001049914 001__ 1049914
001049914 005__ 20251219202232.0
001049914 0247_ $$2doi$$a10.1149/MA2025-031253mtgabs
001049914 0247_ $$2ISSN$$a1091-8213
001049914 0247_ $$2ISSN$$a2151-2043
001049914 037__ $$aFZJ-2025-05668
001049914 041__ $$aEnglish
001049914 082__ $$a540
001049914 1001_ $$0P:(DE-Juel1)192126$$aEdeh, Obinna$$b0$$eCorresponding author$$ufzj
001049914 1112_ $$a19th International Symposium on Solid Oxide Fuel Cells$$cStockholm$$d2025-07-14 - 2025-07-18$$gSOFC-IX$$wSweden
001049914 245__ $$aImpact of Gas Conversion Ratios on Impedance Response and Non-Linear Behavior of SOECs in Co-Electrolysis Mode
001049914 260__ $$c2025
001049914 3367_ $$033$$2EndNote$$aConference Paper
001049914 3367_ $$2DataCite$$aOther
001049914 3367_ $$2BibTeX$$aINPROCEEDINGS
001049914 3367_ $$2DRIVER$$aconferenceObject
001049914 3367_ $$2ORCID$$aLECTURE_SPEECH
001049914 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1766138031_17792$$xAfter Call
001049914 502__ $$cRWTH Aachen
001049914 520__ $$aHigh-temperature solid oxide electrolysis cells (SOECs) have emerged as a promising technology to produce green hydrogen and other valuable chemicals like syngas. SOECs offer several advantages over conventional electrolysis methods, including high efficiency, fuel flexibility, and the ability to operate at elevated temperatures, which favors the kinetics of electrochemical reactions.[1,2]However, the widespread adoption of SOEC technology faces challenges, particularly related to performance degradation and the complex interplay of operating parameters[3]. A crucial factor influencing SOEC performance is the gas conversion ratio (CR), which reflects the extent to which reactant gases (CO2 and H2O) are converted into products (CO and H2). While researchers have extensively studied the influence of CR using linear methods like EIS and nonlinear methods like THD in solid oxide fuel cells SOFCs[4], similar studies in SOECs have largely neglected the non-linear techniques. This creates a critical gap in understanding degradation mechanisms in SOECs, particularly those arising from nonlinearities such as mass transport limitations and beginning local reactant-starvation at high CR. By combining EIS and THD in our study, we provide an investigation of these effects in co-electrolysis mode, leveraging the strengths of both techniques to detect early nonlinear behavior and elucidating their impact on SOEC performance and durability at different CR.The study employs a comprehensive approach, utilizing electrochemical impedance spectroscopy (EIS) as the primary method, with distribution of relaxation times (DRT) analysis as a deconvolution tool for evaluating EIS spectra, along with the novel application of total harmonic distortion (THD) as a diagnostic tool.[4]. The findings reveal a strong correlation between increasing CR and significant changes in the impedance response of the SOEC stack. These changes point toward beginning localized reactant-starvation (CR getting close to 100 % locally) and mass transport limitations, as indicated by trends such as higher impedance values and elevated THD indices at high CR.Furthermore, this research proposes a mechanism linking the observed linear and non-linear behaviors to the dynamics of reactant and product transport within the SOEC. The insights gained from this investigation contribute to a more comprehensive understanding of SOEC operation under different CR, emphasizing the need to optimize operating conditions and electrode designs to mitigate mass transport limitations. This work aims to pave the way for enhancing SOEC performance, durability, and ultimately, the feasibility of large-scale implementation of this promising technology for a sustainable energy future.References[1] S. R. Foit, I. C. Vinke, L. G. J. de Haart, R.-A. Eichel, Angewandte Chemie International Edition 2017, 56, 5402–5411.[2] S. Gupta, M. Riegraf, R. Costa, M. P. Heddrich, K. A. Friedrich, Ind. Eng. Chem. Res. 2024, 63, 8705–8712.[3] B. Königshofer, M. Höber, G. Nusev, P. Boškoski, C. Hochenauer, V. Subotić, J. Power Sources 2022, 523, 230982.[4] H. Moussaoui, G. Hammerschmid, J. Van herle, V. Subotić, Journal of Power Sources 2023, 556, 232352.[5] G. Jeanmonod, S. Diethelm, J. Van Herle, J. Phys. Energy 2020, 2, 034002.[6] P. Caliandro, A. Nakajo, S. Diethelm, J. Van herle, Journal of Power Sources 2019, 436, 226838.[7] N. J. Steffy, S. V. Selvaganesh, M. Kumar L, A. K. Sahu, Journal of Power Sources 2018, 404, 81–88.[8] S. Thomas, S. C. Lee, A. K. Sahu, S. Park, International Journal of Hydrogen Energy 2014, 39, 4558–4565.
001049914 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001049914 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001049914 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001049914 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
001049914 65027 $$0V:(DE-MLZ)SciArea-150$$2V:(DE-HGF)$$aIndustrial Application$$x1
001049914 65027 $$0V:(DE-MLZ)SciArea-250$$2V:(DE-HGF)$$aOthers$$x2
001049914 65017 $$0V:(DE-MLZ)GC-1601-2016$$2V:(DE-HGF)$$aEngineering, Industrial Materials and Processing$$x0
001049914 7001_ $$0P:(DE-Juel1)171824$$aSchäfer, Dominik$$b1$$eCorresponding author
001049914 7001_ $$0P:(DE-Juel1)207065$$aSamsun, Remzi Can$$b2
001049914 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b3$$ufzj
001049914 773__ $$0PERI:(DE-600)2438749-6$$a10.1149/MA2025-031253mtgabs$$gVol. MA2025-03, no. 1, p. 253 - 253$$x2151-2043$$y2025
001049914 909CO $$ooai:juser.fz-juelich.de:1049914$$pVDB
001049914 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192126$$aForschungszentrum Jülich$$b0$$kFZJ
001049914 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)192126$$aRWTH Aachen$$b0$$kRWTH
001049914 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171824$$aForschungszentrum Jülich$$b1$$kFZJ
001049914 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207065$$aForschungszentrum Jülich$$b2$$kFZJ
001049914 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b3$$kFZJ
001049914 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b3$$kRWTH
001049914 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001049914 9141_ $$y2025
001049914 920__ $$lyes
001049914 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001049914 980__ $$aconf
001049914 980__ $$aVDB
001049914 980__ $$aI:(DE-Juel1)IET-1-20110218
001049914 980__ $$aUNRESTRICTED