbation

■ Measurement alters program behaviour

■ E.g., memory access pattern

■ Accuracy of timers & counters

■ Granularity

■ How many measurements?

■ How much information / processing during each measurement?

 Tradeoff: Accuracy vs. Expressiveness of data

REMARK: NO SINGLE SOLUTION IS SUFFICIENT!

A combination of different methods, tools and techniques

is typically needed!

■ Analysis

■ Statistics, visualization, automatic analysis, data mining, ...

■ Measurement

■ Sampling / instrumentation, profiling / tracing, ...

■ Instrumentation

■ Source code / binary, manual / automatic, ...

PERFORMANCE TOOLS (STATUS: NOV 2025)

• Score-P

• Scalasca

• Vampir[Server]

• Linaro Forge

• Performance Reports

• MAP

• Intel Tools

• VTune Amplifier XE

• Intel Advisor

• NVIDIA Tools

• Nsight Systems

• Nsight Compute

• Darshan

• …

• Community-developed
open-source

• Replaced tool-specific
instrumentation and
measurement components
of partners

• http://www.score-p.org

http://www.score-p.org/

TOOL ECOSYSTEM

Scalasca
parallel trace

analysis

CUBE4
report

CUBE4
report

Instrumented

target

application

Score-P

PAPI
OTF2
traces

TAU

ParaProf

CUBE

TAU
PerfExplorer

Vampir

Remote Guidance

Extra-P

ARCHITECURE

Application

Vampir Scalasca TAU

Accelerator-based

parallelism

(CUDA, OpenACC,

ROCm, OpenCL, Kokkos)

Score-P measurement infrastructure

Event traces (OTF2)

Sampling

interrupts

(PAPI, PERF)

Call-path profiles

(CUBE4, TAU)

Process-level parallelism

(MPI, SHMEM)

Thread-level parallelism

(OpenMP, Pthreads)

Source code

instrumentation

(Compiler, PDT, User)

CUBE TAUdb

Hardware counter

(PAPI, rusage, PERF, plugins)

I/O Activity Recording

(Posix I/O,

MPI-IO)

Instrumentation wrapper

Extra-P

FUNCTIONALITY

• Provide typical functionality for HPC performance tools

• Instrumentation (various methods)

• Multi-process paradigms (MPI, SHMEM)

• Thread-parallel paradigms (OpenMP, POSIX threads)

• Accelerator-based paradigms (OpenACC, CUDA, OpenCL, ROCm, Kokkos)

• In any combination!

• Flexible measurement without re-compilation:

• Basic and advanced profile generation ( CUBE4 format)

• Event trace recording ( OTF2 format)

• Highly scalable I/O functionality

• Support all fundamental concepts of partner’s tools

CUBE EXAMPLE

Distribution of selected

metric across call tree

When expanding, value

changes from inclusive to

exclusive

Selection updates columns

to the right

Box plot view shows

distribution across

processes/threads

SCORE-P: ADVANCED FEATURES

• Measurement can be extensively configured via

environment variables

• Allows for targeted measurements:

• Selective recording

• Phase profiling

• Parameter-based profiling

• …

• GPU support: CUDA, OpenACC, OpenCL, HIP, Kokkos, …

• Please ask us or see the user manual for details

SCALASCA

• Scalable Analysis of Large Scale Applications

• Approach

• Instrument C, C++, and Fortran parallel applications (with Score-P)

• Option 1: scalable call-path profiling

• Option 2: scalable event trace analysis

• Collect event traces

• Process trace in parallel

• Wait-state analysis

• Delay and root-cause analysis

• Critical path analysis

• Categorize and rank results

http://www.scalasca.org/

AUTOMATIC TRACE ANALYSIS

• Automatic search for patterns of inefficient behaviour

• Classification of behaviour & quantification of significance

• Identification of delays as root causes of inefficiencies

• Guaranteed to cover the entire event trace

• Quicker than manual/visual trace analysis

• Parallel replay analysis exploits available memory & processors to deliver scalability

Call

path

P
ro

p
e
rt

y

Location

Low-level

event trace

High-level

result
Analysis 

EXAMPLE MPI WAIT STATES

time

p
ro

c
e

s
s

(a) Late Sender
time

p
ro

c
e

s
s

(b) Late Receiver

time

p
ro

c
e

s
s

(d) Wait at N x N
time

p
ro

c
e

s
s

(c) Late Sender / Wrong Order

ENTER EXIT SEND RECV COLLEXIT

SCALASCA ROOT CAUSE ANALYSIS
• Root-cause analysis

• Wait states typically caused by load or

communication imbalances earlier in

the program

• Waiting time can also propagate (e.g.,

indirect waiting time)

• Enhanced performance analysis to find

the root cause of wait states

• Approach

• Distinguish between direct and

indirect waiting time

• Identify call path/process

combinations delaying other

processes and causing first order

waiting time

• Identify original delay

time

Recv

Send

Send

foo

foo

foo

bar

bar Recv

A

B

C

cause

Recv

Recv

Direct waitIndirect wait

Recv

barDELAY

SCALASCA TRACE ANALYSIS EXAMPLE

Additional wait-state metrics

from the trace analysis

Delay / root-cause metrics

Critical-path profile

VAMPIR EVENT TRACE VISUALIZER

• Offline trace visualization for Score-Ps OTF2 trace files

• Visualization of MPI, OpenMP and application events:

• All diagrams highly customizable (through context menus)

• Large variety of displays for ANY part of the trace

• http://www.vampir.eu

• Advantage:

• Detailed view of dynamic application behavior

• Disadvantage:

• Completely manual analysis

• Too many details can hide the relevant parts

EVENT TRACE VISUALIZATION WITH VAMPIR

57

• Visualization of dynamic runtime behaviour at any level of

detail along with statistics and performance metrics

• Alternative and supplement to automatic analysis

• Typical questions that Vampir helps to answer

• What happens in my application execution during a

given time in a given process or thread?

• How do the communication patterns of my application

execute on a real system?

• Are there any imbalances in computation, I/O or

memory usage and how do they affect the parallel

execution of my application?

 Timeline charts

 Application activities and

communication along a time axis

 Summary charts

 Quantitative results for the currently

selected time interval

VAMPIR PERFORMANCE CHARTS

Timeline Charts

Master Timeline all threads’ activities

Process Timeline single thread’s activities

Summary Timeline all threads’ function call statistics

Performance Radar all threads’ performance metrics

Counter Data Timeline single threads’ performance metrics

I/O Timeline all threads’ I/O activities

Summary Charts

Function Summary

Message Summary

I/O Summary

Process Summary

Communication Matrix View

Call Tree

VAMPIR DISPLAYS

LINARO PERFORMANCE REPORTS

• Single page report provides quick overview of performance issues

• Works on unmodified, optimized executables

• Shows CPU, memory, network and I/O utilization

• Supports MPI, multi-threading and accelerators

• Saves data in HTML, CVS or text form

• https://www.linaroforge.com/linaroPerformanceReports

• Note: License limited to 128 processes (with unlimited number of threads)

https://www.linaroforge.com/linaroPerformanceReports

EXAMPLE PERFORMANCE REPORTS

NVIDIA TOOLS -- LEGACY TRANSITION

NSIGHT SYSTEM

•System-wide application tuning

•Locate optimization opportunities

•Visualize millions of events on a timeline

•See gaps of unused CPU and GPU time

•Balance workloads across multiple CPUs

and GPUs

•CPU utilization and thread state

•GPU streams, kernels, memory transfers, etc.

•Multi-platform support

•Linux, Windows and Mac OS X (host-only)

•x86-64, Power9, ARM server, Tegra (Linux & QNX)

GPU METRIC SAMPLING

Seite 64

MULTI NODE SUPPORT – SHMEM, MPI, UCX, AND NCCL

OPENMP

OMPT-capable OpenMP runtime required

EXPERT SYSTEM

NSIGHT COMPUTE

• Interactive CUDA kernel profiler

•Targeted metric sections for various performance aspects

•Customizable data collection and presentation (tables, charts, ...)

•GUI and CLI

•Python-based API for guided analysis

and post-processing

•Support for remote profiling across

machines and platforms

PROFILER REPORT

DATA TRANSFER ANALYSIS

• Detailed memory workload

analysis chart and tables

• Shows transferred data or

throughputs

• Tooltips provide metric

names, calculation formulas

and detailed background info

BASELINE COMPARISON

• Comparison of results directly

within the tool with "Baselines“

• Supported across kernels,

reports, and GPU architectures

ROOFLINE ANALYSIS

• Determine whether the

application is memory

bound or compute bound

• Guided analysis points

to detailed analysis of

the most severe problem

DARSHAN

• I/O characterization tool logging parallel application file access

• Summary report provides quick overview of performance issues

• Works on unmodified, optimized executables

• Shows counts of file access operations, times for key operations, histograms of accesses, etc.

• Supports POSIX, MPI-IO, HDF5, PnetCDF, …

• Binary log file written at exit post-processed into PDF report

• http://www.mcs.anl.gov/research/projects/darshan/

• Open Source: installed on many HPC systems

EXAMPLE DARSHAN REPORT EXTRACT

PERFORMANCE ANALYSIS RECOMMENDATIONS

• Measure and analyze at the desired scale (once you have a reasonable measurement setup)

• Get performance overview with Performance Reports

• CPU Issues:

• Use MAP, Vtune (on Intel nodes), or uProf (on AMD nodes)

• Use perf / LIKWID / PAPI

• MPI Issues: Use Scalasca/Vampir

• GPU Issues: Use NVIDIA tools

• I/O Issues: Use DARSHAN

• OR: Do it all with Score-P/Scalasca/Vampir

NEED HELP?

■ Talk to the experts

■ Use local 1st-level support, e.g. SC support, SimLab

■ Use mailing lists

■ JSC/NVIDIA Application Lab

■ ATML Parallel Performance

■ VI-HPS Tuning Workshops

■ POP CoE

■ ATML Application Optimization and User Service Tools

■ EPICURE

Successful performance engineering often is a collaborative effort

http://vi-hps.org/training/tws
http://pop-coe.eu/
http://epicure-hpc.eu/

QUESTIONS

