001     1049914
005     20251219202232.0
024 7 _ |a 10.1149/MA2025-031253mtgabs
|2 doi
024 7 _ |a 1091-8213
|2 ISSN
024 7 _ |a 2151-2043
|2 ISSN
037 _ _ |a FZJ-2025-05668
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Edeh, Obinna
|0 P:(DE-Juel1)192126
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 19th International Symposium on Solid Oxide Fuel Cells
|g SOFC-IX
|c Stockholm
|d 2025-07-14 - 2025-07-18
|w Sweden
245 _ _ |a Impact of Gas Conversion Ratios on Impedance Response and Non-Linear Behavior of SOECs in Co-Electrolysis Mode
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1766138031_17792
|2 PUB:(DE-HGF)
|x After Call
502 _ _ |c RWTH Aachen
520 _ _ |a High-temperature solid oxide electrolysis cells (SOECs) have emerged as a promising technology to produce green hydrogen and other valuable chemicals like syngas. SOECs offer several advantages over conventional electrolysis methods, including high efficiency, fuel flexibility, and the ability to operate at elevated temperatures, which favors the kinetics of electrochemical reactions.[1,2]However, the widespread adoption of SOEC technology faces challenges, particularly related to performance degradation and the complex interplay of operating parameters[3]. A crucial factor influencing SOEC performance is the gas conversion ratio (CR), which reflects the extent to which reactant gases (CO2 and H2O) are converted into products (CO and H2). While researchers have extensively studied the influence of CR using linear methods like EIS and nonlinear methods like THD in solid oxide fuel cells SOFCs[4], similar studies in SOECs have largely neglected the non-linear techniques. This creates a critical gap in understanding degradation mechanisms in SOECs, particularly those arising from nonlinearities such as mass transport limitations and beginning local reactant-starvation at high CR. By combining EIS and THD in our study, we provide an investigation of these effects in co-electrolysis mode, leveraging the strengths of both techniques to detect early nonlinear behavior and elucidating their impact on SOEC performance and durability at different CR.The study employs a comprehensive approach, utilizing electrochemical impedance spectroscopy (EIS) as the primary method, with distribution of relaxation times (DRT) analysis as a deconvolution tool for evaluating EIS spectra, along with the novel application of total harmonic distortion (THD) as a diagnostic tool.[4]. The findings reveal a strong correlation between increasing CR and significant changes in the impedance response of the SOEC stack. These changes point toward beginning localized reactant-starvation (CR getting close to 100 % locally) and mass transport limitations, as indicated by trends such as higher impedance values and elevated THD indices at high CR.Furthermore, this research proposes a mechanism linking the observed linear and non-linear behaviors to the dynamics of reactant and product transport within the SOEC. The insights gained from this investigation contribute to a more comprehensive understanding of SOEC operation under different CR, emphasizing the need to optimize operating conditions and electrode designs to mitigate mass transport limitations. This work aims to pave the way for enhancing SOEC performance, durability, and ultimately, the feasibility of large-scale implementation of this promising technology for a sustainable energy future.References[1] S. R. Foit, I. C. Vinke, L. G. J. de Haart, R.-A. Eichel, Angewandte Chemie International Edition 2017, 56, 5402–5411.[2] S. Gupta, M. Riegraf, R. Costa, M. P. Heddrich, K. A. Friedrich, Ind. Eng. Chem. Res. 2024, 63, 8705–8712.[3] B. Königshofer, M. Höber, G. Nusev, P. Boškoski, C. Hochenauer, V. Subotić, J. Power Sources 2022, 523, 230982.[4] H. Moussaoui, G. Hammerschmid, J. Van herle, V. Subotić, Journal of Power Sources 2023, 556, 232352.[5] G. Jeanmonod, S. Diethelm, J. Van Herle, J. Phys. Energy 2020, 2, 034002.[6] P. Caliandro, A. Nakajo, S. Diethelm, J. Van herle, Journal of Power Sources 2019, 436, 226838.[7] N. J. Steffy, S. V. Selvaganesh, M. Kumar L, A. K. Sahu, Journal of Power Sources 2018, 404, 81–88.[8] S. Thomas, S. C. Lee, A. K. Sahu, S. Park, International Journal of Hydrogen Energy 2014, 39, 4558–4565.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Chemistry
|0 V:(DE-MLZ)SciArea-110
|2 V:(DE-HGF)
|x 0
650 2 7 |a Industrial Application
|0 V:(DE-MLZ)SciArea-150
|2 V:(DE-HGF)
|x 1
650 2 7 |a Others
|0 V:(DE-MLZ)SciArea-250
|2 V:(DE-HGF)
|x 2
650 1 7 |a Engineering, Industrial Materials and Processing
|0 V:(DE-MLZ)GC-1601-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Schäfer, Dominik
|0 P:(DE-Juel1)171824
|b 1
|e Corresponding author
700 1 _ |a Samsun, Remzi Can
|0 P:(DE-Juel1)207065
|b 2
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 3
|u fzj
773 _ _ |a 10.1149/MA2025-031253mtgabs
|0 PERI:(DE-600)2438749-6
|y 2025
|g Vol. MA2025-03, no. 1, p. 253 - 253
|x 2151-2043
909 C O |o oai:juser.fz-juelich.de:1049914
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)192126
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)192126
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171824
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)207065
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21