001049991 001__ 1049991
001049991 005__ 20251222202221.0
001049991 0247_ $$2doi$$a10.1021/acs.biomac.5c01234
001049991 0247_ $$2ISSN$$a1525-7797
001049991 0247_ $$2ISSN$$a1526-4602
001049991 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05705
001049991 037__ $$aFZJ-2025-05705
001049991 082__ $$a570
001049991 1001_ $$0P:(DE-Juel1)176630$$aKostyurina, Ekaterina$$b0
001049991 245__ $$aExploring the Limits of Passive Macromolecular Translocation through Phospholipid Membranes
001049991 260__ $$aColumbus, Ohio$$bAmerican Chemical Soc.$$c2025
001049991 3367_ $$2DRIVER$$aarticle
001049991 3367_ $$2DataCite$$aOutput Types/Journal article
001049991 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1766396300_9147
001049991 3367_ $$2BibTeX$$aARTICLE
001049991 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001049991 3367_ $$00$$2EndNote$$aJournal Article
001049991 520__ $$aTransportation of active macromolecules through cell membranes is an essential biological process. However, for hydrophilic macromolecules, the hydrophobic interior of lipid bilayers suppresses the passive translocation, and there are only few cases reported. We use alternating amphiphilic polymers (AAPs) in which the sizes of the hydrophilic and hydrophobic units can be varied over a broad range, keeping the polymers water-soluble. For small units, the macromolecules show a homopolymer-like character. Pulse field gradient NMR and neutron reflectivity measurements show that the chains have a high solubility in the membrane hydrophobic interior that allows the chains to passively translocate. Increasing the length of the hydrophilic units leads to more polar AAPs with low membrane solubility and a reduced translocation speed. If hydrophilic and hydrophobic moieties are increased in size, the AAPs have a strong amphiphilic character and adsorb to lipid membranes only with their hydrophobic units, have a high membrane concentration, and have an overall fast translocation kinetics.
001049991 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
001049991 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001049991 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001049991 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
001049991 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x1
001049991 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
001049991 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x1
001049991 693__ $$0EXP:(DE-MLZ)MARIA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)MARIA-20140101$$6EXP:(DE-MLZ)NL5N-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eMARIA: Magnetic reflectometer with high incident angle$$fNL5N$$x0
001049991 7001_ $$0P:(DE-Juel1)130542$$aBiehl, Ralf$$b1
001049991 7001_ $$0P:(DE-Juel1)130777$$aKruteva, Margarita$$b2
001049991 7001_ $$0P:(DE-Juel1)158075$$aKoutsioumpas, Alexandros$$b3
001049991 7001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, Henrich$$b4
001049991 7001_ $$0P:(DE-HGF)0$$aYepuri, Nageshwar Rao$$b5
001049991 7001_ $$0P:(DE-Juel1)172658$$aFörster, Stephan$$b6
001049991 7001_ $$0P:(DE-Juel1)130501$$aAllgaier, Jürgen$$b7$$eCorresponding author
001049991 773__ $$0PERI:(DE-600)2006291-6$$a10.1021/acs.biomac.5c01234$$gVol. 26, no. 10, p. 6917 - 6926$$n10$$p6917 - 6926$$tBiomacromolecules$$v26$$x1525-7797$$y2025
001049991 8564_ $$uhttps://juser.fz-juelich.de/record/1049991/files/exploring-the-limits-of-passive-macromolecular-translocation-through-phospholipid-membranes.pdf$$yOpenAccess
001049991 909CO $$ooai:juser.fz-juelich.de:1049991$$popenaire$$popen_access$$pdriver$$pVDB:MLZ$$pVDB$$pdnbdelivery
001049991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130542$$aForschungszentrum Jülich$$b1$$kFZJ
001049991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130777$$aForschungszentrum Jülich$$b2$$kFZJ
001049991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158075$$aForschungszentrum Jülich$$b3$$kFZJ
001049991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b4$$kFZJ
001049991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172658$$aForschungszentrum Jülich$$b6$$kFZJ
001049991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130501$$aForschungszentrum Jülich$$b7$$kFZJ
001049991 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
001049991 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001049991 9141_ $$y2025
001049991 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001049991 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001049991 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-10
001049991 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-10
001049991 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
001049991 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-10
001049991 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBIOMACROMOLECULES : 2022$$d2024-12-10
001049991 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-10
001049991 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2024-12-10
001049991 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
001049991 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001049991 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001049991 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
001049991 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2024-12-10
001049991 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMACROMOLECULES : 2022$$d2024-12-10
001049991 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
001049991 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001049991 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001049991 920__ $$lyes
001049991 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x0
001049991 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x1
001049991 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x2
001049991 980__ $$ajournal
001049991 980__ $$aVDB
001049991 980__ $$aUNRESTRICTED
001049991 980__ $$aI:(DE-Juel1)JCNS-1-20110106
001049991 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001049991 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001049991 9801_ $$aFullTexts