001     1050018
005     20251219202235.0
024 7 _ |a 10.1093/braincomms/fcaf391
|2 doi
024 7 _ |a 10.34734/FZJ-2025-05732
|2 datacite_doi
037 _ _ |a FZJ-2025-05732
082 _ _ |a 610
100 1 _ |a Tscherpel, Caroline
|b 0
245 _ _ |a Evoked slow oscillations and dynamic network reorganization after stroke
260 _ _ |a [Oxford]
|c 2025
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1766156325_16229
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a G.R.F., C.G. and C.T. are funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 431549029—SFB 1451 (projects B03, B06, C05 and Z03).
520 _ _ |a A focal ischemic lesion is thought to alter neuronal activity beyond the area of structural damage, thereby interfering with the whole network architecture. Here, we used a combination of transcranial magnetic stimulation and electroencephalography in conjunction with dynamic connectivity analyses and graph theory to study alterations and reorganization of cortical connectivity in a cohort of 41 patients longitudinally after stroke. We found a link between an increase in low-frequency coupling in the delta band and alterations in neural information processing in the first weeks after stroke and their relevance for motor outcome >3 months later. We demonstrated that stroke enhances slow activity and delta coupling between frontocentral and parietal regions. In addition, we observed a loss of the physiological network architecture with a decrease in small-worldness and modularity in the delta frequency, implying that a focal ischemic lesion interferes with both cortical information integration and functional segregation within the first weeks after stroke. While we found a link between bifrontal coupling in the alpha spectrum and the degree of the motor deficit in the early post-acute phase, the amount of small-worldness disruption early after stroke indicated the motor outcome in the follow-up session. In contrast, recovery of motor function and cortical reorganization after >3 months post-stroke were paralleled by the normalization of increased low-frequency coupling and a reinstatement of the complex network structure featuring a modular and small-world topology.Keywords: diaschisis; modularity; neuroplasticity; randomness; small-worldness.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)431549029 - SFB 1451: Schlüsselmechanismen normaler und krankheitsbedingt gestörter motorischer Kontrolle (431549029)
|0 G:(GEPRIS)431549029
|c 431549029
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Mustin, Maike
|0 P:(DE-Juel1)201297
|b 1
700 1 _ |a Rosjat, Nils
|0 P:(DE-Juel1)164124
|b 2
700 1 _ |a Mais, Lea-Theresa
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ziemann, Ulf
|0 0000-0001-8372-3615
|b 4
700 1 _ |a Fink, Gereon R
|0 P:(DE-Juel1)131720
|b 5
|u fzj
700 1 _ |a Daun, Silvia
|0 P:(DE-Juel1)162297
|b 6
|u fzj
700 1 _ |a Grefkes, Christian
|0 P:(DE-Juel1)161406
|b 7
|e Corresponding author
773 _ _ |a 10.1093/braincomms/fcaf391
|g Vol. 7, no. 6, p. fcaf391
|0 PERI:(DE-600)3020013-1
|n 6
|p fcaf391
|t Brain communications
|v 7
|y 2025
|x 2632-1297
856 4 _ |u https://juser.fz-juelich.de/record/1050018/files/PDF.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1050018
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)162297
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-20
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRAIN COMMUN : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-03T10:36:45Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-03T10:36:45Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-20
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-03T10:36:45Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21