001049922 001__ 1049922
001049922 005__ 20260108091042.0
001049922 0247_ $$2doi$$a10.22323/1.466.0284
001049922 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05676
001049922 037__ $$aFZJ-2025-05676
001049922 1001_ $$0P:(DE-Juel1)206918$$aRamirez Hidalgo, Gustavo$$b0$$eCorresponding author
001049922 1112_ $$aThe 41st International Symposium on Lattice Field Theory$$cLiverpool$$d2024-07-28 - 2024-08-03$$gLATTICE2024$$wUK
001049922 245__ $$aDeflation and polynomial preconditioning in the application of the overlap operator at nonzero chemical potential
001049922 260__ $$bSissa Medialab Trieste, Italy$$c2025
001049922 29510 $$aProceedings of The 41st International Symposium on Lattice Field Theory — PoS(LATTICE2024)
001049922 300__ $$a284
001049922 3367_ $$2ORCID$$aCONFERENCE_PAPER
001049922 3367_ $$033$$2EndNote$$aConference Paper
001049922 3367_ $$2BibTeX$$aINPROCEEDINGS
001049922 3367_ $$2DRIVER$$aconferenceObject
001049922 3367_ $$2DataCite$$aOutput Types/Conference Paper
001049922 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1767859585_21098
001049922 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
001049922 520__ $$aWhen solving linear systems with the overlap operator at nonzero chemical potential $μ$ in lattice QCD one needs, at every iteration of the iterative solver, to apply the sign function evaluated on a non-Hermitian operator $Q_μ$ times a vector, i.e., $sign(Q_μ)v$. In this work we describe how deflation and (the more recently proposed) polynomial preconditioning can be applied to this problem, in particular in the context of lattice QCD. Furthermore, we describe how both methods can be combined, we compare them in numerical experiments and explore whether there might be any synergy between both that can be exploited.
001049922 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001049922 536__ $$0G:(EU-Grant)101143931_16HPC102K$$aEoCoE-III - Energy oriented Center of Excellence (101143931_16HPC102K)$$c101143931_16HPC102K$$x1
001049922 536__ $$0G:(GEPRIS)451886959$$aDFG project G:(GEPRIS)451886959 - FOR 5269: Zukünftige Methoden für Studien von eingeschlossenen Gluonen in QCD (451886959)$$c451886959$$x2
001049922 536__ $$0G:(EU-Grant)101118139$$aInno4Scale - Innovative Algorithms for Applications on European Exascale Supercomputers (101118139)$$c101118139$$fHORIZON-EUROHPC-JU-2022-ALG-02$$x3
001049922 588__ $$aDataset connected to CrossRef Conference
001049922 7001_ $$0P:(DE-HGF)0$$aFinkenrath, Jacob$$b1
001049922 773__ $$a10.22323/1.466.0284
001049922 8564_ $$uhttps://juser.fz-juelich.de/record/1049922/files/LATTICE2024_284.pdf$$yOpenAccess
001049922 909CO $$ooai:juser.fz-juelich.de:1049922$$pec_fundedresources
001049922 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)206918$$aForschungszentrum Jülich$$b0$$kFZJ
001049922 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001049922 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001049922 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001049922 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001049922 980__ $$acontrib
001049922 980__ $$aVDB
001049922 980__ $$aUNRESTRICTED
001049922 980__ $$acontb
001049922 980__ $$aI:(DE-Juel1)JSC-20090406
001049922 9801_ $$aFullTexts