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Kurzzusammenfassung

Spinpolarisation ist ein grundlegendes Konzept der Festkorperphysik mit wichti-
gen Implikationen fiir die Theorie und die Spintronik. Im Gegensatz zur ladungs-
basierten Elektronik nutzt die Spintronik den intrinsischen Spin von Elektronen und
ermoglicht dadurch eine schnellere und energieeffizientere Informationsverarbeitung.
Die genaue Charakterisierung intrinsischer Spin-Eigenschaften ist jedoch aufgrund
von Wechselwirkungen zwischen Anfangszusténden und Endzustandseffekten in Ex-
perimenten eine Herausforderung. Diese Arbeit begegnet diesen Herausforderun-
gen durch den Einsatz hochauflésender spin- und winkelaufgeléster Photoemission-
sspektroskopie (Spin-ARPES), einer leistungsstarken Methode, die eine umfassende
zweidimensionale Abbildung von Spintexturen erméglicht und somit eine genauere
Bewertung intrinsischer Spinkennwerte erlaubt.

Im Mittelpunkt steht PtTes, ein Typ-II-Dirac-Halbleiter mit topologischen Ober-
flichenzustinden, die gemeinsam eine sogenannte ,topologische Leiterstruktur®
bilden. Durch die Darstellung seiner Spintexturen wird die Natur der Spinpolari-
sation sichtbar gemacht. PtTe; besitzt auBergewohnliche Eigenschaften, darunter
die hochste elektrische Leitfdhigkeit bei Raumtemperatur unter den metallis-
chen Ubergangsmetall-Dichalkogeniden. Aufgrund seiner hohen Spin-Orbit-Torque-
Effizienz zeigt es aulerdem eine erhebliche Spin-Hall-Leitfahigkeit in Diinnschichten
und ist damit gut fiir spintronische Anwendungen im Wafer-Maflstab geeignet.

Verschiedene experimentelle Geometrien wurden eingesetzt, um zu untersuchen,
wie Oberflaichensymmetrien und Einfallswinkel des Lichts die Spinpolarisation bee-
influssen. Trifft das Licht in einer Spiegelebene auf die Probe, stimmen symmetrische
Spinpolarisationen mit den berechneten Anfangszustédnden iiberein. In Abwesenheit
einer Spiegelebene treten jedoch Asymmetrien in den gemessenen Spintexturen von
Oberflachen- und Volumenzustinden auf, die von den Anfangszustdnden abweichen.

Einige dieser Asymmetrien sind auf die intrinsisch asymmetrische Kristallstruk-
tur des Volumens zuriickzufiihren, die durch die Oberflachensensitivitdt von Spin-
ARPES zugéanglich ist — insbesondere im Rahmen des Phéanomens der ,versteckten
Spinpolarisation®. Andere entstehen durch geometriebedingte Effekte, bei denen
das Fehlen einer relevanten Spiegelebene Phasenverschiebungen im Photoemissions-
Matrixelement verursacht. Zusétzlich zeigen Berechnungen, dass durch Spin-Bahn-
Kopplung (SOC) induzierte Streuprozesse bis zu 15% der insgesamt beobachteten
50% Spinpolarisation in PtTe, erkliren, je nach experimenteller Geometrie.

Die Ergebnisse erstrecken sich auch auf die verwandte Verbindung PdTe,, bei
der dhnliche Effekte auftreten, was die Ubertragbarkeit der Methodik unterstre-
icht. Durch die Klarung von Unstimmigkeiten in Spintexturen liefert diese Arbeit
wichtige Erkenntnisse tiber die Natur der Spinpolarisation und deren Bedeutung fiir
die Entwicklung effizienter spinbasierter Bauelemente. Sie trégt so zum besseren
Versténdnis intrinsischer Spineigenschaften in SOC-Materialien bei und ebnet den
Weg fiir deren Einsatz in zukinftigen spintronischen Technologien.
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Abstract

Spin polarization is a fundamental concept in condensed matter physics, with key
implications for theory and spintronics. Unlike charge-based electronics, spintron-
ics exploits electrons’ intrinsic spin, enabling faster and more energy-efficient in-
formation processing. However, accurately characterizing intrinsic spin properties
is challenging due to interactions between initial electronic states and final-state
effects during experimental measurements. This thesis addresses these challenges
using advanced high-resolution spin- and angle-resolved photoelectron spectroscopy
(spin-ARPES), a powerful technique that provides comprehensive two-dimensional
mapping of spin textures, allowing for a more accurate assessment of intrinsic spin
characteristics across electronic states.

This research focuses on PtTey, a type-II Dirac semimetal with topological sur-
face states that collectively form a so-called topological ladder. By visualizing its spin
textures, we highlight the nature of its spin polarization. PtTey has exceptional prop-
erties, such as the highest room-temperature electrical conductivity among metallic
transition metal dichalcogenides. Its high spin-orbit torque efficiency also leads to
substantial spin Hall conductivity in thin films, making it well-suited for wafer-scale
spintronic applications.

Various experimental geometries were employed to evaluate how surface symme-
tries and light incidence angles influence spin polarization. When light impinges on
the sample within a mirror plane, symmetric spin-polarized maps align with cor-
responding initial-state calculations. Conversely, asymmetries emerge in measured
spin textures of surface and bulk states when a mirror plane is absent, deviating
from initial-state predictions.

Some observed asymmetries arise from the intrinsic asymmetric bulk crystal
structure, accessible through the surface sensitivity of spin-ARPES, particularly
within the hidden spin-polarization phenomenon. Others stem from geometry-
related factors, where the absence of a relevant mirror plane introduces phase shifts
in the photoemission matrix element, leading to these asymmetries. Additionally,
calculations reveal that spin-orbit coupling (SOC) scattering-induced spin polariza-
tion accounts for up to 15% of the total observed 50% polarization in PtTe,, that
is revealed based on the adapted experimental geometry.

Furthermore, findings extend to the related compound PdTe,;, where similar
behaviors reinforce the applicability of the developed methodologies. By addressing
ambiguities in spin texture observations, this research provides critical insights into
the nature of spin polarization and its implications for the efficient design of spin-
based devices. Ultimately, this thesis enhances the fundamental understanding of
intrinsic spin properties in SOC materials, paving the way for their integration into
next-generation spintronic technologies.
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1. Introduction

Spin polarization, the alignment of electron spins, is a fundamental concept in con-
densed matter physics with significant implications for both foundational research
and emerging technologies [1, 2]. It underpins phenomena like topological surface
states [3] and plays a critical role in the development of spintronics. Unlike conven-
tional electronics, spintronics utilizes the electron’s intrinsic spin quantum number
rather than its charge [1], enabling the design of high-speed, energy-efficient informa-
tion technologies [5, 6]. However, accurately characterizing intrinsic spin properties
in solids remains challenging. The interplay between initial electronic states and
experimental final-state effects complicates data interpretation.

Spin- and angle-resolved photoemission spectroscopy (spin-ARPES) is a powerful
technique for exploring the occupied electronic structure of solids by measuring final-
state momentum of emitted electrons [7—12]. Despite its advantages, spin-ARPES
data interpretation is often hindered by final-state effects, such as interatomic inter-
ference from non-equivalent atomic sites and scattering events during photoemission.
These effects are particularly pronounced in materials with strong spin-orbit cou-
pling (SOC), where spin mixing of orbital characters and SOC-induced scattering
can distort observed spin polarization. Additionally, sample surface symmetries,
along with the polarization and incidence angle of light, can introduce extrinsic spin
polarization, further complicating the extraction of intrinsic spin textures.

Transition metal dichalcogenides (TMDs), which exhibit strong SOC [13], pro-
vide a rich field for exploring these effects. These materials offer tunable electronic
properties [14, 15], long spin-life time [16]. Some TMDs that incorporate heavy
metals like Mo, W, Pt, and Pd exhibit non-trivial band topologies [17] and show
promise as spin-source materials, largely due to their efficient charge-to-spin conver-
sion capabilities [14, 18, 19]. These materials are important candidates for spin-orbit
torque (SOT) applications, where SOT-induced magnetization switching is critical
to advancing spintronic devices [20-241].

Among TMDs, Pd and Pt selenides and tellurides exhibit a so-called topological
ladder in the chalcogen-derived p-band manifold [25] with several resulting spin-
polarized topological states [19]. In particular, PtTe, is notable for its high room-
temperature electrical conductivity among metallic TMDs [26], and its strong SOT
efficiency, yielding substantial spin Hall conductivity in thin-film forms, making it
well-suited for wafer-scale spintronic device applications [27]. PtTe, is also a type-11
Dirac semimetal [28, 29], featuring topological surface states (TSSs), part of the
topological ladder, which exhibit spin-momentum locking akin to topological insula-
tors [30, 31]. While its bulk Dirac node lies below the Fermi level at an approximate
binding energy of Eppging ~ 0.1 €V [29], PtTey hosts non-trivial TSSs near the Fermi
level, especially along the T' — M direction in reciprocal space, a property it shares
with its sister compound PdTe, [19]. These Fermi-level-accessible TSSs, exhibit-



ing helical spin textures [32], are likely to impact observable behavior in transport
experiments. Given these compelling characteristics, we selected PtTey to investi-
gate its spin-resolved band structure, with an emphasis on distinguishing intrinsic
initial-state properties from final-state effects in spin-resolved measurements.

Prior research (e.g. [32—12]) has often encountered difficulties in verifying spin
textures in momentum space due to limitations in probing specific regions or se-
lected k-points in energy-momentum space. These constraints have sometimes led
to ambiguous asymmetries in observed spin textures, such as those noted in Ref.
[33], which are often attributed to sample imperfections or final-state effects. Fur-
thermore, incomplete spin reversals between +k and —k momenta, that are not
connected by a mirror symmetry as reported in [35], complicate the analysis of in-
trinsic spin properties. Therefore, the determination of topological properties of
these materials requires probing spin-momentum dependence over the full Brillouin
zone in order to access the Bloch wave functions, including their spin and orbital
characters, as well as phases, that enter the quantum geometric tensor [13, 44].

Recent technological advancements in 2D spin detection, including momentum
microscopes [15] and lens-deflector systems in hemispherical analyzers [16], have
expanded the capabilities of spin-resolved measurements. These techniques enable
comprehensive 2D mapping of photoemission spin textures, visualized as k,-k, maps
at specific binding energies or as E(k)) maps along targeted k| directions. Spin
detectors with broader energy and momentum accessibility are instrumental in re-
vealing true initial-state properties in materials. By encompassing a more extensive
view of energy-momentum and momentum-momentum space, these advancements
reduce the uncertainties associated with measured spin textures of a limited dataset,
permitting a more accurate assessment of intrinsic spin textures across electronic
states. This capability holds substantial implications for spintronics, where detailed
knowledge of spin textures is necessary for the efficient design of spin-based devices.
Enhanced measurement accuracy also deepens the fundamental understanding of
SOC materials, improving their potential in spin-polarized current applications and
advancing the integration of SOC materials into spintronic technologies.

ARPES studies have revealed that the spectra of PtTey [29, 32, 47] and related
compounds [19, | feature numerous topological surface states (TSSs) forming
a topological ladder, However, the precise nature of its spin polarization remains
unclear. This thesis utilizes the advanced spin-ARPES spectrometer at the Pe-
ter Griinberg Institute 6 of Forschungszentrum Julich (PGI-6) to visualize the spin
textures of the topological ladder in PtTey, to distinguish initial-state properties
from final-state effects. By employing different experimental geometries, we exam-
ine their influence on the observed spin polarization. One geometry preserves the
mirror symmetry of the material, a critical feature that simplifies the system by
eliminating asymmetries introduced during the measurement process. This enables
direct observation of intrinsic spin configurations: those governed solely by the ma-
terial’s inherent electronic structure and symmetry properties, free from distortions
or artifacts caused by experimental conditions. In contrast, the other geometry
introduces asymmetries that highlight the influence of final-state effects. This dual-
approach goes beyond PtTe;y to provide a more accurate interpretation of measured
spin textures and their connection to initial-state properties.



The structure of this thesis is as follows:

Chapter 2 provides an overview of fundamental theoretical concepts related to
electronic band structure. Photoemission spectroscopy, the primary technique used
in this thesis, is introduced and explained in detail. The chapter also addresses the
scattering of hot photoexcited electrons by neighboring atomic potentials during
their transit to the detector.

Chapter 3 details the experimental setup of the high-resolution spin-ARPES
laboratory at PGI-6. It also includes an overview of the ARPES beamline at the
PHELIX end station, which operates in the soft X-ray range at the Solaris National
Synchrotron Radiation Center in Krakéw, Poland.

Chapter 4 presents spin-integrated ARPES data on bulk PtTe,, acquired using
different photon energies (hv). The orbital character of the PtTe, valence band is
discussed based on 30-layer slab ab initio calculations. The effect of light polariza-
tion on photoemission intensity is examined within the framework of photoemission
matrix elements, comparing results based on the free-electron final state model and
the scattering final state model, where the EDAC code [51] was used in the later.
This chapter also introduces various experimental geometries, defined by the align-
ment of the photoemission reaction plane (containing the light incidence direction
and the sample surface normal) with the mirror planes of the sample surface. Spin-
integrated ARPES data are compared across these geometries: one type of config-
uration yields symmetric spin-integrated maps, while another displays asymmetries
absent in the initial state, as confirmed by theoretical calculations.

Chapter 5 explores the origin of spin polarization in E(k) and (k,-k,) maps ob-
tained from spin-ARPES for non-magnetic and centrosymmetric bulk PtTey;. The
geometry-based analysis developed in Chapter 3 is applied to spin-resolved mea-
surements. Here, one type of geometry preserves the symmetry of a mirror plane,
resulting in symmetric spin-polarized maps, while other geometries produce asym-
metric spin-polarized maps that differ from the symmetric initial-state spin textures.
Potential sources of these asymmetries are discussed, attributing some of them to
the intrinsic crystal structure and others to final-state effects.

Chapters 6, 7 extend the investigation to the sister compounds PdTe, and PtSes,
respectively, where similar results are observed. This reinforces the feasibility of ap-
plying the main methodology of this thesis to ARPES and spin-ARPES studies more
broadly, aiding in the separation of initial-state from final-state effects in measured
data.



2. Theoretical background

2.1 Electrons in a lattice

An electron in a periodic solid no longer behaves like a free electron in vacuum. In-
stead it experiences the periodic potential field provided by the atomic ions. Here,
I will shortly discuss two simple models used typically to describe electrons in such
a crystalline solid. The first model is the free electron model: in which valence
electrons of the constituent atoms become conduction electrons that obey the Pauli
exclusion principle, and move in a three dimensional potential well (simulating the
crystal) with infinitely high walls representing the crystal surfaces. These elec-
trons acquire a traveling plane wave 1 (r) = €7 that satisfies the free-particle
Schrodinger equation [%V2 + E¢(r) = 0. This suggests a continuous energy range
for the electron from zero to infinity as it is shown for the 1D case in Fig. 2.2 (a).
However, this model fails to answer some major questions like how to distinguish be-
tween metals, semimetals, semiconductors and insulators. The second model which
answers the previous question is the band structure model which was formulated
by Felix Bloch in 1928: it states that the eigenfunction solution of the Schrodinger
equation for an electron in a periodic potential can be chosen to have the form of a
product of a plane wave e*" and a periodic function u,(r) that has the periodicity
of the crystal lattice:

Pnk(r) = unk(r) - €*7 (2.1)

where ung(r) = ung(r + R) ; for all translation vectors of the lattice R.

Figure 2.1 is a one-dimensional schematic representation showing the lattice
potential for a row of atoms (a linear lattice), a periodic function of the lattice
periodicity, the real part of a plane wave, and the real part of the Bloch wave
function. These Bloch eigenstates are solutions of the Schrédinger equation which
considers also the perturbing periodic potential V(r)=V(r+R) ,VR:

2
(37 Bt = Vi) =0 (22)

2m
Here, k is the Bloch vector, that is a reciprocal space wave vector in units ﬁ
E, (k) is the energy of the electron which is a continuous function of the Bloch
vector k, such that this continuous range of energies is referred to as the energy
band and labeled by the band index n. The existence of the band index occurs be-
cause for a given Bloch vector k there are many independent eigenstates and hence
many energy eigenvalues; each refer to a distinct band index n. The number of
different Bloch vectors in each band is equal to the number of primitive unit cells
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(b) and (c). Taken from [52]. \_ Y,
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in the crystal'. Because the energy eigenvalues are periodic in the reciprocal space
E.(k) = E,(k + G), where G is a reciprocal lattice vector, the Bloch vectors are
restricted to the first Brillouin zone BZ which is a Wigner-Seitz primitive cell in the
reciprocal space.

To clarify the capability of the band theory do distinguish between the electronic
properties of different materials, a very simplified periodic potential of square well
array known as Kronig-Penney potential (shown in the inset of Fig. 2.2 (b) with a,b
and Vp representing the well, the barrier width and the barrier height respectively)
can be introduced into Eq.(2.2). Following the math derivation in solid state physics
books as in Kittel [53] and the solution of problem number {1} in chapter {8} from

Ashcroft and Mermin [54], one would get the equation :
a2 _ B2
_ (W) sin(aa)sinh(8b) + cos(aa)cosh(Bb) = cos(k(a + b)) (2.3)

1

1 1
where a = (22”2]5) * and g = (727"(‘;3715)) ’

When the left-hand side (L.H.S) of Eq.(2.3) is plotted as a function of the elec-
tron’s kinetic energy F, which is contained in a and /3, one can see regions exceeding
+1 which are the limiting values of the right-hand side (R.H.S), as shown in Fig.
2.2 (b). These regions don’t have Bloch-like solutions to the wave equation, hence,
forbidden energy regions are formed (energy gaps). On the other hand, the gray
shaded regions which are within the limits of the allowed range +1 represent allowed
energy values. A special interesting case is when the periodic potential is reduced to
the periodic delta function via reducing the barrier width b—0 and increasing the
barrier height Vo — oo. Then Eq.(2.3) reduces to :

(%)sin(aa) + cos(aa) = cos(ka) (2.4)

B2ba

where P = is the scattering power of the potential barrier. Similarly, when
plotting the L.H.S of Eq.(2.4) as a function of («wa) as shown in Fig. 2.2 (c), allowed

IFor a 3D crystal that is having (n,n2,n3) primitive unit cells along (a,b,c) directions in real
space, there would be N = njnang Bloch vectors and hence each degenerate band would be able
to take 2N electrons considering the electron spin.
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and forbidden regions are formed and interestingly the energy gaps happen at the
zones boundaries as indicated which can be explained due to the Bragg reflections.
The Bragg condition in one-dimension is £ = £77, where a is the lattice constant
and n is an integer. At these special wave vectors, traveling waves can not propagate
in the lattice, instead a wave traveling to the right will be Bragg-reflected to the left
and vice versa, and through successive reflections back and forth a standing wave
will be formed.

E

B

LHSiof Eq.(2.4)

O

LHS of Eq.(23)

0 5 10 15 20
E[eV]

Figure 2.2: Free electron band dispersion compared to the perturbed case due
to the periodic potential of the crystal lattice.(a) band dispersion E(k) for a free
electron in one-dimensional lattice. (b) L.H.S of Eq. (2.3) as a function of E (which is
contained in a and ) for a square periodic array shown in the inset and calculated for
a=10 A, b=1.2 A, and V,= 10 eV representing the well, the barrier width and the barrier
height respectively. The gray shaded regions represent allowed energy values where the
L.H.S is within the limits of the R.H.S 1. (c¢) L.H.S of Eq. (2.4) as a function of
E, which is a special case of (b) where the periodic potential is reduced to the periodic
delta function (b—0 and Vj — o0) and the figure was plotted for a barrier scattering
power P = ‘%’T Energy gaps happen at Bragg-reflections where standing waves are formed
instead of traveling ones in the lattice.

The ground state of a system is achieved through filling subsequently the energy
levels with electrons staring with the lowest energy. The energy level filled with
the last electron is called the Fermi energy Fr. The uppermost completely filled
band is called the valence band while the next entirely empty band is called the
conduction band. The location of the Fermi energy level is very critical for the
optical and electrical properties of the crystal. If Er level crosses at least a band,
the material will be a metal where it will require a small amount of energy to excite
an electron from Er occupied state into an empty state within the same band. On
the other hand, if EFr level is located within the previously discussed band gap the
material is either a semiconductor or an insulator where the later happens if the
energy gap is larger. In this case a large amount of energy is needed in order to
lift an electron from a state in the valence band overcoming the energy gap into a
state in the conduction band. This manifests the vital rule of the energy gaps which
was introduced successfully through the band theory model, unlike the free electron
model.
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2.2 Spin-orbit coupling

Spin is an angular momentum degree of freedom of the electron which has been
recognized as a relativistic effect of quantum mechanics in 1928 by Dirac [55, 50].
Spin-orbit coupling (SOC) is a related relativistic quantum mechanical phenomenon
which describes the coupling between the electrons spin and the magnetic field cre-
ated by the electrons orbital motion. This results because an electron orbiting the
nucleus on a trajectory with velocity v experiences an electric field E from the
potential gradient of the nucleus as a magnetic field B due to the Lorentz transfor-
mation®[57].

Introducing these relativistic quantum mechanical concepts would predict the
fine structure splitting of the energy levels. Using the non-relativistic Schrédinger
theory in treating non relativistic systems, like the light Hydrogen atom?®, is very
successful, however, there are measurable corrections of the order of ()* which have
to be put in by hand [58]. This fine structure is partly due to the relativistic vari-
ation of mass with velocity, and partly due to the spin of the electron. Now, using
the relativistic Schrodinger equation (also known as Klein—-Gordon equation) would
predict the variation of the mass alone for spin-less particles, but would not give
correct results for the fine structure, the Zeeman effect and other phenomena which
depend on the spin of the electron [59]. Therefore in order to include the effect of
the spin-orbit coupling on the quantum mechanical basis, an equation that has the
relativity built into it from the beginning is necessary, namely the Dirac equation.
A thorough derivation of the Dirac theory can be found in quantum mechanics text-
books as refs. [58, 59]. Here I will limit the discussion to show that using the Dirac
equation emerges the concepts of electrons spin, spin-orbit coupling and other fine
structure corrections. Following Shankar [58]:

The free-particle non-relativistic Schrodinger equation is :

o)
= = om V) (2:5)

Using the Einstein relativistic energy law :
H = (p? + m?ch)/? (2.6)
The corresponding free-particle relativistic Schrodinger equation is:

; 0|y

L= (@ ) 2 ) (27)

but this equation treats space and time asymmetrically?. One solution is to use

H? = *p? + m?ct (2.8)

Lorentz transformation: B = 2(vxE). From the electrons frame of reference (rest frame), the
nucleus is orbiting the electron inducing an effective magnetic field, B, felt by the electron.
1

3The typical semiclassical velocity is small compared to speed of light; © ~ 3= in the ground
state [58].
2 4
4Expanding the square root in equation (2.7): ihw =mc*(1+ 5tz — glaz +--) [¥(p, 1))
implies first and second derivative of time and space respectively; p = —iAV and p? = —h?V?2.
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and using the quantum mechanical operator p = —ihAV to obtain the so called
Klein-Gordon equation which is the relativistic generalization of the Schrodinger
equation:
102 m2c?
S v 2 U =0 2.9
(o =7+ 29)

This equation satisfies the desired symmetry treatment of space and time, but it is
of second order. Dirac’s idea was to linearize this equation supposing the quantity
inside the square root in equation (2.6) can be written as a perfect square of a
quantity that is linear in p. Hence, ending up with the free-particle linearized
relativistic Schrodinger equation (free-particle Dirac equation):
0|V
zh%> = (ca - p + fmc?) |¥) (2.10)
Where, « is a vector of 4 x 4 matrices, that can be written in terms of the Pauli
spin-matrices, o, while £ is a matrix of same rank, that can be expressed in terms
of the 2 x 2 unit matrix Is:

(0 @) 4o (B0 (01 (0 —i (1 0).
“le 0/ o =) \1 027\ o) 0o -1)

This implies that the Hamiltonian acts on a four-component wave function ¥
called Lorentz spinor, that can be written in terms of two-component spinors called
large and small components, ¢ and x respectively; ¥ = [¢, x]T.

Now, coupling to electric ¢ and magnetic A potentials would be through the
following Hamiltonian®:

H=[(p— qA/c)c* + m?c']? + g6 (2.11)
which gives:
i % = (ca - (p — qA/c) + Bmc® + q¢) |¥) (2.12)

In order to show that the Dirac equation describes a spin—% particle we set ¢ =0
to get:

HY = (ca -7+ fmc?)V = BV ; (m=p—qA/c) (2.13)
Writing e and 3 explicitly in equation (2.13) we get:

E—-mcé® —co-m)\ (¢ 0
(e e 7a) (1)) o2
ending up with the large and small two-component spinors coupled in the fol-
lowing two equations:
(

E—mc*)y — (co-m)x =0 (2.15)
(E+mc*)x — (co -7

) =0 (2.16)

5 2

a and 3 obey these conditions: a? = 82 (i = 1,2,3), ayaj + ajoy =0 (i # j), ;8 + Ba; = 0.
6This is done via substituting (p = p — %) and (H = H — q¢) in Eq.2.5.
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Writing the small component x in term of the large component 1 using equation
(2.16) 7, substituting in equation (2.15), retaining only terms up to order (£)* and
following the simplification done by Shanker [58], we get the equation for the large

component only:

—qA/c)?  qh
(P—qA/e)  ah B\, _ gy (2.17)
2m 2mec
where —o - B= —(£); 20 B=(£)-2S-B=—p -B=Hu

Equation (2.17) manifests that it describes a spin—% particle with g-factor=2,
and H;,; represents the interaction of electron with an external magnetic field.

Now to see the origin of the spin-orbit coupling, we apply the Dirac equation to
the case where an electron is affected by a potential :

V(r)=egp(r) = —; (similar to an electron in a Hydrogen atom)  (2.18)

This time the coupled equations of the large and small spinor components would
be:
(E—=V —mc*)p — (co-p)x =0 (2.19)
(E—V 4+me*)x—(co-p)=0 (2.20)
Following the same analysis done above i.e. writing the small component in term
of the large component using equation (2.20) and substituting in equation (2.19) but
this time retaining terms up to order (¥)* [see Shanker [75] for the details| we get a
Hamiltonian for the large spinor component only:

2 4 2
p p 1 1dV(r) h 9
Hupy=—+V . - S L vV 2.21
“) = oam V) + Sm3c? + 2m2c2r dr + 8m2c? ()« )
H() O (relativistic) 0H (spin—orbit) 0H(Darwin)

The first term represents the conventional Hamiltonian, while the second term
introduces the relativistic correction due to the change of the mass with velocity.
The fourth term , referred to as the Darwin term, which has no classical analogue.

The focal point is the third term (the spin-orbit coupling) which describes the
coupling between the spin and the magnetic field created by the electrons orbital
motion [57]. This term involves the radial derivative of the potential, indicating
that the primary contribution to the spin-orbit coupling occurs near the nucleus.
Consequently, SOC is most pronounced for electronic core levels, associated with
electrons tightly bound to the core. Additionally, in regions of small radial distances,
the potential adopts a Coulomb-like potential (V(r) = —%) with a radial derivative

- r

proportional to the atomic number Z°. Therefore, SOC is expected to be large for

x= (chr:ci )7/J The denominator (F + mc?) = (Eschrodinger + 2mc?) = 2mc?; where at low

velocities Egchradinger < mc?, and the numerator is of the order mve. Hence, \%\ = %(%) < 1.
This clarifies why 1 and ¢ are called large and small components respectively.
8In Hydrogen-like atoms the Coulomb potential is V(r) = ZT—J For an electron orbiting a
nucleus of an atom with atomic number Z, the expectation value of the orbit’s radius scales with
dV(r
1 ( ) x Z4 [ ]

the atomic number as (r) o %: Hence 6H (spin—orbit) X 1 q
r
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heavy atoms, but small for lighter ones. This clarifies the presence of heavy atoms
in materials characterized by properties derived from spin-orbit coupling. The term
involves the scalar product S - L , causing the atomic energy levels to split based
on the relative orientation of the electron’s spin and orbital angular momentum.
As an example of such splitting, is the splitting of the p energy level into the two
distinct separated levels ps/s and pysp [61]. The existence of such scalar product
means that L, and mg are no longer good quantum numbers, however, the total
angular momentum quantum number J = L + S is a good quantum number and
the SOC term can be written as [62, 63]:

1 1dV(r) _a, ..

where 2 av ()
1 r
= — 2.2
“ 2m2c2r dr (2.23)

Up to this point, the concept of the SOC has been explained on the atomic level.
Furthermore, the effect of the SOC extends to crystals, significantly shaping the
electronic band structure of solids, despite being a relativistic effect predominantly
treated as a weak perturbation. A notable example, is the semiconductor GaAs:
within the tight binding picture and neglecting spin, the valence band maximum, at
the I' point, is a degenerate p-orbital character band (with orbital angular momen-
tum [=1). Including the effect of SOC splits the band into a fourfold degenerate
P32 (with a total angular momentum j = 3/2) level and a twofold degenerate p; /o
(with a total angular momentum j = 1/2) level, separated in energy by 0.34 eV of
the what so-called SO-gap [64, 65]. The impact is thoroughly illustrated in Figure

2.3.

Figure 2.3: Spin-orbit
coupling effect on \ /

the band structure Si1/2
of the semiconduc- Te |
tor GaAs. Band struc-
ture at the I'" point of
GaAs. The SOC splits Eg=152eV
the valence band max-
imum into a fourfold
degenerate pz/p and a Ty
twofold degenerate py /s 7‘\ P32
energy levels with a SO- 4=034¢

gap of 0.34 eV. Figure T,
taken from [64].

P2

In the two cases recently examined, namely the atomic and the crystal perspec-
tives, the splittings of the atomic orbitals and bands respectively, resulting from
SOC, were based on the total angular momentum quantum number J depending
on the relative orientation of the spin S and the orbital angular momentum L.
However, focusing on the solid state picture, the bands remain degenerate; that is,



11 2.3. The Rashba effect

they are still occupied with an equal number of electrons with opposite spin polar-
izations along any quantization axis, canceling out any net spin polarization. This
degeneracy arises from the combination of the time reversal symmetry with the real
space inversion symmetry of the crystal, a phenomenon known as the Kramers
degeneracy :

Time reversal symmetry(TRS) : E(k,1T) = E(—k, )

Inversion symmetry(ZS) : E(k,1) = E(—k,T)} = Bk, 1) = Bk, )
(2.24)
Equation 2.24 implies that in order to have spin polarized electronic states the
degeneracy must be lifted. This can be accomplished by either breaking the time

reversal symmetry 7RS or breaking the inversion symmetry of the crystal ZS.

2.3 The Rashba effect

In magnetic systems TRS is inherently broken, allowing for spin-polarized bands.
While, in non-magnetic systems, achieving this involves actions such as doping the
material with magnetic impurities to induce a magnetic field or through applying an
external magnetic field, subsequently breaking 7RS. On the other hand, in systems
where TRS is preserved but inversion symmetry ZS is violated, the potential will
not be symmetric such that V(r) # V(—r), hence, a non-vanishing potential gradient
VV(r) # 0 and in turn an electric field E(r) will arise. In the relativistic limit, the
electron will experience the electric field as an effective magnetic field By ective
through Lorentz transformation and the electron spin S will couple with By fective
splitting up the degenerate band into separate spin polarized bands based on the
relative orientation of Bffective and S. This manifists the relativistic SOC origin
of the Rashba effect’. This coupling term is called Rashba or Bychkov-Rashba
Hamiltonian [66, 67]:

Hr=aro-(pX E)=aro - (kX E)=ag(F)o- (kX é) (2.25)

Where the last two equalities apply only for plane wave eigenstates as it is the
case for a free 2D electron gas with a potential gradient along the perpendicular
direction z [57]. The Rashba parameter ap represents the effect’s strength and
depends on the atomic number Z and the symmetry-breaking electric field F [68] as
illustrated in note 9. The 2D electron gas picture can be realized in semiconductor
heterostuctures, where at the interface in these structures the electrostatics between
the nearest atoms create an electric dipole, hence, an effective electric field needed
for the Rashba effect [69]. This also extends to surfaces where the periodicity of
the crystal potential is truncated'’. At these boundaries, surface electronic states
may form inside bulk energy band gaps and electrons occupying these states are
confined on the surface. A prominent example is the surface states of Au(111) [70],

9Starting with the SOC Hamiltonian and using a symmetry-breaking surface electric field Ez:

14V (r) 1 1dV(r) h 5 dv(r) h

6HSOC = 2m12c2 T dr S - ~2m? 02% dr (50) (r X p) pror A (% dr X )74771 =0

(VV(r) X p)=1%z0-(px E)= 4m2 im0 (kx E)=1"20 (kx %) = ar(E)o-(kx 2) = Eq.2.25

10 At the crystal surface, z and -z belong to two dlstmct environments: vacuum and the crystal,
respectively.
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where the spin split surface states are very clearly measured using the photoemission
Spin-ARPES method [71].

For a 2D electron gas confined in the (z,y) plane and subject to a symmetry-
breaking surface electric field EZ, the Hamiltonian can be expressed as:

2

H= Hkinetic + HR = % + aro - (k X éz) (226)

where H g describes the Rashba SOC as additional contribution to kinetic energy,
while m*, p and k are the electron effective mass, its in-plane parallel momentum,

and its in-plane wave vector respectively. The corresponding eigenenergies are
h2k? h?
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Figure 2.4: Rashba effect in a structure inversion asymmetric environment. (a)
A schematic illustration 3D view of the spin texture of the Rashba split bands, where the
inner band has a clockwise spin chirality while the outer one has a counterclockwise spin
chirality for the in-plane S,-spin component where red (blue) refer for the spin-up (spin-
down) component. A 2D view is shown in (b) where Fr and kg are labeled representing
the energy difference and the momentum offset between the high symmetry point k = 0
and the vertex of the spin polarized split parabola. (c-d) Experimental realization of
the Rashba effect measured using Spin-ARPES from Au(111) surface state excited via p-
polarized 6.05 ¢V photons. (c) Spin and intensity map measured at Fermi energy showing
the concentric circles with opposite spin helicity similar to the Fermi energy cut that would
have been taken from (a). (d) Spin resolved and intensity band dispersion measured along
the dashed line in (c) at ky = 0 in agreement with the schematic illustration (b). Measured
spin component is S, in agreement with the illustration in (a-b). (Figs.(a-b) taken from
[72] and Figs.(c-d) from [71]).

(k+kgr)® — Eg (2.27)

~
o
f=

2y E-Ep (eV

tial stat

parallel momentum k_ (A™)

The =+ refer to the eigenstates having opposite in-plane spin polarization and are
normal to the electron wave vector. This induces helical spin textures in k-space
where the spin of the electron is locked to a certain momentum (spin-momentum
locking). Omne can see clearly through equation 2.27 (except the high symmetry
point k£ = 0) that the initially degenerate free electron parabola will split into two
distinct spin polarized parabolas that are shifted by (kg = mag) but in opposite
directions for the opposite spin components, while both parabolas are lowered in

m

energy by (ER = %QR> as illustrated in Fig. 2.4. It is also important to note that
the energy difference in the spin-polarized split bands (AE=E; — E_=2agk) is linear
in k.

This Rashba effect has been discussed for e.g. 2D electron gas, heterostuctures
etc. where structure inversion asymmetries exist. On the other hand, it is also

important to note that in bulk inversion asymmetry (BIA) systems, that is, crystal
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structures that lack a center of inversion, we can have a spin splitting even if B = 0
which is know as the Dresselhaus effect (D-1) [73]. Unlike the linear Rashba effect,
the energy difference in this case scales with k as (A&€presseinans < k) [57].

2.4 The Photoelectron emission spectroscopy

Photoelectron emission spectroscopy (PES) has been one of the most widely used
techniques to study the electronic structure of atoms, molecules, solids and adsor-
bates [74]. It refers to all the methods that are based on the application of the
photoelectric effect which was originally discovered by Hertz in 1887 [75], where it
was discovered that electrons can be removed from a solid when it is being illumi-
nated by electromagnetic radiation. It was until 1905 when Albert Einstein [70]
postulated the quantization of the electromagnetic field rather than the emission
mechanism via introducing the concept of photon where he successfully explained
the relation between the maximum kinetic energy for an electron emitted from Fermi
level and the frequency v of the light used rather that its intensity though the fol-
lowing substantial photoelectric equation

El* = hy — ®, (2.28)

kin

where h is Planck’s constant and ®, is the material work function which is
a characteristic constant of the sample surface that refer to the potential barrier
preventing the valence electrons from escaping (typically 4-5 eV for metals). Einstein
was awarded the Nobel Prize in Physics in 1921 for his discovery.

Figure 2.5 (a) shows a schematic picture of a modern angle-resolved photoemis-
sion experiment, and a schematic view of the photoemission principle is illutrated
in Fig. 2.5 (b). The photon source can be vacuum ultra-violet (VUV) line spec-
tra of discharge lamps e.g. He-discharge lamp (Hel,: 21.22 eV and Hell,: 40.82
eV), a laser, or a synchrotron radiation facility which provides light over a broad
range of photon energies from the ultraviolet up to hard x-rays [77]. Based on the
photon energy used, one can either investigate the valence band states by using the
ultraviolet photoemission (UPS), or via using the x-ray photoemission spectroscopy
(XPS) to probe the core-level states that are at high binding energies. He-lamp is
around 0.2-0.5 mm in diameter, while the laser or synchrotron light beam can be
finely focused down to < 50 gm. Even though the line width for the discharge lamp
is a few meV and for the x-ray is ~ 1eV, an additional monochromator can be used
to enhance the energy resolution and to suppress the background intensities. So,
when the light impinges a sample, that has to be a single crystal aligned properly to
perform momentum resolved measurements, electrons will be ejected into vacuum
in all directions. However, the electron energy analyzer is characterized by a finite
acceptance angle that is defined by an electron optical entrance lens system, which
makes the emission direction defined by (¢, ¢) a free experimental parameter. Here
9 is the polar angle with respect to the surface normal, and ¢ is the azimuthal angle
defined with respect to the experimental geometry or the crystal axis. Hence, via col-
lecting these photoelectrons and recording their kinetic energies Ejy;, together with
their emission angles (¢, ¢), it is possible to determine the postemission momentum
p = v2m.Ey;, and its component parallel to the surface

Plloacuum = (\/QmeEkm - sin(0) - cos(p)ky + \/2me Egin - sin(09) - sin(@)@) (2.29)
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which is conserved during the whole photoemission process, and the perpendic-
ular to the surface component

DL = /2B - cos(0)k (2.30)

which is not conserved due to the broken symmetry at the surface.

(a) (b) Eu
energy Vacuum
analy zer
photon E; ipppaans-- -y
source
Valence band
hv
Core levels
Sample P— .
hv
Eue N(E)
EF
Valence band
hv
EE
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Core levels
-

Figure 2.5: Geometry and principle of the photoemisssion process. (a) Schematic
picture showing the geometry of the photoemission process. (b) Principle of the photoemis-
sion process: energy distribution of the photoelectrons N(E) collected by the spectrometer
(blue shaded regions in the right-top panel) referring to the density of states occupied in
the sample (yellow shaded regions in the right-bottom panel), reflecting a broad valence
electronic distribution (labeled: Valence band) and sharp emission lines from the core
levels (labeled: Core levels). (a) Taken from [78] and (b) taken from [79].

In general, most of the photon energies used in the photoemission experiments
are within the ultraviolet (UV) range, in particular (hv<100 V). At this low energy,
the photon momentum k;, = % during the photoemission process can be neglected.
It is (kpger, = 0.008 A=1) for the Hel,, discharge line typically used in photoemission
experiments, and (koo = 0.05 A*I) for 100 eV photons, both are much smaller
compared to the typical size of the Brillouin-zone 27” for a solid, and hence, can safely
be neglected. On the other hand, if the photon energy is high enough as in the case
of using 1487 eV photons where ky4g7.y = 0.76 A1 (the Al K, line used in x-ray
photoemission), then the corresponding momentum can not be neglected and must
be taken into consideration [30]. Therefore, neglecting the photon momentum and
taking advantage of the total energy and momentum conservation of the electron,
one can derive the relation between the pre-emission and post-emission electronic
states

Egin = hv — &, — Ep (2.31)

Pl pacuum=crystaty — hK”(vacuumEcrystal) =V 2me B, - Sin(ﬁ)kp =
<\/2meEkm - sin(1) - cos(gp)k;m + \/2me Egin - sin() - sin(gp)k?y)

(2.32)
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Here, FEy;, is the photoelectron kinetic energy, Ep is the pre-emission binding
energy of the electron inside the material. P = hK is the parallel component to
the surface of the photelectron which is equal to the parallel component of the crystal
momentum for the electron prior emission inside the material in the extended zone
scheme, but can always be traced back into the first Brllouin zone by subtracting
the correct reciprocal lattice vectror G (ppz1st = Pjpzhigher—orer — G).

The experimental energy resolution is determined by the bandwidth of the light
source and the energy resolution of the detector: (AFE;a1)? = (hAV)2+(AEgesector)?-
The main contribution into the momentum resolution is from the detector A, hence,
using Eq. (2.32) to derive the momentum resolution:

AK|| = \/2m Eyn /12 - cos() - Ad (2.33)

One can see that the lower the photon energy and hence the slower the photo-
electrons FEy;,, and the larger polar angle ¢ (can be reached by measuring outside
the 1% BZ) the higher the momentum resolution achieved.

2.5 Three-step model of photoemission

The photoemission process can be understood within the so-called three-step model
which divides the photoemission of a single electron into three sequential steps that
have to be connected quantum mechanically to allow the electronic wave function
to propagate from one step to another:

e Optical excitation of the electron in the bulk. This step contains the electronic
structure information of the material.

o Transport of the excited (hot) electron to the surface, which is described by the
effective mean free path representing the elastic and inelastic scattering experi-
enced by the electron during its journey to the surface. The inelastic-scattering
shows up as background in the spectra that is typically being ignored.

e Transmission of the electron through the surface into the vacuum, where the
photoelectron takes the form of a free electron plane wave in the vacuum that
extends to the detector.

The three steps are labeled with 3),@ and & respectively in Fig. 2.6. In the
coming sections I will discuss these steps and mostly elaborate on the first step, but
for a detailed description the reader is recommended to check the literature available
on the subject in e.g. [79-86]. Here it is very important to distinguish between the
different electronic wave vectors during this process:

e k;: initial wave vector of the electron before it gets excited.
o kj: final wave vector of the excited electron while remaining in the bulk.

e K: wave vector of the photoelectron after being ejected into vacuum.
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Figure 2.6: Schematic representation of the three step model. Steps labeled @),@
and () are the steps of the three step model representing the optical excitation, traveling
of the photoelectron to the surface and its transmission into the vacuum respectively.
Furthermore, steps (D) and Q) represent refraction and penetration of the electromagnetic
wave into the material respectively. Taken from [33].

2.5.1 1% step: Photoexcitation

In order to extract the encoded electronic structure information from the 1% step of
the three step model, the photoemission process needs to be formulated theoretically.
The starting point is to imagine the ground state of a system as a reservoir of N-
electron system that will interact with the electromagnetic wave of the incoming
photon such that a single electron will be removed from the reservoir leaving a
(N — 1) electrons in that reservoir besides the photoexcited electron. Then, the
aim is to derive a formula that can describe the total photoemission intensity (total
photocurrent). The foundation stone is Fermi's golden rule:

27
Wi ;= E|<x11§¥|1ﬁ1w|xIJ{.V>\25(EjN —EY — hv) (2.34)
which describes the transition probability w;_,; of the N-particle system from
the initial state |¥;¥) to one of the possible excited final states [¥}). Here, the delta
function ensures the energy conservation where EYN and E}V are the initial- and final-

state energies of the N-particle system, while H;,; is the perturbing Hamiltonian
which will be described in the next Sec.(2.5.1.1).

2.5.1.1 Photoemission matrix element

The Hamiltonian describing an electron in a unperturbed solid is

H, B V(r) (2.35)

- 2m,
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The sample in general represents a many-body system that will be involved as
a whole in the photoemission process once it is being shined by some sort of light.
However, a simplified view of the process is through a single-electron picture, such
that the electron will interact with the electromagnetic field A which is expressed
mathematically through the canonical replacement p — (p — £A) in Eq. (2.35).
This can be understood as a force experienced by the electron from the oscillating
electric field of the electromagnetic wave that will change its momentum, to get the

perturbed Hamiltonian

(p—£A)?
H= ‘ Vv
o T V(")
p’ e 2 2
= Vir)— A- -A A
2me. +Vir) 2mec( ptp-A)+ 2m.c?
Ho Hperturbing)
e
~ H, — A-p
MmeC
= H,— S (Aeamuy . p
MmeC
— Ho _ Leiqq'(Ao . p) 6—iu)t
MeC
— —————
Hint)
=H, + H(int)eiiwt (236)
On the second line, the quadratic term in A describes two-photon processes and
can be neglected for weak radiation in the linear optical regime''. Also, —55(A
p+p-A)= _znic@A ‘p+ihV-A) = —iigA - p, where the dipole approximation

assumption (A is constant over atomic dimensions and hence V - A = 0 in the
bulk) was used which holds in the ultraviolet regime typically used in photoemission
experiments [32, 81]. We used A = A.,e'@") for the electromagnetic field with
a photon momentum . One can see that the final form represented in Eq. (2.36)
shows the weak perturbation that is periodic in time and hence can be used in
Fermi’s golden rule Eq. (2.34) when it is reduced into a single electron system with
single -initial and -final wave functions

2m
Wing = 2 {Of | Hine|67)[* - 0(€5 — & — Do) (2.37)
with the so-called photoemission matriz element
€ iqT
M = (5 Hinldh) =~ (51e" (A, p)Iof) (23%)

The photon wave can probe length scales of order A = 2% which is large compared
to the atomic dimensions for the mostly used ultraviolet light in mapping the band
structure (using Hel, = 21.22 eV — A= 584 A>> lattice constant a, ~ A). Expanding
the photon plane wave €" = 1 +iq-r + ... ~ 1 (dipole approximation) with
q- 7T ~21% < 1, leads to the simplified form

"However, in the case of high photon intensities as those achieved in ultrafast pulses, the
quadratic term becomes relevant.
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e

Mfy = (1o plk) (2:39)
- e [, ]l o%)
_ _%(¢';|HOAO o7 — Ay rH|0F)
_ _%(@ — &) (dkI AL -TIgh)
= (&~ &) A er loh) (2:40)
;

where in the last line p is a reminder of the electric dipole moment form, and
that’s why Eq. (2.40) is known as the dipole matriz element. Classically, the state
of polarization of the electromagnetic wave is specified by the direction of the electric
field €, so A can be written as A.€, and the matrix element becomes

e ?
ME = — " A (e ploF) = ——A(E — E) (ke - e 2.41
fi mec <¢f|€ p‘¢l> hC (gf 5)<¢f|€ 67’|¢Z> ( )
velocity form length form
= Mj; o (0] - plof) o< (Sfle - r[of) (2.42)

Indeed, the simplified length form of the matrix element, (¢}|e-7|¢F) is extremely
valuable. In order to stress the importance of this term, we can start looking at the
atomic picture. Because atomic orbitals are described with a time-independent
potential V, Schrodinger’s equation can be solved using the technique of separa-
tion of variables, so that any wave function will have the form WU, (7,9, ¢) =
Ry (r)Yim, (9, ), where R, ,(r) is the radial wave function part and Y;,,, (0, ¢) is
the angular wave function part that is written in terms of spherical harmonics.
Therefore, the initial and final single electron wave functions |¢¥) and |<;$’J§>7 respec-
tively, appearing in the matrix element expression can be factorized into radial and
spherical harmonics parts. Moreover, the operator (e - r) can also be expressed in
terms of the spherical harmonics (e.g. Y; for linearly polarized light, while Y} 4,
for circularly polarized light). This implies that the total expression for the ma-
trix element (d)’ﬂe -7|¢¥) can be fully calculated using spherical harmonics products
which give nonzero outcome based on well known rules between the quantum num-
bers [, m; of the initial and final states. Although this description is based on the
atomic level, within the frame work of the tight-binding model, the band structure
can be resolved on the basis of atomic orbitals as will be shown in Sec. 4.6.

2.5.1.2 Noninteracting electrons picture

The first approach to look at the photoemission is through the so-called nonin-
teracting electrons picture. This way, one can factorize the initial- and final-state
N-electron wave functions as this

TY) = Alg) e (2.43)

[TF) = Al w7~ (2.44)
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where A is an antisymmetry operator that ensures the antisymmetrization of
the N-electron wave function to satisfy the Pauli principle. |¢f) represents the
single-electron wave function before being excited by the photon, and |¢>’j> refer to
the photoexcited electron while still in the solid. Both wave functions are having
the same wavevector k because k;=ky as a result of the momentum conservation
during the photoemission process. As the name noninteracting electrons indicates,
exciting an electron from the initial state of the N-electron system into a final state
will not affect the remaining (N — 1) electrons, hence, |\II}V 1 = N1 and Eq.
(2.34) becomes:

27 B 3
Winy = S (U Hinel 602 - 6(B — BY — hw)
27 B 3
= 3 S Bl o (W W) 6B — B — o)
2T
= SO Hinel 6 - 8(Ey — & — )

2
= %|M}fi\2 5(Ef — En — hv) (2.45)

where M, = (¢§|H|oF) is the one-electron dipole matrix element discussed
in Sec. 2.5.1.1. In the last two equalities, £ and & are the single electron energies
for the wave functions |¢%) and [¢F) respectively. The desired total photoemission
current will be the sum over all possible transition combinations between the initial
and final states I = 3, jw;,y. To simplify the picture, we can consider a single
transition between an initial and a final state along each wavevector k, this will be
exactly Eq. (2.45) where it represents a sharp peak in the photoemission spectrum
modified by the matrix element. Hence, covering all the directions (wavevectors k)
is constructing the desired band structure &.

2.5.1.3 Interacting electrons picture

The other way to look at the photoemission process is through the so-called inter-
acting electrons picture. However, as one can guess from the name of the method
that, the treatment of removing a single electron is not as trivial as it is compared
to the noninteracting electrons picture described previously. Here we can not fac-
torize the total wave function into a single electron’s wave function and a remaining
(N — 1) electrons wave function as it was done in Eq. (2.43) and Eq. (2.44). Even
though, the problem can be simplified via considering an instantaneous removal of
the electron, which takes place on a timescale of 107%s, from the system of the
so-called sudden approximation, such that the photoexcited electron will not have
the time to interact with the remaining (N — 1) electrons system'?. This way the
final total wave function can be factorized as in Eq. (2.44). Similarly, one can still
simplify the initial total wave function using the Hartree-Fock formalism, justifying
the factorization in Eq. (2.43). However, the most critical difference here compared
to the noninteracting picture is that, the remaining excited (N —1) electrons system
after removing an electron is not the same as before i.e. |‘ll}V 1 £ UV Indeed,

th

\\I/}V ~1) can be any of the excited m* final eigenstate [N ~!) with the corresponding

12This approximation is valid only when the photoelectron has sufficiently high kinetic energy
to leave the system before the remaining (N — 1) electrons have time to respond.
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eigenenergy EN ! or even a linear combination of multiple of them. The transition
probability in this case will be

Wimf = 2%|<\I}}V71¢];|Hint‘¢f‘l’fvﬂ>|2 O(EY — EN — hv)
- 2%; (W O | Hie| ¥ O ) 0(Ep + Ep " — BN — hv)
= 2%|<¢,’?\Hmt|¢f>|2 : ; (NN 2. (8 + ENT — EN — ho)
= Q%IME\Q ~ Emj (NN 2 6(E + BN — BN — hv) (2.46)

and the total photoemission intensity will include the sum over all possible tran-
sitions for the single electron along a defined direction k and the sum over all the
possible excited states left for the (N — 1) electrons

2m _ _ _
I==3 |ME 1?3 (W W P 6(8 + En = BY — ho) (2.47)
1 m

where [(TN-1WN=1)|2 is the probability that removing an electron from the
system will leave it in the m** excited state. If the final (N — 1) electrons, after ab-
sorption a photon by the electron, happens to be in one single final state m = m, and
the corresponding initial eigenstate happens to be the same |} ~') = |[UN~1) then
the photoemission will give a delta spectrum assuming a non-zero matrix element
\]V[]’ﬁi|2 # 0. This reminds us with the noninteracting picture. The significance of
this method shows up in the strongly correlated materials, where removing a single
electron will affect the remaining (N — 1) electrons strongly, leaving |\IJ]fV N asa
linear combination of more that one excited state. Hence, |W~ ') will overlap with
all of them in Eq. (2.47) producing broadened peaks in the photoemission spectra
unlike the noninteracting delta spectra.

2.5.2 2" step: Transport of the hot electron to the surface

In this step the excited electron propagates towards the surface. During this journey
the electron experiences elastic and inelastic scattering mainly dominated by the
scattering due to other electrons and defects in the material, in addition to the
phonons scattering. The elastic scattering will change the direction of propagation
of the photoelectron and, hence, changing the angular distribution of the filtered
electrons in the vacuum. On the other hand, inelastic means that the electron will
lose part of its kinetic energy and may thus be visible at different lower kinetic energy
in the measured band structure, within the so-called secondary electrons which
typically appear as broad featureless background. The only unscattered electrons
give rise to sharp features in the measured spectrum which can be related to the
initial electronic band structure of the material. In order to have a clue of the probing
depth of the photoemission process and to have an idea of how long an electron can
travel in the material towards the surface before it gets scattered, a quantity known
as inelastic mean free path \;, (IMFP), which is defined as the average distance
between two subsequent inelastic scattering events, is typically used to describe the
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exponentially damping photoelectron intensity I compared to its initial value I,
along a path d (considering the emission angle) [83, 87]

I= Ioexp<f)\i_) (2.48)

Actually, \;, was found experimentally to behave similarly in different materials
producing the so-called universal curve as shown in Fig. 2.7. One can see the
minimum of the curve, minimum values of (IMFP), is happening within ~(20-120)
eV kinetic energies of the emitted electrons which are the conventional mostly used
VUV photon energies in laboratories and synchrotrons. This reflects the extreme
surface sensitivity of the photoemission technique, which in turn refers that most of
the photoemission signal is coming from the topmost surface layer of the material
making it an advantage in probing surface states. Thus, this clarifies the need for
the ultra-high vacuum system to do such experiments. On the other hand, if the
aim is to look at the bulk band structure, one can see that going into the x-ray
energy range increases the (IMFP), making the process less sensitive to the surface
and more sensitive to the bulk.

Incident photon energy (eV)
Figure 2.7: Universal curve of 5 10 100 1,000
the inelastic mean free path. . ! ! |
Universal curve of the inelastic
mean free path of the photoemit-
ted electrons as a function of their
kinetic energies (bottom axis), and
the photon energies used (top axis:
calculated using 4 eV work func-
tion and exciting electrons located
at Fermi level). Dots represent mea-
sured values and the black line is the 0.1
corresponding least square fit to the 1 10 100 1,000
data. Taken from [30]. Kinetin energy (eV)
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The increase in \;, with increasing kinetic energy of the excited electron in the
x-ray regime can be understood in terms of the scattering cross-section. Although
the density of states of a free-electron gas increases as v/E, which would increase
the scattering rate and thus reduce \;,, the electron—electron scattering cross-section
decreases more rapidly with energy. As a result, the overall scattering probability
decreases, leading to an increase in the inelastic mean free path. In contrast, the
increase in \;, observed in the low-energy regime is not straightforward to explain
due to the complex role of electronic screening effects [38], leaving the universal
curve under debate.

2.5.3 3"? step: Transmission through surface to vacuum

In this last step of the photoemission process, the hot electron will try to leave
the surface of the material into vacuum. Out of this process, one can relate the
momentum of the electron in vacuum K to its momentum inside the solid kj=k;.
However, as it was indicated in Sec. 2.4 only the parallel component of the mo-
mentum K| =k fi will be conserved through the transmission process, while the
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perpendicular component is not K| # k; (see Fig. 2.8 (a)). This can be un-
derstood due to the existence of the surface potential barrier, which can be related
to the symmetry of the crystal, such that the electron will get diffracted at the
surface. Moreover, the periodic potential of the crystal does not exist in vacuum
making the dispersion relation of the electron in solid differs from that in vacuum.
In order to fully determine the initial band structure E(k;), one needs to determine
the perpendicular component as well, in addition to the parallel component and the
binding energy (from the kinetic energy). To do that, a widely used assumption, in
particular, a nearly-free electron dispersion for the final bulk Bloch states is made
k U K2 I k 2
Epin(ky) + Vo = o = 2me( i+ G) (2.49)
where G is a reciprocal lattice vector, and it is important to include it here
to include all possible excitation directions of the electron. V, is known as the
inner average effective potential experienced by the electron in the solid, in another
language it describes the energy loss during the transmission through the surface
potential barrier (here we neglect photon momentum) that acts as an offset for the
free-electron final state approximation (see Fig. 2.8 (b)). In metals with nearly
parabolic bands it is the sum of the bottom of the valence bands and the work
function V, = Ealence band bottom + Po- Generally, it is determined via optimizing the
agreement of the experimental data with the calculated band structure. In the next
Sec. 2.5.4, the derivation of the perpendicular initial state component is illustrated.

2.5.4 Derivation of the k; momentum component

Although the only momentum component that is conserved through the transmission
process (3” step of the three step model) is the parallel component, one can still
recover the orthogonal component inside the material assuming a nearly free-electron
band dispersion for the final state of the excited electron, while still in the solid, that
is offset by a potential V,, and assuming the shortest G' vector allowing a vertical
transition between the initial and final states, neglecting photon momentum, as
shown in Fig. 2.8(b), to get

2
2k

2m,

Epin(ky) = ~-V (2.50)

and assuming no energy dissipation (no inelastic collisions) happens at the sur-
face, then the kinetic energy of the excited electron in the material will equate the
kinetic energy in the vacuum, hence

R2k2 K2
Epin(ky) = —L —V, = Bn(K) = 2.51
kin (K f) 2, in (FC) S (2.51)
that is
n (K + k7)) R (K + KL%
Eink :Ean :Ezn:#_%:# 2.52
kin(Kp) = Ekin(K) = E}, 2. . (2.52)

and using the conservation of the parallel momentum stated in Eq. (2.32), then

2me ) N
ka = KH = FEkm . sm(ﬁ)k:p (253)
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Figure 2.8: Schematic picture of what is happening to the electrons momentum
during the transmission process and illustration of the nearly free-electron
final state approximation. (a) Schematic picture showing the conservation of the in-
plane electrons momentum (k £ = K ||) during the transmission process from the solid to
vacuum, unlike the perpendicular component that loses part of its magnitude due to the
surface potential barrier (ky, # K ). (b) The three step model showing the free-electron
final state approximation offset by the inner potential V; in the reduced zone scheme for
the excited electron inside the material. V; plays a compensation rule for the discontinuity
of the momentum perpendicular component at the surface as derived in the text and shown
in the picture. The detected kinetic energy is measured with respect to the analyser work
function ®4 as indicated, such that for the photoelectron to be measured its energy must
over come the work function of the analyser as well as the sample. In the rest of the
context we will ignore this difference in the work function and consider only the sample

work function. (b) Taken from [32].

substituting this in Eq. (2.52) for the desired ks, part

h? [2m, . : 9
Ein, = m. (( FEkm . 5171(19)> +k L) -V

K2 2me, .
= om, (ﬁE - sin(9) + ki) -V
= Ejin - sin”(9) + Tmekﬁ -V (2.54)

rewriting in term of ky,
9 2m. 9 2m, 9
k; = T Ehin + Vo + Eyip - sin” (V) | = T2 Elin - cos™(9) + Vo (2.55)
ending up with the final expression for the perpendicular momentum component

in the material

kg, = /23 - (Brincos®(9) + Vo). (2.56)

h2
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Experimentally, ky, is determined using normal emission i.e. setting ¥ = 0 in
Eq. (2.56), and changing the photon energy, hence, changing Ej;, which would
require a tunable light source as it is in synchrotrons. However, if the final state
deviates a lot from the nearly free-electron approximation, this model fails and here
comes the need to compare with the band structure calculation.

2.6 Electron scattering

In a photoemission experiment, electrons emitted from a material are resolved. The
time-reversed of this picture is the low energy electron diffraction (LEED) experi-
ment. In LEED a free electron beam e**+7, produced by an electron gun, impinge a
surface of the measured material and the reflected or transmitted electrons are ana-
lyzed. From point of view of the electron, any material is approximately a collection
of muffin tin potentials, and the first order of scattering is a single atomic-like scat-
tering on these potentials, which essentially results in atomic-like scattering state,
but with the atomic potential replaced by its muffin-tin counterpart [39-91]. To
clarify this, I will discuss the one-electron approximation scattering picture focus-
ing on region of interest for ARPES experiments adapting the partial wave analysis
method.

ekr

L
kr

r—>0 = f(g)

Scattering potential
v(r)

N Likz
[ D e

Figure 2.9: Schematic geometry showing the scattering of an electron by a potential
V(r) of range a. The blue shaded intermediate region sandwiched between the scattering
potential and the red-circle is the region where the centrifugal potential term can not be
niglected. In the limit » — oo, the asymptotic behaviour is an outgoing spherical wave
o)

kTT modulated by the scattering amplitude f(8).

Let us imagine a quantum mechanical free-electron wave propagating along the
positive z-direction, where it is going to be scattered by the potential V' (r) of range
a centered at the origin as schematically shown in Fig. 2.9. The scattered wave is an
outgoing spherical wave. In three dimensions one can think of sound waves bouncing
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off a basketball. The solution of the Schréodinger equation in the intermediate blue
shaded region in Fig. 2.9 can be demonstrated to be [62]

) =A€Y Cah kY 6.0)]) (2.57)

incident wave LM

scattered wave

™ is a spherical harmonic with the non-negative integer [, and the integer

where Y,
m; =l <m < 1. hl(1> is the Hankel function of the first kind that goes asymptotically

(i.e. 7 — 00) as an outgoing spherical wave ~ % In the case of a spherically
symmetric scattering potential V(r) = V(r), only terms with m = 0 in Eq. 2.57

survive. Hence,

2l—|—1

U(r,0) = { “CZ+Z

Clhl(l)(k:r)ﬁ(cosﬁ)}” (2.58)

For large values of r, the Hankel function hl(l) goes like (—i)l“%, S0
) eikr
W(r,0) ~ A{e’kz +f(0) } N (2.59)
T

where

f0) = ;i(—i)l“ \/TCIPI(COSG) (2.60)

and f(#) is the so-called scattering amplitude, which is the amplitude in the
direction 6 of the spherical wave resulting from the scattering of an initial plane
wave [92]. Hence, Eq. 2.60 tells us how to calculate the scattering amplitude f(6) in
terms of the partial wave amplitudes Cj. Therefore, all that remains is to determine
the amplitudes Cj for the given scattering potential in the problem (which is replaced
in the atomic-like scattering case by its muffin-tin counterpart). This is done through
solving the Schrodinger equation inside the scattering potential region and applying
the boundary conditions to match the wave function in the exterior region [62].

Another way of looking at the scattering amplitude is to write it in terms of the
so-called phase shifts. To do that, the incident plane can be expanded in terms of
spherical waves [62]

e =342 + 1)jy(kr) Py(cost) (2.61)
1=0
where, j; is the Bessel function, and asymptotically (as r — oo) Eq. 2.61 takes
the form [93, 94]

e*i(k'rf%r) ei(k'rf%') }

~ Y il (20 + 1) P(cos) 2k{ - (2.62)
1=0 ———

r r
——

incoming wave outgoing wave
The scattering of each [ angular momentum term (partial wave) of the expan-
sion can be calculated independently. Now, the total wave function in Eq. 2.58 can

be demonstrated asymptotically (as r — o0) to have the form [94]

1Byp = 25‘—1",1]’1(0039); where P, is the I Legendre polynomial.
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0o ] i (e—ikr=5+0)  ilkr—1+6)
W(r,0) ~ > il20 + l)e“sPl(cosG)—{ - } (2.63)
= 2k r r
incoming wave outgoing wave
after some algebra this can be re-arranged to have the following form
00 ; 7z(k777 ei(k'rf%'qL%l)
~ > il2l+ )R 0059) { — } (2.64)
=0 4_/ r
incoming wave outgoing wave

One can see that by comparing Eq. 2.64 with Eq. 2.62 that the only difference
is the introduced phase shift ¢ in the outgoing-wave part. This can be explained
as follows: in order to have equal outgoing flux to the incoming flux, the maximum
the scattering potential can do is to change the relative phase of the incoming
and the outgoing waves. We also see the modification is happening only for the
outgoing wave. The number 2 in the phase shift €% can be explained as a result
of the interaction of the wave twice with the scattering potential; once in its way to
the scattering potential and once in its way away from the potential after getting
scattered. Therefore, the total wave function in Eq. 2.64 is called the distorted plane
wave, where it differs from the incident free-electron plane-wave by just the phase
shift €. Now, the scattering amplitude f(#) can be expressed in terms of these
phase shifts [94, 97]

f(0) = 20k 2 (21+1)( 20 _ 1) Py(cosb) (2.65)

These phase shifts can be Calculated numerically by matching the radial part
of the Schrodinger equation inside and outside the scattering potential of radius a
(or its muffin-tin counterpart) [92]. Indeed, the amplitudes of the scattering factor,
2z (€% — 1) = t;, form the elements of the so-called t-matrix t [90].

Polar plots of the atomic-scattering amplitude | f(#)| for an electron being scat-
tered by a single Ni atom (left panel) and a single oxygen atom (right panel) are
presented in Fig. 2.10 for some selected kinetic energies of the incident electron
ranging from 60-1000 eV [97]. One can see that at lower kinetic energies, the scat-
tering is important in several directions. However, at higher kinetic energies of the
incident electron the scattering is dominated by the forward scattering at 6 = 0°
while scattering in other directions decreases appreciably.

The domination of the forward scattering by a single atom can be explained
where the scattering atom acts as a rough converging electrostatic lens [97]. This
is illustrated in Fig. 2.11. This means that at high electrons kinetic energies above
500 eV, most of the scattering is expected to happen along the chain of atoms [92,

]. For electron scattering by atomic chains with different orientations, the reader
is encouraged to check Ref. [97].

To summarize, this is the one-electron and one scattering potential picture in
the LEED experiment i.e. the sum of a free-electron incoming wave and a spherical
wave outgoing of the atomic scattering potential. The corresponding photoemission
picture is the time-reversed LEED (TR-LEED), i.e. the sum of a spherical wave
incoming onto the atomic scattering potential and an outgoing free-electron.



27 2.6. Electron scattering

Figure 2.10: Atomic-scattering amplitude. Atomic-scattering amplitude |f(6)| for an
electron being scattered by a single Ni atom (left) and a single oxygen atom (right) at
some selected kinetic energies of the incident electron. Figure taken from [97].

Figure 2.11: Forward focusing ()
by a single atom. (a) Parallel —
light being focused by a converg- —\F

ing lens. (b) Parallel beam of elec-
trons classically being forwardly

b q‘i
focused by a single atom. Figure ®) =
Taken from [97]. ———

Let us now discuss the case of a photoelectron excited from a valence state ;.
Here, each atomic site is considered as a scattering potential. The corresponding
photoemission picture (TR-LEED), is the sum of an outgoing free-electron wave
and N spherical waves incoming on each of the N scattering sites [90]. The initial
state wave function is typically written as a two-component spinor in the form of
the tight binding wave function, and spin is assumed to be conserved upon the
transition. Within the tight-binding formalism, see Appendix A, the initial state
wave function can be written as ¥; = 35; Cj - ¢;, where j € {r.,n,l,m}, r, are
positions of ions, and n, [, m are the atomic quantum numbers.

Within the dipole approximation, the photoemission dipole matrix element in
the length form as shown in Sec. 2.5.1.1 is written as

Myi(ky) oc (p(Ky)le - 7|vi), (2.66)

where € is the light polarization vector and r is the position operator. This
length form of the matrix element is appropriate for atomic photoionization [39]
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while the velocity form may be more appropriate depending on the particular case
[90]. Substituting the tight binding form of the initial state ¢; in Eq. 2.66, the
matrix element can be written as

(Wp(kp)le - i) = > Ci(s(ky)le - vld5), (2.67)

that is, it is a coherent sum of matrix elements related to all the participating
orbitals ¢;. The coherent sum, even from orbitals at different sites, is expected
because the electromagnetic field of the typically used light in photoemission is
spatially constant over the atomic sites {e.g. Apes, = 584 A > Pt-Te bond length
= 2.73 A in PtTe, [98]}. Equation 2.67 can be interpreted as a sum of emissions
originating from atomic-like emitters at different sites, where their interference leads
to angular intensity variations, i.e., a diffraction pattern [90]. Indeed each atom can
be associated with an atomic dipole vector that reflects the symmetry of the initial
state orbital. When this atomic dipole vector is mathematically dotted with the
electric field it gives the amplitude of the spherical wave emitted from that atom,
and the amplitude of finding the photoelectron at the observer k; is the coherent
sum of the contributions from each atom [99]. This visualization is the LEED picture
and one should keep in mind that photoemission is TR-LEED.

The principle of atomic-like emitters is best understood by looking at photoe-
mission from valence states of oriented molecules as shown in Fig. 2.12. Let us
think of a diatomic molecule e.g. Hs, where the two atomic sites of the H-atoms
are indicated by the red and blue spheres in Fig. 2.12. Let us assume two identical
atomic orbitals ¢ centered on the two sites. The resulting bonding and antibonding

molecular orbitals are ¢, = 4’142@ and ¢ = L;Z respectively. When a photoelec-
tron is excited from 1, or 1_, two spherical waves will be emitted coherently from
the two sites (within the LEED picture) [90]. Let us focus on the left panel of Fig.

2.12. The two atomic sites are aligned along the y-axis. In the bonding case (i-ii) the
two spherical waves emitted from the two sites are in-phase where Ay = 0, while in
the antibonding (iii-iv) the two spherical waves are out-phase where Ay = 7. In (i)
and (iii), the separation distance between the two sites is 3, while in (ii) and (iv) it
is A, where )\ is the wavelength of the coherently emitted two spherical waves. The
outgoing black arrows (LEED picture) refer to polar angles where the interference
of the emitted waves is maximum constructive interference. One can see that the
interference pattern resulting from the bonding states (i-ii) is reversed compared to
the antibonding states (iii-iv), which is illustrated by the arrows. Importantly, the
angular distribution of photoemission in valence band is affected strongly by the
bond-length d between the atomic sites. This effect is obvious when comparing (i)
and (iii), where d = 3, with (ii) and (iv) respectively that have d = A. The interfer-
ence pattern is also affected by the bond orientation as well. This is illustrated in
the middle and right panels of Fig. 2.12 where the atomic sites are along the z-axis
and diagonally respectively. In Fig. 2.12; direction of arrows would be reversed into
the atomic sites in the photoemission picture (TR-LEED).

To summarize, the photoemission amplitude along a final wave vector k¢, defined
by the angles (0, ¢ ; see Fig. 2.5), is a coherent sum of the photoemission amplitudes
from all the atomic-emitters participating in the photoemission process taking into
account the relative phase shift which depends on the relative positions of emitter
atoms. Based on Fig. 2.12 for the two emitters case defined by the real space vectors
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Figure 2.12: LEED picture of two atomic sites emitters. Left panel: Spherical
waves emitted from two atomic sites emitters red-and blue spheres. Bond with length d is
along the y-axis. A is the wavelength of the coherently emitted spherical waves. Ay is the
phase shift between the primary emitted spherical waves. (i-ii) Emission from bonding
states. (iii-iv) Emission from antibonding states. Wave fronts of the spherical waves are
indicated by the red and blue lines. Full lines refer to maxima while broken lines refer to
minima. Arrows indicate polar angles where maximum constructive interference happen.
Middle and right panels are similar to the left panel, but the bond is along the xz-axis and
diagonally aligned respectively. For the left panel I got inspired by [90], while middle and
right panels are produced based on left panel.

R,.; and Ry, the corresponding relative phase is e/ (Frea=Rbiue)

However, scattering of the spherical waves has not been taken into considera-
tion. Indeed, each spherical wave gets scattered by the neighboring atomic sites
(scatterers). To illustrate this, let us look at the middle panel of Fig. 2.12. Now
let us assume the blue atomic-site is the emitter, but now the red atomic-site is the
scatterer. The blue lines represent the originally emitted spherical waves, while the
red lines represent the scattered waves. In (ii) and (iii), the phase shift between the
original (blue) and the scattered (red) waves is 0, while in (i) and (iv) the phase
shift is 7. One can see an expected reverse of the angular intensity of photoemission
comparing the 0 phase shift case with the 7 phase shift case. Therefore, scattering is
expected to lead to additional interference in the measured photoemission signal. If
more scatterers exist and multiple scattering back and forth is included, then more
complex diffraction patterns are expected.

Within this picture, the key challenge to evaluate Eq. 2.67 is in establishing
the form of the final state 1y. But, we know from the boundary conditions that
in the far-field the photoemission detectors are assumed to measure free electrons.
Therefore, in the most simple approach, the final state is approximated by a plane
wave characterized only by the direction and wave number of the emitted electron
such that ¢y = e™*/7 throughout all space where the effect of the scattering po-
tential is neglected in the final state [100]. Using the spherical-harmonic addition
theorem [101] together with Eq. 2.61, ¢y can be written as a partial wave expan-
sion around each site. This leads for each site separately to the dipole selection
rules known from atomic physics [102, 103]. The free-electron final state (FEFS)
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matrix element can be written as M y.c.(kf) oc (€ - k) (™7 |¢;(ki, 7)), where €
is the light polarization [90, , , ]. Substituting the tight-binding form
of the initial state, we get My,.(ky) o< (€ - ky) >, Cj(e®7|¢;). Since within the
tight-binding formalism only discrete sites r; representing the orbitals are consid-
ered, the FEFS matrix element is essentially a Fourier transform of the initial wave
function times the polarization dependent factor [106]. Therefore, different sites r;
will lead to phase shifts e/, and the FEFS matrix element will have the form
Myree(ky) o (€-ky) S €*17iC;|¢;). This approximation is very useful in qualitative
description of phenomena that depend on relative positions of emitter atoms, with
an important application in orbital tomography [107]. It can also be used to explain
the asymmetries in final spin-polarization from spin-mixed initial states [16].

However, the free-electron approximation fails to describe photoemission per-
pendicular to the polarization of light because of the factor |e - ks|? [103, -
Because the photoemission intensity, I, as described in Sec. 2.5.1.2 and Sec. 2.5.1.3
is proportional to the matrix element such that I o |M free\Q, It also fails to de-
scribe circular dichroism in ARPES (CD-ARPES) [109], where CD-ARPES is de-
fined as the difference in photoemission intensity between right-and left-handed cir-
cularly polarized light (Igrcp — Ircp). But, the polarization vectors for left and
right circular light are complex conjugates of each other (i.e. €rcp = €50p), and
(Ircp — Ircp) x (lerce - kf|* — lercp - kf|*). Therefore, for the plane wave fi-
nal state CD-ARPES does not exist in the electric dipole approximation where it
predicts zero dichroism signal for all € and k;.

To overcome these shortcomings of the FEFS method, the so-called independent
atomic center approximation (IACA) was adapted. In the TACA, emission from
atomic emitters happens independently but coherently [100, ]. Therefore, the
final state ¢y in the IACA is computed independently for each atom. The contri-
bution of each atomic orbital ¢; in the coherent sum at observer k; is a product
of three amplitudes: the weight of the atomic orbital C;; representing the orbital’s
contribution into the initial wave function 1;, the phase factor amplitude arises from
the real space shift of the orbital’s site with respect to origin, hence, the extra path
length it needs to reach the detector, and the amplitude representing the optical
excitation of the initial orbital ¢; into an allowed quantum mechanically final state
[110, 111]. In order to apply this to the equation of the matrix element Eq. 2.67, one
needs to further assume that each orbital ¢, overlaps only with the scattering state
of its own muffin tin potential. This approximation neglects any overlap with the
scattering states from the neighboring sites. It also neglects multiple scattering as
well. Despite this deficiency, this approach improves the description in many cases
and allows for non-vanishing CD-ARPES signal [90]. It also takes into account the
distortion of the plane wave intensity into different directions due to the atomic
potential [108].

For the atomic photoionization and within the formalism of the IACA, the prob-
ability amplitude of detecting a photoelectron at k; is found by adding coherently
the amplitude of spherical waves of all angular momentum components into which
the initial state can make an optical transition [99]. The partial wave expansion
in spherical harmonics Y, naturally leads to dipole selection rules Al = +1, with

YU Mpree(ky) o (5| A- Pla;), where A = €4¢e’?™ &~ Ayé ( in the electric dipole approximation;
see Sec. 2.5.1.1 ) and p = —ihV. Using the hermiticity of p and operating with V on the
free-electron final state vy = ek/'™ => My,cc(ky) o< (€ ky) (R T |3);).
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Am = 0 for linear light and Am = %1 for circular C'+ light [112, 113], with re-
lated radial integrals and phase shifts, previously tabulated for selected atoms [39].
Therefore, for a particular initial state atomic orbital d)gm, the final state of the
atomic photoionization is a coherent sum of the available allowed [ 4= 1 final state
channels, i.e. one must sum over the possible final states which can be reached by
photoemission from a given atomic orbital. For example, allowed emission from a p
orbital of Y;~! angular part with a circular C'; light is into Y (s orbital) and Yy
(d orbital) channels. Importantly, [ £ 1 channels generically exhibit different orbital
phase shifts d;+1, where § is the induced shift in the sinusoidally oscillating character
of the radial wave function in the limit of large radius. The atomic photoionization
cross section is proportional to the cosine of the phase-shifts difference cos(d;41—0;-1)
which represents interference between the outgoing [ + 1 and [ — 1 waves indicating
final state interference already for atomic photoionization [39, ]. In the case of
a surface of a periodic solid, one needs to consider the Bloch wave function of the
form v; = eI . u(r), where u(r) is in-plane periodic. Since the IACA matrix
element acts as a Fourier transform, the free-electron term e*ill determines the non-
vanishing intensity of the final parallel wavevector for a certain energy eigenvalue,
E(kg). Within this scheme, for an ideal 2D system it leads to appearance of sharp
dispersive features in the ARPES spectra that are routinely interpreted as initial
bands. The u(r) acts as a form factor, which determines the angular intensity distri-
bution through the participating atomic scattering wave functions and interatomic
phase shifts. In case of surface sensitive photoemission measurements, the meaning
of the perpendicular momentum k;, is not well defined for a semi-periodic system
of the terminated crystal. Within TACA, one can assume a final state dampening
due to inelastic mean-free path, that effectively leads to broadening of the measured
kg, dispersion in the hv-dependent experiment.
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2.7 WIEN2k

The WIEN2k program performs quantum mechanical calculations to exploit the
periodic nature of solids. It is based on the augmented plane wave plus local orbitals
(APW+lo) basis set method to solve the Kohn-Sham equations for the ground
state density, total energy, and energy bands of a many-electron system, for detailed
information the reader can follow [1 15, 116] . Following the Bloch theorem discussed
in Sec. 2.1, the wave function ¥(7) of the solid can be written as

U(r) = ¢G(r)eiG'T = gzﬁG(’r)e"’(k*K)‘T = qﬁkn(r)eik'T (2.68)

where the reciprocal lattice vector G' can be written as G=k+K such that k is a
vector within the 1% BZ and ¢, (r) are the so-called Kohn-Sham orbitals. A direct
way to get these Kohn—Sham orbitals is to expand them in term of plane waves,

Pr, (1) = D e (2.69)
K
to get
Uy, (r) = Y el BHOT (2.70)
K

However, describing the highly oscillating valence wave functions in the vicinity
of the atomic cores due to the steep potential requires large number of basis functions
i.e. high K values. One way to solve this disadvantage is to merge the core electrons
into the nuclei to form pseudopotentials, making the valence electrons wave functions
moving in such potentials much smoother and describable in much smaller number
of plane waves. Another way which is implemented by WIEN2k is the full-potential
method that takes all electrons into account and it is based on augmenting the
plane wave basis functions with more localized functions of the so-called linearized
augmented plane wave plus local orbitals {(L)APW+lo} method.

This method divides the real space unit cell into two regions Fig. 2.13: non-
overlapping spheres'®, called Muffin-tin (MT) regions, centered at the nuclear sites
and interstitial region (I) in-between these spheres. In the I-region, electrons are far
from the atomic nuclei and behaves like free electrons in a slowly varying potential,
hence, can be described as plane-waves, while in the MT-spheres, electrons are
strongly bind to the nuclei and can be described by atomic-like functions. The
potential can then be defined as

Figure 2.13: Muffin-tin approx-
imation. Partitioning the real
space into Muffin-tin spheres (MT)
centered at nuclei, and interstitial I
region I.

15To increase the computational efficiency, the sizes of the spheres are chosen as large as possible
and the radii of these spheres satisfy Rpr(f-orbitals) > Rpsr(d-orbitals) > Ry ({s,p}-orbitals).
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V(r) reMT
constant rel

and the corresponding APW basis functions in the two different regions are given
by

V(r) =

Zlm Alm’knul(r, El)YZm (’i‘) reMT
et rel

where Q is the volume of the unit cell, Y}, are spherical harmonics, A;, is an
expansion coefficient to be determined via matching ¢p”" (r, E;) at the boundary
between the Muffin-tin regions and the interstitial, and w,(r, E;) are solutions of the
radial Schrodinger equation for the spherical potential V(r) and energy E.

A disadvantage in the APW-method is that E; is needed to be determined exactly
in order to describe the wave function, and because of the way w,(r, E;) depends on
energy, this creates a non-linear eigenvalue problem making the method computa-
tionally costly as it needs to be solved iteratively.

The APW is typically linearized via expanding the basis functions in the Muffin-
tin spheres based, additionally, on the energy derivative of u;(r, E;) of the so-called
linearized augmented plane wave LAPW to get the following basis functions
Zlm{Alm,knul(rv Ell) + Blm,knul(rv Ell)}yim(’f') T e MT
B A rel

This way the LAPW method is more flexible compared to the APW where it
is not necessary to know the exact E; value, instead for any linearization energy
E} chosen close to Fj it is possible to obtain the radial function w;(r, E;) through a
Taylor expansion : w/(r, Ey) = w(r, E}) + (B, — ENu(r, E}') + O{(E, — E})*}. The
expansion coefficients Ay, x, and By, i, are determined by matching the value and
the slope of the augmenting function to a plane wave at Ryp.

A special treatment is needed for the so-called semi-core states where part of their
charge leaks out of the MT sphere. Mainly in these states more that one n quantum
number will have the same [ quantum number and correspondingly more that one
energy, however, in the LAPW method there is only one linearization energy E; for
every [, this can be solved via introducing local orbitals confined to the Muffin-tin
spheres and zero in the interstitial region

o _ {Almul(r, Ell) + Bty (’f‘, Ell) + Clmul(r, Elz)}yzm(f") reMT
o 0 rel

where they add an additional radial function at a new linearization energy E?.
Despite the fact that the LAPW method succeeds in linearizing the eigenvalue prob-
lem, however, that will be on the cost of the optimal shape of the basis functions
inside the Muffin-tin sphere.

A more efficient way to linearize the APW with the same basis size as the APW
is to use the standard APW basis set at fixed energy E; to keep the linearized
eigenvalue problem and add to it local orbital set (lo) which is different than (LO)
of the so-called APW+lo method, with lo given by

o {Almul(r, Ell) + B,y (’I“7 E})}Yim(f‘) r € MT
b 0 rel

here, the coefficients A;,, and By, are determined by normalization and equating
the local orbital to zero at Rysr.

An example of the calculation done using WIEN2k is shown in Fig. 2.14 (a)

(bénPW(,r,7 El) =

LY (r, ) =
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Figure 2.14: Band structure of FCC ZnSe using WIEN2k. (a) Electronic band
structure of the FCC ZnSe using WIEN2k along the high symmetry lines indicated in
the corresponding 1°¢ Brillouin zone along side the symmetry labels schematically shown
in (b). Band characters of Zn 4s, Se 4p, and Sn 3d levels are indicated by yellow circles,
green squares and blue hexagons respectively, where the size of the symbol represents the
orbital weight. In the figure, the zero of the energy scale is adjusted to the valence band
maximum.

for the FCC semiconductor ZnSe which is calculated along the high symmetry
directions labeled in the corresponding 1** Brillouin zone shown in Fig. 2.14 (b).

The figure shows the orbital characters of the valance and conduction bands
through different symbols as indicated through the legend, additionally, the weight
of those characters is reflected through the size of the symbol used to represent it.
Within the framework of the tight binding model, see Appendix A .4, one can imagine
that these orbital characters weights are squared of the expansion coefficients c,’f‘
appear in Eq. A.9 for their respective orbitals a’® at positions j’*. Based on the
electron configuration of the zinc atom Zn:[Ar]4s? 3d'°, the 3d-orbital is completely
filled, which means that these electrons behave like core electrons with their charge
density mostly located close to the Zn nucleus reflecting the nearly non-dispersive
group of bands within the energy range [-7,-6] eV. The valence bands within the
energy range [-6,0] eV are mainly a mixture of Se 4p and Zn 4s orbitals, while the
conduction bands are mostly made out of the Zn 4s orbital.



3. Experimental setup

Within the scope of this PhD thesis, the electronic band structures of various tran-
sition metal dichalcogenides (TMDCs) have been investigated using high-resolution
spin- and angle-resolved photoemission spectroscopy (S-ARPES). The S-ARPES
system was enhanced with a newly designed universal 5-axis cryocooled manipu-
lator from PREVAC, offering five degrees of freedom for precise control over the
sample under investigation. This chapter provides a detailed explanation of the S-
ARPES setup, including the operating principles of both the ARPES system and
the spin detectors. In addition, an overview of the sample preparation procedures,
carried out in the preparation chamber before conducting spin- and angle-resolved
measurements, will be discussed in detail.

3.1 Need for Ultra-High Vacuum (UHV)

To accurately collect the energy, momentum, and spin information from photoemit-
ted electrons, the ejected electrons must travel into the analyzer without scattering
and proceed to the detector. This necessitates an ultra-high vacuum (UHV) en-
vironment, which is essential for imaging the material’s initial band structure. In
our S-ARPES setup, we maintain a base pressure of < 5-107' mbar. These UHV
conditions are achieved using a series of turbomolecular pumps, which are typically
pre-pumped by another stage of turbomolecular pumps, with the entire system being
initially evacuated by oil-free scroll pumps.

At this ultra-high vacuum level, using the equation of state PV = nR,T, the
density of residual molecules inside the analysis chamber is ~ 10'2 %@d“ !, The
mean free path, A, of a particle (e.g., electron) at this pressure is ~ 10° m?, which
represents the average distance an electron can travel in this UHV environment
before undergoing a collision [117]. This path length is sufficiently long to ensure that
photoelectrons emitted from the sample can reach the detector without scattering.

Using the kinetic theory of gases, one can estimate the impingement rate, J,
which is defined as the number of molecules per second striking a unit area at
constant pressure. At atmospheric pressure, outside the vacuum system, Jytmosphere
~ 2.8 x 102 moleculess  Op the other hand, at our UHV system with a pressure

PV =nR,T = §-R,T = it = ¥ = ;25 ~ 1012 B2Uges (44 T = 208K, P = 5-10~"" mbar).

A= \/5107%; o = wd? is the collision cross-section (with d = 3.74 x 1071% m for air molecules).

37_ 1N _ 1 Nan S8R, T _ 1NaP 8RT . g . _— kg _ = J
J = 4V <v>= 4V V oM — 4R,T M 7]\/{‘1” - 0'02896mnle7R0 = 8.3145 K-mole

(T = 298K, Patmosphere ~ 1bar =5 Jatmosphere ~ 2.8 x 1023 molectles)

(T = 298K, Pygy ~ 5- 10" mbar = Jygy ~ 1.4 x 1010 melecules )
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~ 5-107"" mbar, Jygy ~ 1.4 x 10" % Since there are roughly 10! % on a
typical metal surface, then % is the coverage time needed to form a full mono-layer
where S < 1 is the so-called sticking coefficient , which is a measure of the probability
that incident molecules stick on a surface. Assuming every molecule hitting the
sample will get adsorbed on its surface, i.e. S=1, then at room temperature and
atmospheric pressure, the sample surface will get contaminated completely within
just ~ 3 nsec. However, inside our analysis chamber the sample can service for ~
20 hours at room temperate and S = 1 before just one layer of residual gases in the
chamber contaminate it. This of course can vary depending on the nature of the
sample under investigation, its temperature as the sticking coefficient increases at
low temperatures, and the type of residual gases in the chamber”.

3.2 The High-Resolution S-ARPES setup

Spin and angle-resolved photoemission spectroscopy (S-ARPES) is a highly power-
ful technique for probing the energy, momentum and spin-resolved electronic band
structure of solids. Our experimental setup consists of three interconnected cham-
bers: the load lock chamber, the preparation chamber and the main chamber. A
schematic illustration of the laboratory-based S-ARPES apparatus is shown in Fig.
3.1. The three chambers are connected, but can be sealed from each other using
UHYV valves, allowing for individual venting or pumping. The load lock chamber is
equipped with a garage containing three sample slots and a wobble stick for trans-
ferring samples to the manipulator in the preparation chamber. The compact design
of the load lock chamber facilitates rapid pumping. The subsequent sections will
provide a detailed discussion of the preparation and main chambers.

4-axis manipulator

with LHe cryostat\

Preparation
chamber

LEED /
AES system

Hemispherical
electron analyzer

Sputter
gun
Main
chamber FeRRUM
spin detector
Triple
evaporator

Focused Helium lamp Xenon lamp

Figure 3.1: 3D schematic representation of the spin-ARPES apparatus viewed from two
angles, highlighting and labeling key components critical to its operation.

4In the 10~ mbar range, most of the residual gas is Hy and CO. With a sticking coefficient
Scoypt ~ 0.7 the converge time for a Pt-sample is ~ 28 hours.
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3.2.1 Preparation Chamber

Figure 3.2 shows a top view of a 3D sketch of the preparation chamber, with labels
indicating the most important components, which will be explained separately. As
the name suggests, all sample preparation processes are carried out in this cham-
ber before the sample is transferred via the manipulator to the main chamber for
measurements.

LEED & AES

Figure 3.2: Top view of the preparation chamber, with labels indicating the most impor-
tant components.

Ultra-clean Sample Surface

Photoemission experiments are highly sensitive to the top atomic layers of a ma-
terial. To accurately extract the encoded information about the surface electronic
structure from the photoemitted electrons, it is essential to detect them without scat-
tering caused by impurities on the sample surface. This necessitates the presence
of atomically clean and flat surfaces. Conventionally, two methods are employed to
achieve this:

(i) Cleaving single crystals inside the UHV chambers: This method em-
ploys two techniques to achieve cleavage. The first technique involves the
scotch tape method (see Fig. 3.3(a), upper two slots), where scotch tape is ad-
hered to one side of the cleavable single crystal and folded around a circularly
shaped copper wire on the opposite side (see Fig. 3.3(b)). The second tech-
nique uses a cleaving post (see Fig. 3.3(a), third slot), which consists of a small
ceramic post (approximately 2 mm in diameter) glued to the cleavable side of
the sample using silver epoxy (see Fig. 3.3(d)). The load-lock wobble stick is
then employed to either pull out the scotch tape (see Fig. 3.3(c)) or to knock
off the ceramic post (see Fig. 3.3(e)), thereby exposing a freshly cleaved sam-
ple surface suitable for ARPES characterization. For van der Waals (vdWs)
bonded systems, such as transition metal dichalcogenides and bulk 3D topo-
logical insulators, the scotch tape method is particularly advantageous due to
the weak interlayer bonding along the c-axis, facilitating cleavage along this
direction and yielding sharp spectral features. However, this method often re-
sults in atomically flat and clean but small areas that may not accommodate
larger light sources with bigger beam spots.
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Figure 3.3: (a) Various single-crystal samples glued onto sample holders using silver epoxy.
Two samples are equipped with scotch tape on top, while one features ceramic posts, both
prepared for cleaving under ultra-high vacuum conditions. Copper wire rings are utilized
to remove the tape and prevent it from falling into the vacuum chamber. (b)-(e) Schematic
representation of the cleaving techniques utilizing both the tape and the ceramic post. The
size of the Mo-plate is 10 x 10 mm?.

(ii) In-situ grown thin films: This technique involves the use of molecular beam
epitaxy (MBE) to grow samples, allowing them to be transferred to the ARPES
setup without breaking ultra-high vacuum (UHV) conditions, thereby main-
taining a highly clean environment. This method produces large and flat sur-
faces ideal for ARPES measurements. However, it is time-consuming due to
the necessary transfer process from PGI-9, where samples are typically grown,
to PGI-6, as our laboratory lacks a direct MBE chamber connected to the
ARPES chamber.

Heater

One of the most widely employed techniques in surface science for achieving atom-
ically flat and clean surfaces is annealing. This process utilizes a custom-designed
heater specifically for this purpose. The heater incorporates a slot that accommo-
dates the sample, which is affixed to a sample holder. A tungsten-coiled filament is
positioned on the backside of the sample holder, and a power supply is connected
to generate a current of up to approximately 2.3 A. This current flows through the
tungsten filament, heating it and thermally emitting electrons into the vacuum en-
vironment. These emitted electrons are subsequently accelerated toward the sample
holder, which is maintained at a high voltage of approximately 1000 V via a separate
power supply.

The electron bombardment results in the heating of both the sample holder and
the mechanically fixed sample, facilitating the desorption of adsorbed contaminants,
primarily water, from the surface. The temperature of the sample is monitored using
a remote-sensing pyrometer, which operates at temperatures exceeding 300°C and is
positioned outside the preparation chamber, allowing it to view the sample through
a visible light viewport. Additionally, the heater can be employed to smooth the
sample surface following the deposition of materials, which is achieved through either
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single or triple evaporators, as will be detailed later.

Sputter Cleaning

Surfaces of samples can be etched using a process known as sputtering. Figure
3.4 illustrates the operational principle of the sputtering gun, which is mounted in
the UHV preparation chamber of the ARPES system. Argon gas from an external
container is introduced into the gas cell via the leak valve. A high potential difference
is applied between the cathode and the anode, resulting in the emission of electrons
from the cathode that ionize the argon atoms within the cell, thereby generating a
plasma of argon ions and free electrons.

Anode
(Beam energy)

Magnetic field
—

Focus

Gas inlet I Sample
Gas cell

Cathode Flight tube Earth cover

(at cathode potential) (at earth potential)

Figure 3.4: Diagram showing the operation principle of the sputter gun, labelled with the
most important parts.

The longitudinal magnetic field produced by an external permanent magnet
forces the electrons in the cell to follow spiral trajectories, increasing their path
lengths and subsequently enhancing the probability of collisions that produce addi-
tional ions. The argon ions are repelled from the anode, acquiring kinetic energy
approximately equal to that of the anode, and are attracted toward the cathode. A
small aperture is present at the cathode, allowing the energetic argon ions to escape
into the flight tube, where a focusing element is employed to refocus the broadened
beam size caused by space charge limitations, particularly for low-energy beams.

The highly energetic argon ions bombard the target material (sample), facili-
tating momentum exchange that effectively removes contaminants adhering to the
surface and may even eject some of the top layers of the sample, i.e. etching the
sample. These ion collisions generate a measurable current through the sample,
referred to as the sample current Iyympe. The parameters that can be optimized to
achieve a clean surface include the sample current, sputtering duration, ion beam
kinetic energy and argon partial pressure. In this thesis, this method has been ex-
tensively employed to clean the copper plate of the head stage in the newly mounted
five-axis manipulator during the cooling process, enabling the measurement of the
lowest attainable temperatures using the Fermi-Dirac fitting analysis technique.
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Electron-Beam Vacuum Deposition of Thin Films

Electron-beam evaporation is regarded as one of the most widely used methods for
depositing thin layers of various materials onto desired substrates. The preparation
chamber of our vacuum system is equipped with both triple and single evaporators
from the company FOCUS electronics GmbH, which are utilized for this deposition
process.

evaporant
rod

+ve
high voltage

Figure 3.5: 3D schematic representation of the e-beam evaporation process used for de-
positing a material onto the sample.

Figure 3.5 illustrates the operational principle of the deposition process in a
3D sketch. In this setup, a tungsten filament is heated via an electric current
to a temperature enough to provide the thermal energy needed to overcome the
material’s work function. At this elevated temperature, some electrons gain sufficient
energy to escape from the filament’s surface, generating an electron beam that can
be accelerated towards an evaporant rod, which is maintained at a high positive
adjustable voltage (positive electrode). This electron beam bombards the head of
the evaporant rod, heating it up, leading to the evaporation of material from the
rod’s apex. The bombardment generates an electron emission current 1., within
the rod, which is continuously measured. As the evaporated atoms travel towards
the sample, they pass through a flux monitor, which measures the ion flux that is
directly proportional to the flux of the evaporated atoms.

By controlling I.,, and the rod voltage, the flux rate of the evaporated atoms
can be precisely adjusted for a desired duration, allowing for accurate definition of
the layer thickness of the deposited material. The setup includes both triple and
single evaporators [118]. At their outlets, a shutter positioned between the flux
monitor and the sample can be opened or closed by a rotary drive, enabling fine flux
adjustment before exposure. In the case of the triple evaporator, there are three
distinct cells, each functioning similarly to the single evaporator, allowing for the
simultaneous or sequential evaporation of up to three different materials

Five - Axis Liquid He Cryostat Manipulator

The system has been enhanced with a customized universal 5-axis manipulator from
the company PREVAC, which provides five degrees of freedom. It can move spatially
along three axes (z,¥, z), with  and y movements limited to &+ 12.5 mm around the
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central axis of the manipulator. The deferentially pumped rotary seal, featuring two
isolated pumping stages, enables continuous azimuthal rotation 6 of 360° through
the vacuum wall of the UHV system.
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Figure 3.6: (a) 3D design for the end parts of the manipulator. Inset shows allowed degrees
of freedom. (b) Font view of (a) showing a sample fixed by two screws. Other screws away
from the sample are for tightening the head stage to the rest of the manipulator body to
achieve a better sample cooling while the door is closed. (c) A real front picture with the
three diodes labeled during a cooling test. (d) Temperature change over time during a
cooling process recorded by the three diodes shown in (c).

The back side of the head stage of the manipulator is connected to the main body
and secured by two nuts. This configuration allows for unlimited polar rotation ¢
around the z-axis when the sapphire plates slide over each other. Figure 3.6(a)
shows a 3D design of the end parts of the manipulator, with the inset showing the
allowed degrees of freedom. A front view of the design is presented in Fig. 3.6(b).

All movements are facilitated by stepper motors controlled via software installed
on a PC. After transferring the sample from the load lock to the manipulator us-
ing the wobble stick mounted in the load lock and sealing the load lock from the
preparation chamber, the sample can be mechanically secured into the head stage
by tightening a pair of screws using a vacuum screwdriver (see Fig. 3.6(b)), pressing
the sample holder against the head stage.

The manipulator features two concentric cylinders that accommodate one end of
a transfer cooling line, while the other end is immersed in a dewar containing liquid
helium. The transfer line is designed to utilize capillary action, allowing liquid He to
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flow from the dewar to the manipulator, where it is pumped from the two concentric
cylinders by a rough pump. In principle, the faster the He is pumped, the lower the
achievable sample temperature.

The other two screws, located away from the sample as seen in Fig. 3.6(b), are
used to secure the manipulator’s head to the rest of the body, ensuring thermal
contact necessary for achieving the minimum temperature while cooling the sample.
Additionally, the head of the manipulator is equipped with a door, as labeled in Fig.
3.6(b), that can be closed with the vacuum screwdriver during cooling, providing an
additional shield to enhance cooling efficiency.

Figure 3.6(c) shows a photo of the head of the manipulator, with the cover shield
being removed, prepared for a cooling test. Three diodes are labeled in the figure.
While diodes 2 and 3 are permanent, diode 1 was mounted directly and fixed under
the screw to the closest point to where the sample is going to be placed. Figure 3.6(d)
shows the temperatures over time read by the three diodes during a cooling process.
Diode 1, closest to sample shows that we could achieve a minimum temperature of
~ 9K.

Lamp-based VUV Spin-ARPES

Noble gas discharge lamps are the predominant vacuum ultraviolet (VUV) light
sources utilized in laboratory-based ARPES-setups. The operating principle of
these VUV light sources is typically founded on the cold cathode capillary discharge
method [119, ], wherein a high potential difference is applied between the two
electrodes of the discharge tube, which is continuously filled with a noble gas. This
generated electric field excites the noble gas atoms, causing some of their electrons
to be elevated to higher energy levels or to be completely ejected as free electrons,
thus producing plasma within the discharge tube.

As the excited atoms and cations relax, they emit light at characteristic wave-
lengths that depend on the specific noble gas filling the discharge tube. For photoe-
mission experiments, it is crucial to use light sources that provide photon energies
sufficient to overcome the work function of the material under investigation (typi-
cally around 4.5 eV for metals). This necessitates the emission of photons in the
ultraviolet range, specifically with wavelengths shorter than 200 nm. Due to the
absorption of these photons by air, noble gas discharge lamps emitting light in this
range must be integrated into a vacuum system to ensure effective operation.

Helium Lamp

The helium discharge lamp is particularly notable as the most common light source
used in ARPES setups, and the S-ARPES laboratory at PGI-6 is equipped with the
HIS 13 helium discharge lamp. In this system, applying a high voltage across a
discharge capillary tube filled with helium gas, creates a plasma through ionization
and excitation processes. When the electric field accelerates free electrons, these
energetic electrons collide with neutral helium atoms, leading to excitation or ion-
ization. In excitation, one of the helium atom’s electrons is promoted from the
1s orbital to a higher energy level, such as (2p, 3p, or 4p), while in ionization, an
electron is completely removed, forming a singly ionized helium ion (He™).

The excited helium atom can exist in one of two quantum states: parahelium
(singlet state, S = 0), where the two electrons have opposite spins, or orthohelium
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Figure 3.7: Generation of the most intense resonance lines Hel, (a) and Hell, (b) are
being generated in (a) and (b), depicting the transitions from the first excited state to the
ground state for the He-atom and He' ion correspondingly.

(triplet state, S = 1), where the electrons have parallel spins [121]. These states
follow different selection rules for transitions, which affect the emission spectrum of
the lamp.

Parahelium states have symmetric spin wavefunctions but antisymmetric spa-
tial wavefunctions, allowing them to decay quickly via electric dipole transitions,
emitting strong Hel spectral lines, such as Hel,, Helg, and Hel,. In contrast,
orthohelium states have antisymmetric spin wavefunctions and symmetric spatial
wavefunctions, making their transitions spin-forbidden in electric dipole radiation,
which significantly prolongs their lifetimes [122].

Similarly, when He™ ions are excited and return to lower energy states, they emit
Hell spectral lines, including Hell,,, following the same selection rules that restrict
transitions to those with Al = +1, meaning that electrons move between orbitals
of different angular momentum (e.g., p — s transitions are allowed, while s — s
transitions are forbidden).

These emission lines are well-resolved and exhibit extremely narrow linewidths
of only a few meV, making them highly suitable for high-energy resolution photoe-
mission measurements without the necessity of a monochromator. The strongest
spectral lines, Hel, (21.22 eV, 58.43 nm) and Hell,, (40,81 ¢V, 30.38 nm), are illus-
trated in Fig. 3.7(a) and Fig. 3.7(b), respectively.

As previously mentioned, the helium lamp must be connected to the UHV sys-
tem. However, plasma ignition within the capillary discharge tube occurs at a sig-
nificantly higher pressure of approximately 5- 1073 mbar in the first pumping stage.
To accommodate this, the setup includes two differential pumping stages that con-
nect the lamp to the main analysis UHV chamber, effectively reducing the pressure
in the chamber to < 6 - 107 mbar during measurements (at the base pressure of
~ 3107 mbar in our case).

The light generated within the capillary discharge tube is directed and focused
onto the sample using a toroidal gold-coated mirror after exiting the light capillary.
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This mirror allows the beam spot to be focused down to approximately ~ 1.1 mm
in diameter on the sample [123], enabling selective probing of different regions in
inhomogeneous samples.

The Electron Spectrometer

The core component of the ARPES spectrometer is the M B Scientific Al hemi-
spherical electron energy analyzer, which generates a simultaneous 2D intensity
map as a function of energy and momentum. It features a mechanoelectrostatic
lens deflector system and two concentric conductive hemispheres with a constant
voltage difference applied between them. A schematic diagram, labeled with the
most significant elements, is depicted in Fig. 3.8(a). Photoelectrons emitted from
the grounded sample enter the imaging lens system, which facilitates the mapping
of emission angles over approximately +15° in both the k, and k, directions.
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Figure 3.8: Schematic 3D representations of the M B Scientific A1 hemispherical
electron energy analyzer and the mechanoelectrostatic lens deflector system.
In (a), photoelectrons are filtered within the analyzer based on their kinetic energies
(horizontally, shaded cyan trajectories) and their emission angles (vertically, red, cyan, and
yellow trajectories) on the detector (MCP). This configuration provides a simultaneous 2D
intensity map versus energy and momentum. An opening next to the MCP indicates the
two spin components (blue and red arrows) that can be filtered using the spin detector.
(b) and (c) illustrate the spatial and angular modes, respectively, through which the lens
system projects photoelectrons onto the entrance slit of the analyzer.

Depending on the lens mode selected by adjusting the voltages applied to the
lens deflector system, electrons will be projected onto the entrance slit of the outer
hemisphere while preserving either their:

e Spacial distribution: In this mode, electrons emitted at different angles
from the same spot on the sample will be projected onto the corresponding
spot on the entrance slit (see Fig. 3.8(b)).
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e Angular distribution: In this mode, electrons emitted from different loca-
tions on the sample but with the same emission angle will converge and be
projected onto a single spot on the entrance slit (see Fig. 3.8(c)).

Only photoelectrons with kinetic energies that fall within a narrow energy win-
dow centered around the pass energy E, will be transmitted through the analyzer.
For the M B Scientific Al spectrometer, this energy window has a width of ap-
proximately 10% of E,. These selected photoelectrons follow trajectories, based on
their kinetic energies and emission angles, from the entrance slit to the detector on
the opposite side of the analyzer.

Electrons within this energy window, having exactly E, kinetic energy, will follow
the central trajectory. In contrast, those with lower or higher energies will end up
closer to the inner or outer hemisphere, respectively. Electrons with kinetic energies
that fall outside this energy window will be absorbed or scattered by the inner or
outer hemisphere. By varying the voltages between the typically grounded sample
and the entrance slit of the analyzer, a wide range of initial kinetic energies can be
filtered.

The energy resolution of the hemispherical analyzer is expressed by the following
equation [124]:

w 2

(6
AEanalyzer - EP . (ﬁ + Zaz) ~ EP[QV]

~w[mm]

3.1

R,[mm] (3.1)

where Ep is the pass energy, w is the width of the entrance slit, a4, is the maximum

value of the entrance angle and R, = 452 (20 cm for the MB Scientific Al

spectrometer) is the mean radius of the two concentric hemispheres of radii R;

and Rs. An additional angular aperture in front of the entrance slit leads to the
a2

mazx w

approximation =% = 5 R

This formula indicates that lower pass energy and smaller slit widths result
in improved energy resolution; however, this also decreases the intensity of the
transmitted electrons. Therefore, it is essential to find an optimal balance between
energy resolution and intensity for effective measurements.

Resolution of the setup with the newly upgraded 5-Axis manipulator

The total energy resolution AFE;., of an experimentally measured spectrum is pri-
marily determined by three factors: the analyzer resolution AE,,yzer, Which de-
pends on the combination of pass energy Ep and slit width w used during the
experiment, the linewidth of the exciting photon AFE},,, and the thermal broadening
AFEherma caused by the sample temperature. These factors combine according to
the following relation:

AEtotal = \/AEgnalyzer + AEELV + AE)? (32)

hermal

The photon energy hv resolution is extremely high due to the sharp spectral line,
with values of (AEZ¢ ~ 1 meV and AEX¢ ~ 600 peV) [125, 126]. At the Fermi
level, the temperature effect on the sample introduces an unavoidable broadening of
approximately 4kpT, as dictated by Fermi-Dirac (FD) statistics [127].

At room temperature, this FD broadening dominates the total energy resolution,
for most cases contributing approximately 100 meV, regardless of analyzer settings
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or the negligible contribution from the photon energy resolution’. With the re-
cently upgraded five-axis manipulator, the sample can be cooled to temperatures
as low as 9K. Under these low-temperature conditions, using analyzer settings with
AEpatyzer ~ 1 meV, and neglecting the photon source broadening, a total energy
resolution of approximately 3 meV can be achieved.

Geometry of the Spin-Integrated measurements (ARPES)

This section shows the geometry of the spin-integrated measurements conducted in
the S-ARPES laboratory at PGI-6 (See Fig. 3.9(a)). The sample is aligned for
normal emission, positioning its surface within the zy-plane and at a distance of
35 mm along the z-direction from the lens of the spectrometer. Three different
sources for electron excitations are utilized, represented by the green, red and blue
arrows corresponding to helium lamp, 6 eV laser and xenon lamp [125], respectively.
The He light impinges on the sample within the yz-incidence plane at an angle of
24° relative to the sample surface, while the laser and xenon lights strike the sample
within the zz-incidence plane at an angle of 45° from the right and left, respectively.
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Figure 3.9: (a) Visualization of the ARPES geometry in PGI-6. In this case, the sample is
in normal emission, where the normal to the surface is the z-axis while the sample surface
is within the xy-plane. Three different sources of light: helium lamp, xenon lamp and
6 eV laser are represented by the light pointing arrows; green, blue and red respectively,
with the corresponding incident angles indicated. A transparent hemisphere represents
the photoemitted electrons from the sample in all directions, while the shaded yellow
cone is the part of this hemisphere that is being imaged by the spectrometer in the normal
emission. Note the entrance slit which is vertical enabling imaging the angular distribution
along the y-direction by the spectrometer in one shot. (b) A typical 3D-data set, measured
for the topological insulator BisSes and collected from individual energy-momentum maps
E(ky) for a set of deflections along the z-direction using the Al lens deflector system.
Slicing this cube of data produces band dispersion maps (c¢) and constant energy cuts (d).

Photoelectrons are emitted from the sample in all directions, as indicated by the
hemisphere in Fig. 3.9(a). However, only a cone of electrons, represented by the
yellow shaded area in the 3D sketch, will enter the lens, which has an acceptance
angle of £15° in both the z and y directions. The elongated entrance slit of the

5However, some states are not strongly affected; see e.g. the topological surface states of BizSes
measured at room temperature as presented in Fig. 3.9(c).
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spectrometer allows for filtering all electrons with emission angles within the range
of [-15°,+15°] in the y-direction, enabling energy dispersion mapping along the £,
direction for a fixed k, value (see E(k,) spectrum of Fig. 3.9(c)).

The mechanoelectrostatic lens deflector system can be used to deflect the electron
cone onto the slit in the x-direction, according to a chosen set of deflections, allowing
for mapping in the k, direction. The Al lens deflector system facilitates mapping
significant portions of the Brillouin zone without requiring sample rotation. This
approach generates a three-dimensional dataset of the surface electronic structure
(see Fig. 3.9(b) for the I(Ep, ks, k) mapping).

Various cuts can be extracted from this 3D dataset along the &, or k, directions to
map the band dispersions E(k,) and E(k,), respectively. Constant energy cuts can
also be taken along the energy direction; like the Fermi energy cut (see Fig. 3.9(d)
for the Fermi surface). Depending on the photon energy used to eject electrons from
the sample, different areas of the Brillouin zone are mapped®.

Additionally, by rotating the sample off-normal around the y-axis, larger k,
values of the Brillouin zone can be probed, allowing for the exploration of equivalent
cones similar to the yellow cone depicted in the 3D sketch of Fig. 3.9(a), but
horizontally off-normal along the equator of the photo-emitted electron hemisphere.

3.2.2 FERRUM Spin Detector

The system is equipped with the highly efficient spin detector, namely FERRUM
[128]. As the name indicates, the heart of this detector is an iron film. The mech-
anism of the spin detection of this detector is based on the exchange scattering of
electrons at a magnetized target, where a high asymmetry in the intensity of the
scattered low kinetic energy electrons is observed depending on the electron spin
component being filtered with respect to the magnetization direction of the scat-
tering target. Figure 3.10 depicts a 3D visualization of the spin detector showing
the scattering geometry and the electron spin components (the in-plane oy, and the
out-plane o) that FERRUM is able to detect. The principle of work of this detector
will be discussed in the next section.

Preparing the scattering target: The scattering target is a ferromagnetic thin
film of iron that is deposited onto a surface of W(100) single crystal. Prior to
iron deposition, the W-substrate has to be cleaned, and this is done combining the
following two methods. First, hot oxygen treatment, where a silver tube is heated
up and selectively allows only the diffusion of oxygen from atmosphere maintaining
a partial pressure of ~ 5-107% mbar Oy in the FERRUM chamber, then the W-
substrate single crystal is periodically heated up to ~ 1200K in 15 cycles with a
heating time of 10 seconds each and a waiting time of 50 seconds in between (this
is controlled automatically via a power supply). This way, carbon contaminations
segregate from the bulk of the W-crystal into the surface and get oxidized and
desorbed. Second, oxide-flash, where the substrate is flashed raising its temperature
to ~ 2300K removing the tungsten-and carbon-oxides. Once the W(100) single
crystal is clean, an electron-beam evaporator is used to evaporate iron with an
evaporation rate of ~ 0.11A/sec. for 15 min. growing an iron film of ~ 60 mono-

6Using the helium lamp (He [,=21.22 eV) as an excitation source and probing a metal material
with a typical work function of ~ 4.5 eV and using the full acceptance angle of the lens 30°, it is
possible to map ~ 1.047 [1/A] of the BZ in both k, and k, directions.
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Figure 3.10: 3D schematic drawing of the FERRUM spin detector. o; and o2 are the
in-plane and out-plane spin components that can be filtered via magnetizing the scat-
tering target along the p; or po directions respectively, using the corresponding pair of
magnetizing coils.

layers. As this film is very sensitive to surface contamination by adsorbates, oxygen
is dosed, selectively using the heated silver tube, to oxidise and passivate the iron
film. Finally, in order to heal and enhance the quality of the thin film and to remove
the excess of oxygen, the film is annealed for ~ 10 min. reaching a temperature of
~ 800K.

Geometry of Spin-ARPES Measurement

FERRUM spin detector at PGI-6 is able to filter the two spin components, in-plane
o1 and the out-plane 0y, as it is visualized in Fig. 3.10. While the sample is in normal
emission geometry (i.e. the z-axis is normal to the sample surface), it is possible to
filter the in-plane spin component oy via magnetizing the evaporated iron thin film
onto the W-single crystal, using the horizontally aligned pair of coils, along the
direction. However, the scattering W-crystal is off-normal by 15°, hence, the sample
has to be rotated around the z-axis by 15° in order to filter pure out of plane spin
component oy (see Fig. 3.10 rotated sample in the background), where in this case
this is done through magnetizing the iron thin film, using the other two vertically
aligned pair of coils, along the ps direction.

Photoelectrons leave the hemispherical analyzer through a 1x2 mm?® opening
next to the MCP (see Fig. 3.8(c)) and get directed via a 90° deflector into the
scattering target, where they will be accelerated or decelerated hitting the target
with a kinetic energy of 5.5 eV. Once the pair of coils is chosen to filter the selected

2
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spin component, the scattering target will be magnetized along the corresponding
positive- and negative-direction of the quantization axis consecutively’. At this
low kinetic energy, the intensity of the scattered electrons from the target is highly
asymmetric based on the relative orientation of the spin component with respect to
the magnetization direction of the scattering target.
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Figure 3.11: Hel-driven spin-resolved maps for the in-plane S, spin component
of the bulk topological insulator SbyTes. Upper panel (each figure 158 x 121 pixels):
(a),(b) raw data of the spin-polarized band dispersion maps that show the intensity I and
I, respectively for the opposite scattering target magnetizations measured pixel-by-pixel.
While the x-deflection is fixed, 158-energy pixels are scanned. This corresponds to a
vertical line in (a). At energy-pixel 158, the scattering target is being re-magnetized
and an equivalent vertical line in (b) is being scanned. This is done similarly for the
121-points along the x-direction. (c) Pure spin-resolved band dispersion map plotted by
taking the difference between (a) and (b) and dividing by the sum of (a) and (b) as well as
by the Sherman function based on equation 3.3. The spin polarization false color scale is
saturated between -40% and 40%. (d) Spin-resolved band dispersion map plotted using the
2D color code shown in the inset where intensity and spin-polarization are simultaneously
plotted. Lower panel (each figure 85 x 79 pixels; Epindging ~ 0.5 €V): (e),(f) raw data of
the spin-polarized momentum maps that show the intensity Iy and I} for the opposite
scattering target magnetizations measured pixel-by-pixel. While the y-deflection is fixed
the z-deflection is scanned, which corresponds to a horizontal line in (e). At z-pixel 79 the
scattering target is being re-magnetized and an equivalent horizontal line in (f) is being
scanned. This is done similarly for the 85-points along the y-direction. (g),(h) Produced
in a similar way to (c) and (d) in the upper panel respectively. Measurements were done
at room temperature using an unpolarized Hel-light (hv = 21.22 €V).

Unlike spin-integrated measurements, spin-resolved measurements are collected

"To filter the in-plane S,-spin component (1), the scattering target is magnetized along i1 .
then re-magnetized along p_.
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pixel-by-pixel using the mechanoelectrostatic lens deflector system of the Al spec-
trometer. This system enables spin filtering any k-point from the 3D-ARPES data
set, highlighting the necessity of the deflector in both the z- and y-directions. Since
such spin-resolved measurements are time consuming,in this thesis typically E(k)-
and the constant energy cut (k, vs. k) spin-resolved maps have been the most often
performed spin-resolved measurements. See upper panel of Fig. 3.11 for the spin-
resolved band dispersion maps, and the lower panel of Fig. 3.11 for the spin-resolved
momentum maps.

Spin-resolved data acquisition method: for the spin-resolved band dispersion
maps F(k), the data is collected point-by-point along the k-direction, such that
at each k-point, the energy scale is scanned twice, for the opposite scattering tar-
get magnetizations. For the spin-resolved momentum maps (k, vs. k,), the data
is collected point by point along the k, direction, such that at each k, point, the
k. scale is being scanned twice, for the opposite scattering target magnetizations.
This way, by frequently re-magnetizing the target, a long-term fluctuation effect in
the intensity of the light source is minimized. A detailed explanation is presented
in the caption of Fig. 3.11. The scattered electrons, with the asymmetry in their
intensity based on the magnetization direction of the scattering target relative to
their spin direction, will be collected using a channeltron. The spin-polarization is
then calculated based on the following relation:

1 1,1,
Jop = — . B “Hoi 3.3
SP S I/_j,+l+]71’ ( )

where, Igp is the intensity of the spin-polarization. I,,, and I,_ are intensities of
the scattered electrons from the scattering target that is magnetized along the pos-
itive and negative direction respectively. The effective Sherman function (S=0.29),
is the asymmetry in a fully polarized electron beam. (i=1,2) represents the mag-
netization direction of the scattering target aiming to filter the in-plane o; or the
out-plane oy spin components respectively.

3.3 UV 206-nm laser system

The S-ARPES system is equipped with a VUV laser system from LEOS company
with the main components schematically shown in Fig. 3.12. The laser master box
produces vertically-polarized infra-red (IR) light of 824 nm wavelength that is being
directed via the two mirrors (1) into the first cavity. A half-waveplate (2) rotates
the polarization into horizontally-polarized IR light that will in-turn be directed
and aligned through mirror (3) into the input coupler (4) where the light beam goes
through the optical path in-between the input coupler (4), the output coupler (7),
and the two folding mirrors (4) and (5) passing through the non-linear crystal at
the center of the optical path.

The optical axis of the half-waveplate is aligned such that it allows part of
the vertically polarized light to get through such that when it combines with the
horizontally-polarized light that goes through the input coupler produces elliptically
polarized light that is being reflected at the reflecting mirror (8) into the yellow box
(9) which in-turn reads this as an indication of the alignment of the optical path
which is being transmitted as an error signal to the piezoelectric transducer (6').
The feedback signal is used to control the length of the optical path via moving the
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Figure 3.12: Schematic 3D visualization of the ~ 6 €V laser system. In the upper
box, the laser master generates IR 824 nm wavelength vertically-polarized that is being
guided into the first cavity where, using a non-linear crystal, part of the 824 nm beam
is converted into ~ 412 nm. Similar process happens in the second cavity leaving it
with a UV ~ 206 nm wavelength. In the lower box, the laser beam can be vertically,
horizontally or, circularly if needed, get polarized and directed into the main chamber.
Main components in the laser system are shown and labeled with numbers to be referred
to within the text.

folding mirror (6), hence, increasing the coupling in the first cavity. The frequency
of the laser beam leaves the first cavity with doubled frequency; half the original
wavelength ~ 412 nm. A similar treatment happens to the laser beam in the second
cavity and the frequency again gets doubled leaving the second cavity with ~ 206
nm wavelength. A reflecting mirror (10) is used to guide the laser beam into the
lower box where it gets again reflected via mirror (11) to be guided into the main
chamber. To assure linearly polarized light, a polarizer (12) filtering a specific elec-
tric field component is used. Via using a half-waveplate (13) which is mounted on a
stepper motor that allows to rotate the optical axis of the %—Waveplate in order to
produce a vertically or a horizontally polarized light. A %-waveplate (14), if needed,
is used in order to convert the linearly polarized light into circularly polarized light.
Afterwards, the laser beam is being focused using a telescope (15) and a focusing lens
(16) to enter through an optical window into the main chamber to hit the sample
and excite electrons. As the polarizer (12) selects only the electric field component
that is parallel to its transmission axis, part of the scattered light as one can see in
Fig. 3.12 is measured using a photodiode (17) where this signal is being used as a
real-time normalizer for the laser-spin measurements.

3.3.0.1 Doubling the frequency of the laser beam

When the electromagnetic field of a lightwave propagates through a medium, it
exerts forces on the valence electrons, hence, distorting the charge distribution of
the medium creating a polarization wave. If the driven oscillator is a linear isotropic
medium, the polarization P will be directly proportional to the applied field F and
given by the following relation



52 3.3. UV 206-nm laser system

P =¢,xFE (3.4)

where x is the electric susceptibility, a dimensionless constant that characterizes the
medium’s response to the field.

At higher electric field strengths, however, the linear approximation breaks down,
as polarization cannot increase indefinitely in proportion to E. This leads to the
emergence of nonlinear effects. To account for this, the polarization can be expressed
as a power series in F, incorporating higher-order susceptibilities:

P =¢,(XE + xoaE* + x3E* + ...) (3.5)

where 2, X3, etc., represent higher-order nonlinear susceptibilities that become
increasingly significant as the electric field strength increases [129].

For a lightwave of the form F = FE,sin(wt) incident on the medium, the polar-
ization response is

P = e, xEysin(wt) + e,xaE2sin®(wt) + e,x3E2sin®(wt) + ...
= e, xE,sin(wt) + %Eﬁ(l — cos(2wt)) + %ES(Ssm(wt) — sin(3wt)) + ...
(3.6)

In the case of linear medium, the first-order susceptibility xy dominates, and the
reradiated light corresponds to a refracted wave with a reduced speed v but the
same frequency w as the incident wave. The polarization in this case corresponds
to an oscillatory current. On the other hand, in a non-linear medium, such as a
nonlinear crystal as it is the case in our laser system, higher-order terms contribute
significantly. This results in the generation of new frequency components, such
as second harmonic generation (SHG), where a frequency-doubled wave at 2w is
produced in the first cavity, and fourth harmonic generation (FHG), where a wave
at 4w is generated in the second cavity (where w is the original frequency of the IR
laser master).

3.3.0.2 Converting linearly- to circularly- polarized light

A waveplate has a slow axis and a fast axis, characterized by indices of refraction n
and ny along these axes, respectively. If the linearly polarized light is travelling along
the slow (fast) axis, then the same linearly polarized light will still get out from the
waveplate, however, the wave will be delayed by an amount proportional to n, (ny)
and the thickness of the waveplate ¢ through this relation {delay 5 = M}
where \ is the vacuum wavelength of the light. Therefore, a waveplate has what
so-called retardance | T = 2=t which is how much slowness one gets
along the slow axis compared to the fast axis. Hence, using %—Waveplate delays the
component parallel to the slow axis by % of the wavelength more than the component
parallel to the fast axis producing elliptically polarized light. In order to produce
circularly polarized light, the polarization axis of the linearly polarized light, coming
out of the %-waveplate, has to be at 45° with respect to the fast and slow axes of
the %—Waveplatc [130, ]. This will result in equal amounts of light parallel to
the slow- and fast-axis with same amplitudes and circulating around the optic axis,

hence, the name circular polarization. The direction of polarization either clockwise
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(right-handed) or counterclockwise (left-handed) is determined by the slow-axis of
the %—Waveplate that determines which component of the electric field will be slowed
down more, and in our setup this is controlled via a stepper motor onto which the
%—Waveplate is being mounted. The way we used in order to define the slow- and fast-
axis of the %—Waveplate is the following: we used two polarizers and we rotated the
transmission axis of the second one such that the measured intensity was minimum,
this way we make sure the transmission axes of the two polarizers are orthogonal.
We used %—Waveplate in-between the two polarizers, and using the stepper motor,
we rotated it to align one of the transmission axes along the transmission axis of
the first polarizer at which the measured intensity was also minimum. Then, the
%-Waveplate was rotated 45° to make sure that the transmission axis of the first
polarizer is 45° sandwiched in-between the slow- and fast-axis of the %—waveplate
(equivalently: we searched for the maximum intensity).

3.4 PHELIX beamline at Solaris

Some of the spin-integrated measurements and all dichroic measurements in this
thesis were done at the PHELIX end station that operates in the soft X-ray range, at
the Solaris National Synchrotron Radiation Centre in Krakéw, Poland. Solaris is an
electron based synchrotron. The electrons are initially produced by an electron gun,
where a high voltage cathode of BaO is heated under vacuum up to 1000 C° providing
the electrons with a sufficient thermal energy to escape the surface of the material via
the process of thermal emission. An electric field is used to accelerate the electron
beam up to 2.8 MeV. Then, a 40 meters length linear accelerator consisting of a
row of cavities, in which an electromagnetic field oscillates, is used to accelerate
the electron beam to a maximum energy of 600 MeV. Electrons are then introduced
through a transfer line into the storage ring in which the kinetic energy of the electron
beam is ramped to 1.5 GeV. Bending magnets are used to curve the electron beam
between adjacent straight sections of the storage ring. To maintain the trajectory
of electrons while accelerating them, the magnetic field produced by the bending
magnets must be increased in synchrony with the particle’s speed. This is the
reason the system is referred to as a synchrotron.

The circulating beam is stored for many hours inside the ring on a fixed stable
orbit. Synchrotron radiation is emitted as the electrons beam follows curved paths.
The radiation required for photoemission experiments at the PHELIX beamline is
sent through an Apple Il-type elliptically polarizing undulator, which consists of
four rows of magnets. Two of these rows are movable, while the other two remain
fixed in position. Each magnetic array contains four types of magnet blocks with
identical magnetic properties but varying in size and direction of magnetization, as
depicted in Fig. 3.13. The undulator has a periodic length, A,, of 58 mm, and with
44 periods, the total length of the magnetic structure amounts to 2600 mm. By
adjusting the position of the two movable magnetic arrays relative to the fixed ones,
a phase shift, §, is introduced, which alters the polarization of the emitted light,
as shown schematically in Fig. 3.13. At the PHELIX end station, when the phase
shift is § = 0- A\, horizontally polarized light is produced. Circularly polarized light
is achieved with a phase shift of § = j:% - Ay, while the vertically polarized light is
obtained when § = % -Au. Theoretical analyses for an elliptically polarized undulator
can be found in [133-138].
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Figure 3.13: APPLE II type undulator schematically showing different phase shift ¢ set-
tings producing horizontally polarized light when § = 0 - A, (a), circularly polarized light
when § = :I:i - A\, vertically polarized light when § = % - Ay and elliptically polarized light
when ¢ is in-between. Taken from Ref. [139].

The radiation from the undulator will then be monochromatized and focused
into the photoemission chamber by the beamline. Schematic drawing of the most
important optical elements of the PHELIX beamline is shown in Fig. 3.14. The
undulator light is collimated through a collimating mirror and directed into the
plane grating monochromator (PGM), where it gets reflected from the plane mirror
inside the PGM chamber onto the grating. The working principle of the PGM is
based on the diffraction of the incoming light on a plane grating with a constant
line spacing [140].
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Figure 3.14: Schematic of the most important optical elements of PHELIX end station
with their positions along the beamline. Taken from Ref. [111].

When the collimated light hits the grating, it is diffracted at different angles de-
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pending on the wavelength of the light. The beamline works with three gratings: 600
lines/mm suitable for 50-300 eV, 800 lines/mm for 200-1000 eV and 1200 lines/mm
for 400-1500 €V [141]. By rotating the plane mirror inside the PGM chamber and
the grating of the monochromator, the desired energy gets refracted into the for-
ward direction where it gets focused by a focusing mirror onto the exit slit. The
width of the exit slit determines the final energy resolution, where it allows light
of a specific wavelength to pass through, blocking most of others. The exit slit is
directly followed by a refocusing mirror which finally produces a small beam spot on
the specimen inside the spectrometer. A top view of the 3D model of the PHELIX
end-station showing its main components is shown in Fig. 3.15, with the light beam
incidence angle of 54.7° with respect to the lens axis.

Additional Preparation Chamber

Load-Lock

Analysis Chamber

Main Preparation Chamber

Figure 3.15: 3D model top-view of PHELIX end-station showing its main components.
Angle of beam incidence with respect to the lens axis is 54.7° .Taken from Ref. [141].



4. ARPES-based electronic structure of PtTe,

This chapter presents a detailed investigation of the electronic structure of PtTe,, a
transition metal dichalcogenide (TMDC), using angle-resolved photoemission spec-
troscopy (ARPES). The ARPES measurements reveal key electronic features, in-
cluding sharp surface states and diffuse bulk electronic regions, with a focus on the
topological surface states (TSS).

The chapter explores how varying light polarization, specifically s- and p-polarized
light, affects the photoemission intensities, as observed in the spin-integrated mo-
mentum maps from the ARPES spectra. These variations are analyzed within the
framework of matrix element, linking the sensitivity to the light polarization to the
orbital character of the valence bands. Different orbitals exhibit distinct responses
to s- and p-polarized light, resulting in notable differences in spectral weights.

A central focus of the chapter is the investigation of asymmetries in the measured
spectral weights of PtTe,. This analysis is conducted by comparing spin-integrated
momentum maps along high-symmetry directions in the reciprocal space, specifically
the ' — K and I — M directions, while varying the alignment of the sample with
respect to the incident light. In geometries where the reaction plane, defined by the
light incidence angle and normal to the sample surface, coincides with one of the
mirror planes of the crystal surface, the electronic band structure and photoemission
intensities display symmetry with respect to the mirror plane. However, when the
sample was rotated such that the incident light no longer impinged within a crystal
mirror plane, pronounced asymmetries emerged in the ARPES data, manifested as
changes in intensity and shifts in the positions of both surface and bulk electronic
features.

These asymmetries are attributed not to sample defects or imperfections, but
rather to the specific alignment of the crystal relative to the incident light, as well
as intrinsic structural asymmetries within the crystal itself. In particular, regions
associated with topological surface states exhibited pronounced asymmetry, under-
scoring the influence of experimental geometry on these measurements.

A comparative analysis presented in this chapter demonstrates that while the-
oretical band structure calculations predict symmetric behavior, experimental data
may deviate from these predictions due to experimental factors. Understanding
these asymmetries is crucial for interpreting ARPES studies and highlights the need
to consider experimental conditions when analyzing photoemission spectra.

4.1 Crystal structure of PtTe,
PtTe, is a member of the transition metal dichalcogenides (TMDCs) family materi-

als. It is characterized by the octahedral 1T-phase structure, where the hexagonally
packed layer of the transition metal plane formed out of Pt atoms is sandwiched

56
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between two chalcogen layers composed of Te atoms. Figures 4.1(a) and 4.1(b) rep-
resent a top- and side views, respectively, of the crystal structure of PtTe,. Within
a monolayer, the two Te layers are 180° rotated with respect to each other, produc-
ing a Pt-centered PtTes octahedron [112], as shown in the bulk unit cell of PtTe,
depicted in Fig. 4.1(c), giving rise to a trigonal structure when projected onto the
(001) plane.

Within the individual PtTe, monolayer, which itself contains three layers of
atoms (Te-Pt-Te), the intralayer Pt-Te bonds are strong covalent bonds, whereas
the monolayers are coupled via the weak van der Waals forces, allowing the crystal
to cleave along the layer surface preserving its properties [143]. The three atomic
planes (Te-Pt-Te) are stacked in the AbC order, in which Te atoms in different
atomic planes occupy different positions A and C in the direction perpendicular to
the layer (see Fig. 4.1(b)).

(c)

Figure 4.1: Crystal structure of bulk single crystal PtTe;. (a),(b) Top and side
views of PtTeq crystal structure, respectively. Atom colour code: yellow, metal-Pt; green,
chalcogen-Te. The label AbC in (b) represents the stacking sequence where the upper-
and lower-case letters represent the chalcogen and metal elements, respectively. (c¢) Bulk
unit cell, indicated by the solid blue line in (a) and (b).

4.2 Symmetry operations of bulk PtTe,

The compound PtTe, crystallizes in the P3m1 space group (No. 164). Tts crystal
structure exhibits twelve distinct symmetry operations, which are detailed below and
illustrated in Fig. 4.2. In the figure, each circle represents an atom, and the circle
labeled ‘1’ signifies the identity operation for an atom within the unit cell enclosed
by the parallelogram. The labels ‘1’ through ‘12’ inside the circles correspond to
the listed symmetry operations, establishing a one-to-one correspondence. In all the
symmetry operations: x and y are translations along the in-plane lattice constants
a and b respectively, ie. x =rx dandy =y b. While z is a translation along the
out of plane c lattice constant; z = z ¢.
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m Position of atoms within the unit cell
u Threefold axis

Threefold inversion axis

I } Mirror planes

- Twofold axes

Change of handedness

Figure 4.2: Diagram for P3m1 (No. 164) space group. Left: space group diagram
showing the equivalent atomic positions generated by the twelve symmetry operations
present in PtTes bulk single crystal. In this diagram my, me, and ms refer to the three
mirror planes operators, 241, 249, and 243 represent three twofold axes, and ‘4’ and
‘~” indicate atomic positions either above or below the z = 0 plane, respectively. Right:
explanation of the symbols used in the left panel. Figure produced based on explanation
in [144].

symmetry operators:

1. z,y, z : Identity; I

2. Yy, x—y, 2 : Anticlockwise 3-fold rotation axis; 37
3.T+y, 7,2 : Clockwise 3-fold rotation axis; 3~

4. 9y, z, 2 : Mirror plane; m;

5. T+ Y, Yy, 2 : Mirror plane; mo

6. z,x—vy, 2 : Mirror plane; mg

7.2, 9,2 . Center of inversion, [

8.y, x+vy, z . Anticlockwise 3-fold inversion axis; 3*
9. z—y,x, 2 : Clockwise 3-fold inversion axis; 3~
10. y, x, z : Twofold axis 244

11. z—y, 9y, 2 : Twofold axis 249

12. 2, x4y, 2z : Twofold axis 243
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4.3 ARPES on bulk PtTe,

Figure 4.3 provides an overview of the ARPES measurements of PtTe;. The mea-
surements were conducted for two distinct sample orientations, determined by the
relative alignment of the three mirror planes present in the bulk single crystal (dis-
cussed in Sec. 4.2) and the incidence angle of the light!. A schematic illustration
of the first orientation is shown in Fig. 4.3(a), where the light impinges the sample

within one of the (M —T' — M) mirror planes.
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Figure 4.3: Experimentally determined electronic band structure of PtTe;.
Upper panel: (a) schematic geometry showing one of the three mirror planes of bulk
PtTes, oriented such that the incident light beam interacts with the sample within this
plane, thereby maintaining the symmetry rules of the mirror plane. (b) Three-dimensional
ARPES data set for PtTes. (c) A three-quarter view of (b) to enhance visualization of the
band structure. (d) ARPES Fermi surface map of PtTes (Ep £ 200 meV). (e),(f) In-plane
band dispersion along the high-symmetry directions T — K and T'— M, respectively. (d)-(f)
Cuts taken from the 3D data set in (b). Measurements shown in panels (b) through (f)
were conducted using the geometry depicted in (a). The labels denote surface states (SS),
topological surface states (TSS1, TSS2, TSS3), and the type-1I bulk Dirac cone (hr = 108
eV; p-polarized light, probing close to an A-plane in the three-dimensional Brillouin zone
along the k, direction). Lower panel: (h) through (1) replicate the measurements shown
in (b) through (f), but were obtained using the geometry depicted in (g), where one of
the three mirror planes of bulk PtTey is oriented such that no mirror plane symmetry is
preserved for the entire system of the sample and the incident light.

The measurements were performed using p-polarized light of hiy = 108 eV probing
close to an A-plane of the three dimensional Brillouin zone?. The first A-plane in

IThe significance of these two orientations will be thoroughly examined in Sec. 4.10 and, Sec.
5.1 in the context of spin-resolved measurements.
2Through Eq. 2.56, for the normal emission ¥ = 0, using inner potential V, = 16 eV, hv = 108
eV and for electrons emitted from Fermi-level with Ep = 0 with a typical metallic work-function
w = 4.5 eV, then k, ~ 5.60A~!. For a lattice vector ¢ ~ 5.22A along the out-plane direction =
k, ~ {427" + T =4d-b3 + % =4.b3+A}, indicating the probing close to the A-plane highlighted by
the cyan-frames in Note 3. ;
3PtTey bulk Brillouin zone. Reciprocal lattice vectors are indicated by the
vectors by, by, and b3. Blue-frame represents the I'-plane, while cyan-frames
refer to A-planes in reciprocal space.
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the reciprocal space for a trigonal crystal structure is defined by A-plane = % bs,
where %3 is a unit vector along the out-plane direction k,.

Let us first discuss panels (b)-(f) of Fig. 4.3, which were obtained using the
experimental geometry depicted in panel (a). The ARPES data from PtTey were
collected as a 3D matrix E(k,, k), as shown in panel (b). To enhance the visualiza-
tion of the band structure, three-quarters of this matrix are plotted in panel (c). The
Fermi surface map and the in-plane band dispersion maps along the high-symmetry
directions of the surface Brillouin zone, K —T' — K and M — T — M, are shown in
panels (d)-(f), respectively, which were extracted as cuts from the data matrix dis-
played in panel (b). The wavevector positions of the features in the ARPES Fermi
surface map”’ in panel (d) indicate a threefold symmetry, confirming the absence of
twin domains in the measured PtTey crystal.

As will be discussed below, the sharp features observed in the band dispersion
in panels (e) and (f) primarily correspond to topologically trivial surface states
(SS) and topological surface states (TSS1, TSS2, TSS3). The TSS2 state has been
experimentally well-resolved in a related compound PdTey, as reported in Ref. [25].
Additionally, regions of relatively diffuse spectral weight, indicative of a projected
bulk band structure, are observed, including the region associated with the type-
IT bulk Dirac cone located approximately 1 eV below the Fermi level [29]. Both
the topological surface states and the type-II bulk Dirac cone arise from a series
of band inversions within the Te p-orbital manifold. These inversions result from
the disparity in bandwidth between the out-of-plane p, orbitals and the in-plane
Day Orbitals along the k, direction in reciprocal space [20], as further elaborated
in Sec. 4.5. The topological surface state centered around the binding energy of
approximately 2.3 eV has been identified as a surface Dirac cone in PtTey; and
related compounds [25, 28, 29, 48, 19].
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Figure 4.4: Experimentally determined surface Dirac cone in PtTes. (a) Part of
the 3D data set showing the surface Dirac cone centered at Eyjnging ~ 2.3 €V which is
being referred to as TSS1 in Fig. 4.3(c). (b) Selected constant energy cuts, clarifying with
the aid of the magenta and green lines, closing and re-opening of the cone while increasing
the binding energy.

For the second orientation, the sample was rotated by 30° around the out-of-
plane z-axis relative to the first orientation. This aligns the sample such that the

4Fermi surface: is the surface in momentum space where, in the limit of zero interactions as
T = 0, separates occupied from unoccupied electron states.
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incident light beam impinges the sample not within any of the three M —I' — M
mirror planes as shown in panel (g). Measurements obtained at this configuration
are presented in panels (h) through (1). ARPES Fermi surface maps in Figs. 4.3(j)
and 4.3(d) are connected by 30° rotation around the out-plane k,-axis, consistent
with the 30° rotation of the crystal. Additionally, Fig. 4.3(k) is now equivalent to
Fig. 4.3(f), while Fig. 4.3(1) is equivalent to Fig. 4.3(e).

A portion of the 3D data stack from Fig. 4.3(h), which encompasses the surface
Dirac cone, is presented in Fig. 4.4(a). Additionally, selected constant energy
contours are shown in Fig. 4.4(b), demonstrating the closing and reopening of the
Dirac cone with increasing binding energy, as illustrated by the green and magenta
lines.
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Figure 4.5: ARPES on cold PtTe; using PGI-6 lab. based Hel and Xe light
sources. (a),(d),(g) Fermi surfaces ARPES momentum maps from cold PtTes. Hel
radiation (hv = 21.22 eV) was used in (a),(d). Xe radiation (hv = 8.44 €V) was used
for (g). (b),(e),(h) Energy-momentum bands dispersion maps probed along the dashed-
magenta lines in the corresponding Fermi maps (a),(d),(g) respectively. Fermi surfaces
maps (a),(d),(g) and the corresponding bands dispersion maps were measured using the
experimental geometries (c),(f),(i) respectively. Energy-momentum maps were measured
along the slit of the analyzer.

A clearer depiction of the surface states of PtTes is provided in Fig. 4.5, which
was measured on a cold PtTe, sample at a temperature of approximately 45 K using
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PGI-6 lab-based light sources. Panel (a) shows the Fermi surface ARPES momentum
map obtained with He I radiation (hr = 21.22 eV). The corresponding energy-
momentum band dispersion map, shown in panel (b), was measured along the dashed
magenta line in (a). Both panels (a) and (b) were obtained using the schematic
geometry illustrated in panel (¢). The middle panels (d)-(f) present measurements
equivalent to those in (a)-(c), but with the sample rotated by ¢ = 30° around the
z-axis, as depicted in panel (f). The lower panels (g)-(i) replicate the measurements
in (d)-(f), but were conducted using Xe radiation (hv = 8.44 €V). The energy-
momentum maps in (a), (d) and (g) were measured along the slit of the spectrometer,
that is aligned along the y-axis. The incident light in (c) and (f) is within the yz-
plane, while it is within the zz-plane in (i).

Panel (e) of Fig. 4.5 reveals that the surface states (SS) at Eppging ~ 1 €V
are clearly visible, exhibiting nearly flat dispersion. These surface states are also
observable in the energy-momentum map measured with Xe radiation, as shown in
Fig. 4.5(h). The upper branches of the surface Dirac cone merge with the diffuse
projected bulk spectral weight. Along the T' — K direction shown in Fig. 4.5(e),
they retain their general shape and persist as surface resonances distinctly separated
from the bulk diffuse spectral weight curving away from the T’ point. However, they
continue to disperse at lower binding energies along the I' — M direction, as seen
in Fig. 4.5(b), after emerging from the bulk diffuse manifold. Furthermore, the
photoemission intensity at the type-II bulk Dirac cone region varies significantly
between He I and Xe radiation. This variation in ARPES intensity with different
photon energies highlights the bulk nature of the Dirac cone.
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Figure 4.6: Calculated electronic band structure of PtTes. (a) A unit cell of
30-layers slab as visualized via VESTA, with the real space lattice vectors shown in the
inset. (b) 3D-calculated band structure of PtTes for the slab shown in (a). Contribution
from the outermost atomic orbitals of the top surface Pt and Te atoms are included in the
calculations. These atoms are enclosed by the red-square in (a). (¢) Bulk band structure
for Ep(kras, kra). Red arrow indicates the local bulk band gap, while the blue arrow
indicates the type-1I bulk Dirac cone.

In order to compare the presented experimental work with theory, the band
structure of PtTey has been calculated using WIEN2k for a 30-layers slab, where a
monolayer is equivalent to three atomic layers Te-Pt-Te. A 3D-visualization of the
unit cell of the 30-layers structure is shown in Fig. 4.6(a) which is visualized via
VESTA program using the structure file that is being used in WIEN2k calculations.
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The 3D-data set of the calculated band structure representing E(ki_s;, ki_zz) is
shown in Fig. 4.6(b)® where the contribution from the outermost atomic orbitals of
the top surface Pt and Te atoms are included in the calculations®. These orbitals
weights are indicated by the gray level scale. The weights of separate orbitals for the
distinct bands will be discussed in Sec. 4.6. Figure 4.6(c) presents the bulk band
structure for Ep(kras, kra). The type-II bulk Dirac cone, previously referenced in
Fig. 4.3(f), is highlighted with the blue arrow, while a local bulk band gap is marked
with the red arrow.

(a) Max. (b) Max. (©)
. O T S 77 =
>
© AN
£ - W AN
> § 1 / \ \\\ “\Max.
2 2 o e
= Q0 Min.
iog /\ 7\
° =
= ’ . e AN
a 3 Y, N
Min. 4 05 0 05 1 Min. 0.5 0 0.5
kr_m [1/A] kr_g [1/A] kr_m [1/4]

Figure 4.7: Calculated Fermi map and electronic band structure along high
symmetry directions of reciprocal space. (a) Fermi surface map constant energy cut
from the 30-layers calculations presented in Fig. 4.6(b). (b),(c) Calculations of the band
structure along the high symmetry directions of the surface Brillouin zone K —T' — K and
M —T — M, respectively. Outermost atomic-orbitals of the top surface Pt and Te atoms
are included in the calculations (a-c).

Fermi surface map (averaged over AE = 0.03 eV) taken from the calculated band
structure of the slab is plotted in Fig. 4.7(a). Energy-momentum maps along the
high symmetry directions K —I' — K and M —T — M are shown in Figs. 4.7(b) and
(c) respectively. In agreement with the experimentally measured data in Fig. 4.3,
multiple surface states are clearly visible, particularly, the surface Dirac cone at ~
2.0 eV which is resolved and plotted separately in Fig. 4.8. Additionally, there is
the previously mentioned TSS3 crossing Fermi level in Fig. 4.7(c) that appears as
arcs in the Fermi map at k| ~ £0.5 (A=) midway along the I' — M direction in Fig.
4.7(a). These topological surface states are hosted within the local bulk band gap
indicated by the red arrow in Figure 4.6(c). The slab calculations reveal clearly the
surface states labeled in Fig. 4.3 as (SS) along T' — K direction, while one branch
appears to be much more pronounced along I' — M direction.

Experimentally selected constant energy k,-k, contours are plotted in Fig. 4.9(a)
and Fig. 4.9(b) for the two different geometries discussed in the upper and lower
panels of Fig. 4.3 respectively. The corresponding k,-k, contours that are produced

5A grid of 51 x 51 k-points was employed for this calculation, with 51 k-points sampled along
the b; direction and 51 k-points along the by direction of the reciprocal space.

6As described in Sec. 2.7, the solid is divided into non-overlapping Muffin-tin spheres centered
at the atomic positions, and the WIEN2k calculations account for the electronic charge distribution
within these spheres. For valence orbitals, however, the charge is not entirely confined within
the Muffin-tin spheres, indicating that the surface weight obtained from the calculations is an
approximation.
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Figure 4.8: Calculations of the surface Dirac cone. (a) Section of the Eyinging(ka, ky)
band structure in the region of the Dirac cone at Epinging ~ 2 €V. (b) Same as (a) but only
for negative momenta along ' — M to visualize the Dirac point. Outermost atomic-orbitals
of the top surface Pt and Te atoms are included in the calculations (a-b).
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Figure 4.9: Experimentally determined and theoretically produces k,-k, con-
stant energy contours of PtTes. (a), (b) Selected experimental constant energy con-
tours of PtTes (hv= 108 €V, P-pol.) that were measured at two different geometries
explained in the upper and lower panels of Fig. 4.3 respectively. (¢) Corresponding the-
oretical constant energy contours that are plotted from the 30-layers slab calculations.
Each is at the indicated binding energy.

via the 30-layers slab calculations are also presented in Fig. 4.9(c).

The surface state SS together with the surrounding diffuse bulk manifold, pro-
duce the warped shape in the momentum map labeled with Epnging = 0.75 €V of
Fig. 4.9. A red frame indicating this warping is plotted in Fig. 4.9(a) for the
corresponding map. This momentum map evolves into (Epinging = 1.25 €V)-labeled
momentum map of Fig. 4.9 which is a constant energy cut taken from the 3D-data
set at binding energy corresponds to the lower part of the surface state SS. The
contour corresponds to Eppging = 1.85 eV is measured above the upper legs of the
surface Dirac cone TSS1.

4.4 Thickness-Driven Metal-to-Semiconductor Transition in PtTe,

The calculations presented in Fig. 4.10(a) illustrate the behaviour of the electronic
band structure of PtTey when its bulk structure is thinned down to a single layer,
i.e. triatomic layer formed of Pt-layer sandwiched between two Te-layers. The
calculation shows bands crossing the Fermi level in the bulk down to 2-layers which
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reflects the metallic nature of PtTep. This has been experimentally reported in
Ref. [32] for the (2 to 6) layers of PtTey thin films. On the other hand, calculations
show a semiconducting case for the one-layer where Fermi level is located in-between
the valence and the conduction bands. The semiconducting case has recently been
experimentally verified in a single layer of PtTe, in Ref [17]. The indirect band-gap
predicted in a monolayer of PtTe; positions this material as a promising candidate
for applications in valleytronics, similar to the indirect band gap predicted in its
sister compound, PtSe, [33].
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4.5 Origin of topological phenomena based on tight-binding analysis

In this section we analyse the band structure of the 1T-type MX; of the family of
TMDCs based on the tight-binding model. The orbital weight due to the transition
metal, M, in the band structure is significantly bellow the Fermi level. As a re-
sult, focusing exclusively on the p-orbital manifold of the chalcogen provides a valid
approximation [145].

Following the crystal structure discussed in Sec. 4.1, the unit cell exhibits three-
fold rotationally symmetric along the c-axis. The resulting crystal field splits the
triply degenerate energy levels of Te (neglecting spin) p,, . into p, and p,, mani-
folds. Spin orbit interaction (SOI) further splits the p,, manifold into the singlets
R, and Ry levels with distinct energy levels that no longer have degeneracy, and
additionally it modifies the energetic separation of p, and p,,. Furthermore, the
presence of two chalcogen sites within the unit cell leads to the creation of bonding
and anti-bonding splittings of the p-energy levels. All these factors together create
a hierarchy of energy levels at the I' (k=(0,0,0)) and A (k=(0,0,7/c)) points of the
Brillouin zone, as illustrated in Fig. 4.11. The hopping of electrons along the c-axis
for the p, orbitals, as denoted by the intra-layer hopping t3 and inter-layer hopping
t, in Fig. 4.11(a), is significantly larger when compared to the planar p,, orbitals.
This induces a strong k, dispersion and a larger bandwidth for the p,-derived bands
compared to the p, ,-derived bands, leading to the emergence of multiple band cross-
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Figure 4.11: Formation of topological phenomena from the single chalcogen p-
orbital manifold in 1T-TMDCs. (a) Crystal structure of the 1T-TMDCs discussed
in detail in Sec. 4.1 showing the hopping of electrons within the same sub-layer (t;=t3),
between the two sub-layers (¢3) within the same monolayer and the inter-layer hopping (¢4)
used in the tight binding model to create the energy levels in (b). (b) Schematic diagram
showing splitting of the chalcogen p-orbital derived energy levels at the I" and A points of
the Brillouin zone as a result of the combination of the crystal field splitting (CFS), spin
orbit interaction (SOI) and the bonding and anti-bonding splittings. The sufficiently high
band width of the p.-orbital character bands compared to the planar p, ,-derived bands
along the out of plane high symmetry line I'-A, leads to multiple band crossings forming
ladder of topological phenomena including protected bulk Dirac points and band gaps with
inverted parity hosting spin polarized surface states. The double group representation (R;)
and the parity (+/-) are labelled. (c¢) Out of plane bulk band dispersions along the T'-
A direction of the Brillouin zone from DFT calculations of PtTes, projected onto the
chalcogen p; 4(red) and p.(blue) orbitals, demonstrating (b). (a) Adapted from [25], (b)
reproduced from [145].

ings within the same p-orbitals manifold [25, 115, 116]7. Some of these crossings are
protected by the symmetry of the crystal lattice, resulting in the so-called bulk Dirac
points (BDP). This is the case for the crossings of the bonding and anti-bonding
split bands of R, and Rjg, where, for a given Hamiltonian H(k), the overlapping
matrix element < R4|H (k)|Rs6 > equals zero, indicating no hybridization between
the corresponding wave functions. On the other hand, the hybridization between
the split bands of R4 and R} is not protected, leading to a parity-inverted band gap
(IBG) that hosts spin-polarised Dirac states at the surface. All this combined pro-
duces a so-called topological ladder. The DFT calculations of PtTey illustrate this
phenomenon, as shown in Fig. 4.11(c). These calculations depict the out-plane bulk
band dispersions along the I'-A direction of the BZ, projected onto the chalcogen
Pay (red) and p, (blue) orbitals.

"Unlike the majority of other systems where different atomic manifolds contribute to the forma-
tion of such topological phenomena as e.g. in the topological insulator BizSes where the topological
surface state hosted in the inverted band gap results from the crossings of p,-derived bands of both
Bi and Se manifolds [1417].
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4.6 Orbital characters of bulk PtTe, valence bands

Figure 4.12 and Fig. 4.13 show surface orbital characters of the 30-layers PtTe, slab
calculation. The quantization axis for the complex orbitals is chosen perpendicular
to the surface as shown in the inset. One can see that the surface Dirac cone centered
at Ep ~ 2 eV (TSS1) is formed predominantly from the out-plane orbitals Pt 5d Y,
= d,» and Te 5p Y = p, with admixtures of Pt 6s Y3 orbital.
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Figure 4.12: Band characters for the Pt surface atom of the 30L PtTe; slab
calculation. Band characters for the Pt surface atom of the 30L PtTey slab calculation
for s, p and d complex orbitals for the quantization axis normal to the surface as indicated
in the inset. The bands are plotted along M — ' — K trajectory of the reciprocal space.
The size of symbols represents the corresponding orbital weight.

The surface states at Ep ~ 1.5 eV are formed from Te 5p Y}, Te 5p Y;*! and Pt 5d
Y7 orbitals. The surface states at Ez ~ 0.8 ¢V (SS) are formed predominantly from
Te 5p Y and Te 5p Y;*! with admixtures of Pt 5d Yy and Pt 5d Y52 orbitals. The
surface states close to Fermi level (T'SS3) that appear only along the I'— M direction
are formed predominantly from the out-plane Te 5p Y orbital with admixtures of
Pt 5d Y, Y5 and Y552 orbitals. This demonstrates that in PtTe, the valence bands
wave functions are strongly mixed between Te and Pt sites.
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Figure 4.13: Band characters for the Te surface atom of the 30L PtTe; slab
calculation. Band characters for the Te surface atom of the 30L PtTey slab calculation
for s, p and d complex orbitals for the quantization axis normal to the surface as indicated
in the inset. The bands are plotted along M — ' — K trajectory of the reciprocal space.
The size of symbols represents the corresponding orbital weight.

4.7 Tonization cross sections

Figure 4.14 shows photoionization cross sections for the valence orbitals of PtTe,,
taken from Ref. [148], for the photon energy range relevant to the work presented
in this thesis. Let us assume, to a first approximation, that the photoemission
signal detected via ARPES originates from the contributing orbitals that have been
discussed in Sec. 4.6. The vertical black-dashed line indicates the cross sections
at the He-I radiation energy. One can see that at this energy the ARPES signal is
dominated by the Pt 5d and Te 5p orbitals. The cross section of Pt 5d is ~ 6-times
larger than the Te 5p cross section, however, this is probably partly compensated by
the longer inelastic mean free path IMFP (discussed in Sec. 2.5.2) of Pt sites which
are located under the Te sites (see Fig. 4.1). At this energy, the cross section of
Pt 65 is over two orders of magnitude smaller. Therefore, we conclude that at He-I
photon energy only Pt 5d and Te 5p orbitals contribute significantly to the ARPES
signal.

The relative contribution of Te is highest at hv near 200 eV, where contribu-
tion from Pt 5d is only ~ 2x larger than those from Te orbitals, therefore, likely
compensated by the IMFP effect. We conclude that at ~ 200 ¢V, Pt 5d and Te 5p
contribute approximately equally.

At all energies, the cross section of Pt 6s orbital is much smaller than cross sec-
tions of other orbitals, therefore, one can neglect its contribution in the approximate
analysis. All these considerations are approximate in the sense that they are not
taking into account the itinerant nature of the valence orbitals. Furthermore, the
far field signals originated from different orbitals need to be added coherently, which
will lead to interferences as explained in Sec. 2.6.
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Figure 4.14: Photoionization cross sections of Pt and Te atoms. Ionization cross
sections of the valence band orbitals of Pt and Te atoms for the photons energies range
that is relevant to the work presented in this thesis. Vertical dashed line indicates He-I
radiation energy of hv = 21.22 eV. Figure re-plotted from Ref. [148].

Panels (a)-(d) of Fig. 4.15 are energy-momentum band dispersion maps of PtTey
along K — ' — K measured using some selected photon energies. Panel (a) was
measured using the unpolarized He-I radiation energy. Panels (b)-(d) were measured
using p-polarized light using the corresponding indicated energies. One can see
the bigger momentum range probed with increasing photon energies, where same
range of angles was covered, in consistent with Eq. 2.32. Despite the tendency
towards becoming more bulk sensitive with increasing photon energy, one can still
see the surface Dirac cone centered at Eg ~ 2.3 e¢V. One can as well see that the
photoemission intensity of the surface Dirac cone is modulated as a function of
photon energy, where it is most pronounced at hv = 500 eV and suppressed at
hv = 60 eV. Similar observations of variation of ARPES photoemission intensity as
a function of hv have been experimentally reported in the surface state of Al(100)
in Ref. [119, 150] and in the surface state of BiTel in Ref. [151].

Panels (e)-(p) present a summary of ARPES measurements of PtTe, measured
using p-polarized light and hv = 500 eV. Using hv = 500 eV probes ~ two BZs
of PtTey as shown in panel (g) of the Fermi surface map and the corresponding
energy-momentum map of panel (h) in addition to the constant energy contours of
panels (k)-(p) where the reciprocal lattice vectors by and by are labeled.

The IMFP when probing using 500 eV (the soft x-ray regime) is ~ 2-times longer
compared to the IMFP when probing using the 60 eV (the VUV regime) (see Fig.
2.7). This bulk sensitivity is reflected more clearly in the energy-momentum maps
of panels (h),(i) where ARPES intensity is pronounced in the region of certain bulk
structures. On the other hand, the surface Dirac cone is still clearly pronounced as
illustrated in panel (j) in the momentum maps close to it.
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Figure 4.15: Measured band structure of PtTe; at selected photon energies.
(a)-(d) Experimentally determined electronic band dispersion of PtTey along the high
symmetry direction T' — K. (a) Measured using the unpolarized He-I radiation energy.
(b)-(d) Measured using P-polarized light with photon energies indicated in the upper
panel 60 eV, 105 eV and 500 eV respectively. (e)-(p) Summary of PtTey electronic band
structure using hv = 500 eV. Measurements were performed on cold PtTes (T ~ 88 K).
Reciprocal lattice vectors by, by are labeled in (k) and (p).

4.8 Different orbital responses to s- and p-polarized light

In Fig. 4.16 we show different response of bulk PtTe; valence electronic bands when
measured using either s- or p-polarized light. Panel (a) shows the energy-momentum
map measured along M — ' — M as indicated by the dashed-magenta line in the
corresponding Fermi surface map in panel (b). Panels (a),(b) were measured using
p-polarized light, hv = 108 eV, where the sample was aligned such that the normal
to the sample surface is along the axis of the spectrometer lens, as schematically
illustrated in panel (c), and the yellow sinusoidal wave refers to the electric field of
the light. Panels (d)-(f) are equivalent but measured using s-polarized light at the
same geometry, as shown in (f).

Panels (g)-(h) were measured using p-polarized light, hv = 165 €V, but in this
case the sample was rotated around the y-axis by 8 = 54.7° such that the direc-
tion of the incident light coincides with the out-plane z-axis, with respect to the
sample surface, as illustrated in the corresponding geometry in panel (i). With this
geometry, the p-polarized light is seen as s-polarized light by the sample surface.

Panels (a),(d) and (g) were measured through probing along the slit of the ana-
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Figure 4.16: Different orbital character response using s- and p-polarized light.
(a) Measured band dispersion map of PtTes along ' — M, probed along the magenta
line of the corresponding Fermi surface map in (b) (Fermi map: Ep = Er + 0.2 €V).
(a),(b) Measured using p-polarized light, hv = 108 eV, as illustrated in (c) where the
sinusoidal wave indicates the electric field polarization direction of the light when sample
was in normal emission. (d)-(f) Same, but measured using s-polarized light, hv = 108
eV, as illustrated by its electric field direction in (f). (g)-(i) Also same, but measured
using p-polarized light, hv = 165 eV, where sample was off-normal rotated by 6 = 54.7°
as schematically illustrated in (i). (g) Measured along T' — K. Yellow rectangles enclose
the surface Dirac cone at Ep ~ 2.3 ¢V, while the green rectangles enclose the topological
surface state (TSS3) crossing the Fermi level. (a),(d),(g) Probed along the slit of the
analyzer which is aligned along the y-axis. Band dispersion maps and Fermi maps were
normalized by the measured mirror current at the beam-line indicating the intensity of
the light while taking measurements.

lyzer which is aligned along the y-direction. Band dispersion as well as Fermi surface
maps are normalized by a mirror current at the beam-line reading the intensity of
the light used during ARPES experiments.

As discussed in Sec. 4.6, the surface Dirac cone at Ep ~ 2.5 €V is predomi-
nantly formed from the out-plane orbitals Pt 5d Yy = d,» and Te 5p Y = p, with
admixtures of Pt 6s Yy orbitals. But, at hr = 108 €V the cross section of Pt 6s Yy
can be neglected, therefore, ARPES signal can be considered to be originating from
the out-plane orbitals only. The p-polarized light has an out-plane component of
its oscillating electric field, contrary to the totally in-plane oscillating electric field
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in case of the s-polarized light. As a result, one would expect the coupling between
out-plane orbitals and p-polarized light to differ from that with s-polarized light.

This selective orbital-light coupling is clearly seen in the stronger ARPES signal
of the Dirac cone in panel (a) compared to panel (d) (see yellow rectangles). Ad-
ditionally, in panel (g) even though we started with p-polarized light, the rotated
sample 0 = 54.7° sees the light as s-polarized and this is demonstrated in the re-
duced ARPES signal of the Dirac cone in (g) compared to (a) and consistent with
(d). A similar logic can also be applied to the surface states crossing the Fermi
level (T'SS3), where these states show stronger ARPES signal when excited using
p-polarized light as seen in panel (a) compared to the panel (d) (see green rectan-
gles) due to the out-plane nature of Te 5p Y,? orbitals that predominantly form these
states. On the other hand, the surface states at Egp ~ 0.8 €V exhibit a mixture of
in-plane and out-plane orbitals, as discussed in Sec. 4.6, making it challenging to
provide a straightforward explanation solely from this perspective.
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Figure 4.17: PtTe; valence bands response to different light polarizations. (a)-
(g) Fermi surface maps of PtTeg, aligned in the symmetry geometry shown in Fig. 4.3(a),
measured using different light polarizations by changing the phase of the undulator ¢,
starting with s-polarization (a) passing through elliptical polarizations (b),(c) then circular
polarization (d) and again elliptical polarizations (e),(f) ending up with p-polarization (g).
(h)-(n) Corresponding energy-momentum band dispersion maps along K — I — K probed
along the slit of the spectrometer which is defined along the magenta-dashed lines in the
corresponding Fermi surface maps. (a’)-(n’) Same, but measured using the asymmetry
geometry shown in Fig. 4.3(g), and (h')-(n’) were measured along M —T — M. All spectra
were normalized by the measured mirror current at the beam-line indicating the intensity
of the light while taking measurements.

Figure 4.17 shows the response of PtTe, valence bands to different light po-
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larizations, where maps were normalized by the mirror current at the PHELIX
end-station. The polarization of light was changed by changing the phase of the
undulator § (see Sec. 3.4). Panels (a)-(g) present Fermi surface maps of PtTe,
measured using different light polarizations at the corresponding indicated phases.
At the PHELIX end-station, when the phase is half of the undulator wavelength,
0= % - Ay, the light is vertically polarized and its Fermi surface map is shown in
panel (a). The phase was reduced with a step size of factor %7 to have elliptically
polarized light as in panels (b) and (c), then it was circularly polarized as in panel
(d), and again elliptically polarized as in panels (e) and (f), and finally the phase was
reduced to § = 0 to have a horizontally polarized light with its corresponding Fermi
surface map shown in panel (g). Panels (h)-(n) are the energy-momentum maps long
K —T' — K, which were probed along the dashed-magenta lines plotted in the corre-
sponding Fermi maps. Panels (a’)-(n’) are similar, but measured for the asymmetry
geometry alignment of the sample as shown by the Fermi maps in panels (a’)-(g’),
and the corresponding energy-momentum bands in this case are along M — T — M.
Within the tight binding picture, each point in these measured spectra is defined by
a wavefunction which within the atomic picture is a linear combination of atomic
orbitals. Therefore different structures and different photoemission intensities can
be thought of as different coupling of the orbitals consisting these structures with
different polarizations of light. The smooth increase in the ARPES intensity of the
surface Dirac cone while moving from vertically to horizontally polarized light is a
clear example.

4.9 Light polarization effect on ARPES experiment

The atomic photoemission matrix element, as discussed in Sec. 2.5.1.1, can as well
be expressed as described in Ref. [104]%

N :
Afkfk 0.8 27TV Eo (’ka — %ej_)

~—_——
I

i 1
X (ks = kn + 1eL|0,k) 0(ky — kg + K + K))

i(ky — kgl +kpot) +1/X
h 111
v

where k, k, kp, and K are the initial state electron’s wave vector, the final state
electron’s wave vector, the momentum vector of the incoming light and a reciprocal
lattice vector respectively. e is the surface normal vector. The second term (II) rep-
resents the angular distribution of photoelectrons based on local orbital properties.
The third and forth terms (III), (IV) refer for the conservation of parallel and per-
pendicular momentum respectively. Now, let’s focus on the term (I) which has the
dot product between the polarization of the light used during ARPES experiments
and the wave vector of the final state of the electron. This term accounts for the
limited lifetime of the outgoing electron from the solid due to electron-electron and

8 An equivalent expression for emission from atomic orbitals, within the free-electron final state
approximation, is given by the differential cross section relation ;1% o (&k)HY™ (I, 1) ? [152],
where € is the light polarization, and k is the wave vector of the emitted electron defined by the

emission angles ¥4 and ¢y (see Fig. 2.5).
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electron-phonon interactions through introducing the parameter A which represents
damping of the wave inside the solid [153, ]. Therefore, the free-electron plane
wave of the outgoing electron is modified into the damped plane wave e™*/me¢"/x, In
order to investigate the influence of this term on the photoemission matrix element,
one needs to evaluate the projection of the polarization vector € on the final state
wave vector (iky — jey). Figure 4.18(a) shows a typical ARPES geometry where
the light beam hr impinges the sample within the yz-incidence plane making an
angle a with respect to the out-plane normal.
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Figure 4.18: Effect of light polarization and the experimental geometry on the
measured ARPES spectra. (a) Typical ARPES experimental geometry where a beam
of light hv impinges the sample within the yz-plane with an angle o with respect to the
sample normal 2. The polarization of light is defined by its electric field vector €. The angle
& defines the ratio between the principle components of the electric field. (b) Calculated
angular distributions /do/dQ and do/dS) of photoelectrons emitted from s-, p- and d-
orbitals using s-polarized light (£ = 0), and p-polarized light (£ = 90°). For s-polarized
light, calculations show vanishing intensity along the y-axis at k¢, = 0. (c) Measured
Fermi surface map of PtTey using s-polarized light (£ = 0) and for a = 54.7°. (d) Energy-
momentum bands dispersion map E(ky) at kg, = 0, probed along the magenta dashed
line in (c). (a) Produced based on discussion in Ref. [1041] to adapt our experimental data.
(b) Produced based on the free-electron model discussed in Ref. [152].

Using the so-called Jones notation, the light polarization € can be expressed in
terms of its conventional components along the z, y, and z axes [ ], with z
representing the out-plane axis’

9The 2- and y-axes in this section are inverted compared to the rest of figures in this thesis to
be consistent with Ref. [104].
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cos(§)
€ — ccin e"‘ism(f)cos(a) (4.1)
e sin(&)sin(a)

Here, the angle &, referenced to the z-axis, determines the polarization orienta-
tion of the incident light’s electric field €. Therefore, it defines the ratio between the
principal components of €. While § defines the relative phase between the principal
components of € such that 0 = ¢,-p, and 8 = .-, taking @, as reference, where
¢, is the phase offset of the electric field in the j"* direction. 7 is the absolute phase
of the light. The modulus square of the polarization part of the matrix element can
be rewritten in term of the so-called Stokes parameters to investigate the degree of
polarization [155, , 159]

sin’o S1 sino
SOk )

. 1 2 SO 2 ’2
le- (iky = 5edl =75 e ?(kfz_kfy_T
sina

+ Sokipuky, — Sske—y—

2 2
(k2. + 12, +

where k:}y = cos(a)ksy+sin(a)kys., So = €2, S1 = €*cos(2€), Sy = 2cos(d)sin(2€)
and S3 = e2sin(6')sin(2¢) [104]. Using linearly (§ = ¢ = 0) and s-polarized light
(& = 0), the electric field will oscillate along the z-direction perpendicular to the
reaction plane yz which is defined by the incidence direction of the photons and the
normal to the sample surface (see Fig. 4.18(a)). Therefore, the only non-vanishing
Stokes parameters would be Sy = S; = €® and the polarization term (I) becomes
e (iks — yey)|* = Sok}, which would lead to a vanishing matrix element for kg, =
0. This is clearly verified in Fig. 4.18(b) for the calculated angular distributions
\/do/dQ and do/dQ) of photoemitted electrons from s-, p- and d-atomic orbitals
using s-polarized light (¢ = 0), where the calculated photoemission distribution
exhibits zero intensity along the y-axis at kp, = 0.

Figure 4.18(c) shows a measured ARPES Fermi surface map of PtTes. This
measurement was done using the experimental geometry of Fig. 4.18(a) with s-
polarized light £ = 0 and incidence angle a@ = 54.7°. One can clearly see a nearly
vanishing photoemission intensity at ks, = 0. Additionally, the energy-momentum
map in Fig. 4.18(d) was measured along the magenta-dashed line in Fig. 4.18(c)
demonstrating a reduced ARPES intensity in the region of ky, = 0.

Figure 4.19(a)-(d) presents a summary of the PtTe, spectral function measured
using the UV ~ 6.02 eV laser system, discussed in Sec. 3.3, centered at the normal
emission of the sample as illustrated schematically in Fig. 4.19(e). Panel (a) shows
the ARPES Fermi surface map of PtTes. The corresponding energy-momentum map
along the magenta line is shown in panel (b). Both panels (a) and (b) were measured
using p-polarized light. Panels (c),(d) are same but measured using s-polarized light.

To verify the reduced photoemission intensity within the reaction plane when
using the light with polarization perpendicular to this plane, we employed the high-
resolution laser-driven ARPES spectrometer to investigate the effect on the topo-
logical surface states near the Fermi level, which have been discussed in Sec. 4.3.

0Calculations presented in Fig. 4.18(b) were done using the free-electron final state formula
discussed in Note 8
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Figure 4.19: PtTey spectral function measured using ~ 6 €V laser in normal
emission geometry. (a) Laser ARPES Fermi surface map of PtTes measured using p-
polarized light. (b) Corresponding energy-dispersion map E(k,) for k, = 0, as indicated
by the magenta dashed line in (a). (c),(d) Equivalent Fermi surface and energy dispersion
maps, respectively, obtained using s-polarized light. (e) Schematic of the ARPES experi-
mental geometry used for measurements in (a)-(d), highlighting the lens deflector system
that collects emission angles (red cone) with the sample normal to the lens axis.
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Figure 4.20: PtTe; spectral function measured using ~ 6 €V laser in off-normal
emission geometry. (a) Laser ARPES Fermi surface map of PtTes measured using p-
polarized light. (b) Corresponding energy-dispersion map E(k;) for k, = 0, as indicated
by the magenta dashed line in (a). (c),(d) Equivalent Fermi surface and energy dispersion
maps, respectively, obtained using s-polarized light. (e) Schematic of the ARPES experi-
mental geometry used for measurements in (a)-(d), highlighting the lens deflector system
that collects emission angles (red cone) with the sample rotated by § = 18° relative to the
lens axis.

A summary of the electronic band structure for the related portion of the Brillouin
zone is presented in Figs. 4.20(a)-(d). These electronic structure maps were mea-
sured for the off-normal geometry in which the sample was rotated by 6 = 18° as
schematically illustrated in Fig. 4.20(e). This rotation is needed to probe the Fermi
surface states, due to the relatively small size of the reciprocal space probed with
hv = 6 eV, where kf‘r‘nmn ~0.63 A1
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In Fig. 4.20(b), measured with p-polarized light, the two electron pockets of
the Fermi surface states are distinguishable within the narrow energy window of
AFE ~ 0.5 eV below the Fermi level. Notably, one can see a reduced ARPES intensity
at ky, = 0 in the Fermi surface map shown in panel (c¢) measured with s-polarized
light compared to its equivalent map in panel (a) measured with p-polarized light.
Indeed, the energy-momentum map in panel (d) measured along the magenta line
in (c) demonstrates this reduced photoemission intensity at ks, = 0.

In Sec. 2.5.1.2, we demonstrated that the matrix element in its velocity form
can be expressed as My; x (¢r|€ - p|¢;), where p is the momentum operator. For
a known alignment of the mirror planes of the sample surface, a well-defined light
polarization, and a known parity of the initial state under reflection through these
mirror planes, it becomes possible to predict the final states that will contribute to
a non-vanishing ARPES signal. These predictions are based on the parity of the
final states, allowing for the identification of both the allowed states that contribute
significantly to the ARPES signal and those with suppressed contributions.

To clarify this, consider a case schematically illustrated in Fig. 4.21. Here, the
surface of the sample has a mirror plane defined as the yz-plane, which coincides
with the reaction plane. Suppose the initial state |¢;) = p, has odd parity, with the
odd reflection through the mirror plane shown by two colors.

For s-polarized light, the electric field will oscillate along the z-axis (e = e&),
which means that the momentum operator in the matrix element, p, will be %, that
is odd with respect to the mirror plane. Thus, an even final state |¢;) will produce
a detectable ARPES signal within the yz-plane, where (¢¢|2|¢;) = (+| — | =) # 0.
Conversely, an odd final state will lead to a vanishing signal, where (¢f\£|¢i> =
(~|—| -) =o.

In contrast, for p-polarized light, the electric field oscillates within the reaction
plane yz, which means that the momentum operator will include § and %, both
are even with respect to the mirror plane. In this case, an odd final state produces
a detectable ARPES signal, where <¢f|% + 2|¢;) = (=] 4+ | =) # 0, while an even

final state results in a suppressed signal, where ((;ﬁf\a—‘; + Zgi) = (+|+ ] —) =0.

We have demonstrated, in Sec. 4.6, that the topological surface states crossing
the Fermi level, as measured in Fig. 4.20, are predominantly derived from the out-
plane Te 5p Y (5p,) orbital. From an atomic perspective, transitions involving
a change in orbital angular momentum must adhere to the dipole selection rule,
which specifies that Al = +1, while the change in the magnetic quantum number is
constrained to Am; = 0,£1 [160, ]. Consequently, the permitted photoemission
transitions that originate from the 5p Y;? orbital include Y ~ s, Y ~ d.2, V' ~
(dpr —idy.) and Yy ' ~ (d,. + id,.).
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Reactioy,
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Figure 4.21: Effect of experimental geometry symmetries on the selection rules
for initial and final orbitals. A mirror plane of the sample surface is shown coinciding
with the reaction plane. Initial state |¢;) = p, is shown with an odd parity upon reflection
through the mirror plane demonstrated by the two colors of the orbital. For s-polarized
light with electric field € = e&, odd with respect to the mirror plane, an ARPES signal
within the reaction plane is detectable for an even final state, while a vanishing signal
within the plane is measured for an odd final state. For polarized light with electric
field within the reaction plane, e.g. p-polarization, even with respect to the mirror plane,
an ARPES signal within the reaction plane is detectable for an odd final state, while a
vanishing signal within the plane is measured for an even final state.
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Table 4.1: Matrix elements using s-polarized light. Summary of the photoe-
mission matrix elements, within the yz-plane defined in Fig. 4.21, for the allowed
transitions into the final states Yy, Y3, Y! and Y5 ! using s-polarized light, and star-
ing with the out-plane orbital p,, based on the parity of the initial state, s-polarized
light and the final state.
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p-polarization
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Table 4.2: Matrix elements using p-polarized light. Summary of the photoe-
mission matrix elements, within the yz-plane defined in Fig. 4.21, for the allowed
transitions into the final states Y, Y, Y} and Y5 ! using p-polarized light, and star-
ing with the out-plane orbital p., based on the parity of the initial state, p-polarized
light and the final state.

Tables 4.1 and 4.2 summarize the matrix elements for the allowed photoemission
transitions starting from the out-plane p, orbital, which is even with respect to the
yz-mirror plane defined in Fig. 4.21. In Table 4.1, we utilized s-polarized light
(odd), while Table 4.2 employs p-polarized light (even). Depending on the parity
of the final state with respect to the yz-mirror plane, the analysis reveals that, for
s-polarized light, two photoemission channels completely vanish, and the other two
are significantly suppressed. In contrast, none of the photoemission transitions are
absent when p-polarized light is employed.

One can conceptualize s-polarized light, with its electric field oscillating along
the z-axis and perpendicular to the yz-plane, as an effective force that oscillates
the charge density of the orbitals along the z-direction. This interaction leads to
the formation of a region of suppressed intensity within the reaction plane. There-
fore, within the free-electron final state picture, and the analysis presented for the
photoemission matrix element based on the parity of atomic orbitals and light po-
larization we could explain the suppressed photoemission signal at k¢, = 0 within
the reaction plane.

However, in Figs. 4.18(c), 4.18(d), 4.20(c) and 4.20(d) the photoemission in-
tensity is not completely zero at ks, = 0. This is further supported by the band
dispersion map presented in Fig. 4.17(h), which indeed exhibits a well-defined band
dispersion despite being obtained using s-polarized light and a sample alignment
shown by the corresponding Fermi surface map in Fig. 4.17(a), similar to the align-
ment represented in the Fermi surface map of Fig. 4.18(c).

The plane-wave approximation for the final state remains valid at the detector,
which is effectively at an infinite distance from the sample. However, within the
solid, this approximation breaks down due to the significant influence of the local
neighboring atomic potentials on the wave function of the photoemitted electron,
resulting in scattering events from neighboring atoms.

A more accurate approach to the photoemission process involves considering a
scattering final-state wave function, w;wttm”g , for the entire system. This wave
function can be expressed as a partial-wave expansion around each atomic site,
which, at each site, adheres to the dipole selection rules known from atomic physics
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(a) (b)

Figure 4.22: Schematic representation of elastically scattered photoemitted elec-
trons. (a) Tel,Te2 and Pt atoms within the primitive unit cell, and a final state wave
vector k; are indicated. Black arrow indicates a photoemitted electron from the Tel atom
leaving the surface of bulk PtTes along k; without being scattered. Process of elastic
scattering is illustrated by the blue arrow indicating a photoemitted electron from Tel
atom being elastically scattered by the Pt atom leaving the surface at k; as indicated by
the purple arrow. (b) Same as (a), but for electrons emitted from the source atom Pt
while the scatterer atom is Te2.

[102, 103].

Figures 4.22(a) and 4.22(b) illustrate the process of elastic scattering of pho-
toemitted electrons along the final wave vector ky. In Fig. 4.22(a), the emitter
is the bottom Te atom (Tel) of the top surface monolayer in bulk PtTey, while
the Pt atom acts as the scatterer. In Fig. 4.22(b), the emitter is the Pt atom,
while the scatterer is the top Te atom (Te2). Now within the LEED picture (TR-
photoemission), the scattering waves from individual atomic sites are coherently
summed, as discussed in Sec. 2.6.

To distinguish between the free-electron final-state approximation and the scat-
tering wave final state, photoelectron diffraction calculations were performed using
the EDAC code [51]. The angular distribution projections, |M:lfm| and |M,’flfm|27 are
presented in Fig. 4.23. These projections correspond to scattering spherical waves
emitted from the 4p,, 4p,, and 4p, orbitals of the Tel atoms'', as illustrated in Fig.
4.22(a). The calculations involve the use of both s- and p-polarized light, incident
at an angle o = 54.7° (see Fig. 4.18(a)), with electrons emitted at kinetic energies
of 104 eV and 500 eV, relevant to the work presented in this thesis. In the first two
vertical channels of Fig. 4.23, the emission is modeled from an isolated Te atom. In
contrast, the third and fourth vertical channels represent emissions from Tel atoms

1 As discussed in Note 6, a portion of the charge from the outermost valence orbitals extends
beyond the Muffin-tin spheres, therefore, Te 4p orbitals were used in the calculations instead of Te
5p. For the same reason, the Pt 5s orbital was used instead of Pt 6s in the calculations presented
in Fig. 4.24. Nevertheless, the underlying concept remains valid.
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Figure 4.23: Angular distribution of photoelectrons emitted from Te p-orbitals.
Projection of the angular distribution |M:lfm and \M:lfm 2 of photoelectrons emitted from
Te 4p-orbitals (Tel-labeled atom in Fig. 4.22) for s- and p-polarized light and incidence
angle of light av = 54.7° (see Fig. 4.18(a)), and for electrons emitted with kinetic energies
of 104 eV and 500 eV. In the first two vertical channels maps show atomic emission, where
scattering effect was neglected and zero inner potential was used. In the third and fourth
vertical channels, scattering effect was included within a cluster of radius 20 A | IMPF of

3 A and inner potential V, = 15 eV.

embedded within a cluster of 775 atoms, with a radius of 20 A | an inelastic mean
free path (IMFP) of 3 A, and an inner potential V, = 15 eV. Figure 4.24 presents
analogous calculations for photoemission from the outermost Pt orbitals, specifically
the 5s and 5d orbitals (see Fig. 4.22(b)). In both Figs. 4.23 and 4.24, the emission
is analyzed from atomic orbitals with significant contributions to the valence bands,
as discussed in detail in Sec. 4.6.

From Figs. 4.23 and 4.24, it is evident that the angular distribution exhibits a
non-vanishing signal at ks, = 0 even for emission from isolated atoms, in contrast
to the free-electron model calculations shown in Fig. 4.18(b). This observation ac-
counts for the well-defined band dispersion seen in Fig. 4.17(h) and, more generally,
explains the non-vanishing ARPES signal at ky, = 0.

Moreover, as the kinetic energy of the photoemitted electrons increases, the angu-
lar distribution becomes increasingly similar to that of atomic emission. This trend
is apparent in the comparison between photoemitted electrons with kinetic energies
of 500 eV and 104 eV. The consistency of this behavior aligns with the understand-
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Figure 4.24: Angular distribution of photoelectrons emitted from Pt s- and d-
orbitals. Projection of the angular distribution |M:lfm | and \M:,fm 2 of photoelectrons
emitted from Pt 5s- and 5d-orbitals (see Fig. 4.22) for s- and p-polarized light and inci-
dence angle of light « = 54.7° (see Fig. 4.18(a)), and for electrons emitted with kinetic
energies of 104 eV and 500 eV. In the first two horizontal channels maps show atomic
emission, where scattering effect was neglected and zero inner potential was used. In the
third and fourth horizontal channels, scattering effect was included within a cluster of

radius 20 A , IMPF of 3 A and inner potential V, = 15 eV.

ing that higher kinetic energy promotes more pronounced forward scattering along
atomic bonds, as discussed in Sec. 2.6.

4.10 Asymmetric E(k,) spin-integrated maps

In this section, I will begin to delve into the central idea of the work presented in my
thesis. Figure 4.25 shows an overview of PtTe, measured spectra via the unpolarized
Hel,, discharge lamp with photon energy hv(g.r,) = 21.22 V. In Fig. 4.25, the
reaction plane is the yz-plane. Let’s divide the work into two main geometries,
based on the orientation of the reaction plane with respect to the mirror planes of
the crystal. The first geometry: is schematically illustrated in (a) where the sample
was rotated around the out-plane z-axis such that the Hel-light impinges the sample
within one of the three mirror planes hosted by bulk PtTe,, i.e. the reaction plane
coincides with the M, mirror plane. This we call symmetry geometry.

ARPES data has been collected as a 3D matrix, visualized in (b) with two cuts
through this matrix shown in (¢) and (d). Figure 4.25(c) shows a constant energy
surface at the Fermi level where it is clearly seen that the M, mirror plane divides
the picture into two mirrored halves regarding the photoemission intensity and the
structure features. One would as well expect when probing perpendicular to the
mirror plane M-I-M along the z-direction to get a mirrored spin-integrated band
dispersion maps. This is verified in the energy-momentum map E(k,) shown in
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Figure 4.25: Spin-integrated asymmetries. Upper panel symmetry geometry: (a)
schematic geometry showing aligning of the sample such that the unpolarized Hel-light
(hv = 21.22 €V) impinges the sample within one of the three mirror planes of bulk PtTe,
(photoemission reaction plane coincides with a mirror plane) (b) Visualisation of the
Ep(k)) set of data collected in this geometry. (c) Fermi surface, constant energy sur-
face cut through (b) at the Fermi energy Ep = 0 €V. (d) Band dispersion map E(k,)
at E(ky) = 0, indicated by the magenta frame in (b) and probed along the magenta line
in (c). Lower panel asymmetry geometry: (e)-(h) Same as (a)-(d) but for the geometry
shown in (e) which is reachable from (a) by rotating the sample around the z-axis by 30°
ending up with one of the sample mirror planes being orthogonal to the reaction plane.
Blue rectangles in (g) indicate light induced asymmetries in ARPES signal. Yellow-labeled
regions in (h) denote photoemission asymmetries in surface states (i-ii) and bulk states
(iii-iv).

(d), indicated by the dashed magenta frame in (b) and the dashed magenta line
in (c), in which the black-dashed line at k, = 0 in (d) acts as a mirror line of the
spectrum. This is a result of an M, mirror plane being conserved by the entire
experimental setup, that is sample together with the incident light. It is easy to see
from Fig. 4.25(c) that the two remaining sample mirror planes of the sample surface
are broken, that is the intensity distribution in (c) does not obey them.

The second geometry: is schematically shown in (e). The sample was rotated
around the z-axis by ¢ = 30° referenced to the symmetry geometry such that none
of the three mirror planes would be within the incidence plane of light, instead the
reaction plane is perpendicular to the M, mirror plane in this case. This we call
asymmetry geometry. The corresponding 3D data set Eg(k)) is visualized in (f)
with the Fermi energy cut in (g) and the energy momentum F(k,) cut in (h) which
is also indicated by the magenta frame in (f) and magenta line in (g). However, In
this geometry ARPES maps do not obey any mirror symmetries and in particular
the map in Fig. 4.25(h) is very strongly asymmetric, both regarding the intensity
distributions and location of the dispersive features along negative and positive k.
Some of these asymmetries are highlighted and labeled with the numbers (i)-(iv).
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It is important to note that the asymmetries in the photoemission signal happening
at (i)- and (ii)-labeled regions are assigned to the topological surface state (TSS3)
crossing the Fermi level and the surface state (SS) that is buried within the bulk
manifold respectively. Conversely, ARPES asymmetries in (iii)- and (iv)-labeled
regions can be attributed to bulk-projected momentum space regions. On the other
hand, none of these asymmetries exist in the calculated initial state band dispersion
plotted in Fig. 4.7.
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Figure 4.26: Spin-integrated momentum distribution curves. Upper panel shows
momentum distribution curves at the corresponding indicated binding energies averaged
over three energy pixels (AE = 20 meV) for the symmetry ARPES map Fig. 4.25 (d).
Lower panel is equivalent for the upper panel, but for the asymmetry ARPES map Fig.
4.25 (h).

To zoom in this picture, a quantitative analysis for the momentum distribution
curves (MDCs) is shown in Fig. 4.26 for the two orientations, the symmetry ori-
entation in the upper panel and the asymmetry orientation in the lower panel for
some selected binding energies indicated at the top and also labeled in Fig. 4.25(h).
Three energy pixels (AE = 20 meV) are averaged over for each of the MDCs plotted
in order to reduce the noise. One can see clearly that the MDCs manifest the above
observations where the k, = 0 line is a mirror line for all the MDCs in the upper
symmetry geometry panel. However, the k, = 0 line is no longer a mirror line for
any of the corresponding MDCs in the lower asymmetry geometry panel.

In order to explain the origin of these spin-integrated asymmetries in the mea-
sured spectra, which are absent in the initial state, the projected bulk band structure
was calculated along the high symmetry directions K-I'-K and M-I'-M as shown in
Figs. 4.27(a) and 4.27(b), respectively. The calculations were performed for 61
distinct k,-values at different heights along the out-plane direction, with the corre-
sponding bulk bands superimposed. The bulk bands corresponding to each specific
k. value were color-coded, with a total of 61 distinct colors used, as indicated by
the colorbar. To aid interpretation, a schematic drawing of the bulk Brillouin zone
is depicted in Fig. 4.27(c), highlighting a mirror plane and four distinct k, lines.
The bulk bands corresponding to these k, values are emphasized using thicker lines
in Figs. 4.27(a) and 4.27(b), with the associated colors labeled in the colorbar.

Figure 4.27(d) schematically illustrates two distinct cases of the initial state
wave function: a surface-localized state and a delocalized bulk state. The primary
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(d]
Figure 4.27: Projected band structure along high symmetry directions of bulk
BZ. (a)-(b) Calculated bulk band structure of PtTes projected onto the surface Brillouin
zone along the K — T — K and M —T' — M high-symmetry directions, respectively. The
calculations were performed for 61 distinct k, values along the out-plane direction in
reciprocal space, with the bulk bands for each k, value color-coded, as shown by the
colorbar. (c¢) Schematic of the bulk Brillouin zone, highlighting a mirror plane and four
k. lines, colored according to the corresponding labels in the colorbar. (d) Schematic

representation of the charge density distribution for surface and bulk states below the
surface.

)
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difference between these cases lies in the behavior of the perpendicular momentum
k;1 of the initial state. Bulk states form continuous bands, whereas surface states
manifest as discrete energy levels. As a result, by varying the photon energy, one
can observe changes in intensity corresponding to the final perpendicular momentum
kg1 . This variation often reflects the bulk dispersion with changing binding energy,
particularly at higher photon energies hv [162] where the IMFP increases making the
photon energy more bulk sensitive (see Sec. 2.5.2). On the other hand, for surface
states, only discrete energy levels are detected, with their intensity modulated at
different photon energies [149, 150, 163].

The projected bulk band structure along the K-I'-K direction, depicted in Fig.
4.27(a), exhibits symmetry, with the I' line serving as a mirror axis for the color
distribution on either side, consistent with the presence of a perpendicular mirror
plane. In contrast, the projected bulk band structure along the M-I'-M direction,
shown in Fig. 4.27(b), displays asymmetry due to the lack of such a perpendicular
mirror plane. This asymmetry is further demonstrated by the thicker bulk bands
highlighted in Figs. 4.27(a) and 4.27(b), corresponding to the blue and red lines in
Fig. 4.27(c). In Fig. 4.27(a), these bands overlay, whereas they do not align in Fig.
4.27(b). Indeed, this asymmetry is anticipated due to the trigonal crystal structure
of bulk PtTe, discussed in Sec. 4.1, in contrast to what would be expected if it had
hexagonal symmetry.

Therefore, we attribute the observed asymmetries in the band dispersion map of
Fig. 4.25(h), measured along M — I — M, to bulk-induced effects, particularly in
regions (iii) and (iv), which correspond to bulk diffuse manifolds.

A detailed comparison between the projected bulk band structure in Figs. 4.27(a)
and 4.27(b) and the corresponding surface band calculations in Figs. 4.7(b) and
4.7(c) reveals that the surface Dirac cone at a binding energy of approximately 2
meV, along with the surface states at ~ 1.5 meV, reside within well-defined bulk-
projected gaps. The asymmetries measured in these surface states, which can be con-
sidered completely disentangled from the bulk states, can be attributed to geometry-
induced asymmetries, as demonstrated in Ref. [10]. In Fig. 4.25(e), the sample was
aligned such that the sample surface mirror plane M, was broken, leading to an
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asymmetry where the positions of atoms on the right side of the plane (4z) differ
from those on the left side (—x). This results to relative shifts in real space between
atoms, and as discussed in sec. 2.6 shifts in real space introduce phase shifts in re-
ciprocal space. This in turn creates different phase shifts in reciprocal space for the
two emission directions (+k,) and (—k,), contributing to the asymmetries observed
in the regions of these surface states in the spectrum depicted in Fig. 4.25(h). The
origin of these geometry-induced asymmetries will be discussed in detail later in this
thesis, where we will demonstrate that similar asymmetries are also present in the
spin-resolved spectra.

Additionally, the surface states at ~ 0.8 meV and those crossing the Fermi level
(see Figs. 4.7(b) and 4.7(c)) merge with the surrounding bulk-projected band struc-
ture (see Figs. 4.27(a) and 4.27(b)). The asymmetries observed in these surface
states, particularly in regions (i) and (ii) of Fig. 4.25(h), can be attributed to a
combination of bulk-induced and geometry-induced effects.

Taking a step back, let’s examine the Fermi surface map shown in Fig. 4.25(g).
As discussed in Sec. 4.2, bulk PtTe, exhibits a 3-fold rotational symmetry. Based on
the sample alignment in Fig. 4.25(g), the magenta-dashed line represents a mirror
plane M-I-M. Consequently, both the crystal symmetry and alignment require the
structure within the blue rectangle in the upper half of the map to be a mirror
image, in both intensity and structure, of the corresponding region in the lower half.
However, this symmetry is not observed, instead, there is a significant difference in
photoemission intensity between the two rectangles. This discrepancy is attributed
to light-induced asymmetries in the measured spin-integrated ARPES signal, where
the Hel light, as shown in Fig. 4.25(e), breaks the mirror plane indicated by the
magenta-dashed line in Fig. 4.25(g). This observation highlights the importance of
considering the symmetries of the entire system, which include not only the crystal
structure and sample alignment but also the influence of the light.
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4.11 Summary

We performed spin-integrated ARPES measurements on PtTe, using both lab-based
light sources at PGI-6 and the PHELIX beamline at the Solaris synchrotron facility
in Krakéw, Poland. For the first time, we presented ARPES measurements of PtTe,
using Xe (hv = 8.44 ¢V) and laser (hv = 6.02 €V) light sources. Along with detailed
band structure calculations, we successfully identified and distinguished between the
bulk and surface states of PtTes.

A significant contribution of this chapter is the systematic analysis of the effects
of light polarization, specifically s- and p-polarized light, on the ARPES spectra. Our
results demonstrate that the spectral weights and the corresponding band structures
exhibit a strong dependence on the polarization of the incident light, a behavior that
correlates with the varying orbital characters of the valence bands. Furthermore,
we provided experimental evidence of the matrix element effect, showcasing the
near-vanishing photoemission intensity, in line with theoretical calculations. This
phenomenon is observed when light polarization is perpendicular to the reaction
plane and measurements are taken within this plane, or at the zero symmetric line
when measurements are made perpendicular to the reaction plane.

The ARPES experiments were conducted with two different sample orientations,
each based on the alignment of the mirror planes of crystal surface relative to the
reaction plane in which the light impinged the sample. A key finding of this study is
the identification of induced asymmetries in the spin-integrated momentum maps.
These asymmetries emerged when the sample was rotated such that the incident
light beam no longer aligned with a mirror plane of the the crystal, breaking the
symmetry of the system. This resulted in significant variations in the photoemission
intensity and shifts in the positions of electronic features, especially in the regions
corresponding to surface and bulk states. These observed asymmetries are attributed
to both the experimental alignment of the crystal and the intrinsic structural asym-
metries of the material itself. These findings illustrate a specific instance of how
symmetry-breaking in ARPES measurements can influence the observed spectra,
providing insight into broader symmetry considerations that have to be taken into
account in ARPES experiments.

A thorough comparison of the ARPES data under symmetric and asymmetric
configurations highlights the sensitivity of the electronic structure, particularly the
topological surface states, to changes in experimental conditions. These findings
underscore the importance of considering the experimental setup when interpreting
ARPES measurements, as the induced asymmetries significantly affect the observed
results and must be taken into account alongside theoretical models for a more
accurate understanding of the electronic properties of materials.



5. Spin-resolved electronic structure of PtTe,

In non-magnetic centrosymmetric systems, the combination of time-reversal sym-
metry (TRS: E(k,1)=E(-k,|)) with the inversion symmetry (IS: E(k,1)=E(-k,1)),
where E,+k, and 1] denote the electron energy, momentum and spin respectively
ensures a net-zero spin polarization and doubly spin-degenerate electronic states
throughout the material. However, the current insight that relativistic spin-orbit
coupling (SOC) is localized on specific nuclear (atomic) sites in the crystal rather
than being a property of the entire crystal structure, is essential for understanding
SOC-induced spin polarization [164]. This perspective has led to the concept of
hidden spin polarization, which emerges through local symmetry breaking at atomic
sites. The total spin polarization of the crystal is then the vector sum of these local
spin polarizations across all sites [165]. This has led to two forms of such hidden spin
polarization, the Dresselhaus D-2 effect resulted from the local inversion asymmetric
environment which has been observed at the K and K’ points of bulk WSe, single
crystal [34], and the local Rashba R-2 effect created by the site dipole field which in
turn has been verified in the Se p, ,-derived bands of the 1T-PtSe; monolayer [33],
and recently in the bulk 1T-HfSes single crystal [35].

In previous studies, e.g. [33—12], the accessibility to only limited regions or se-
lected k-points in the energy-momentum space has often hindered the unambiguous
confirmation of alignment and has sometimes resulted in unexplainable asymmetries
in the spin textures, similar to the asymmetry reported in [33]. These asymmetries
have been attributed to defects in the sample or final state effects. However, with
the recent advancements in 2D spin detection techniques, such as momentum mi-
croscopes, e.g. [15], or lens-deflector systems, e.g. [10] in hemispherical analyzers, it
has become possible to image 2D photoemission spin texture maps in certain cases.
These maps can be obtained as k,-k, maps at a selected binding energy or as E(k|)
maps along a specific k| direction.

In this chapter, we take advantage of the newly developed spin-polarized ARPES
(S-ARPES) spectrometer at PGI-6 to study the spin texture of bulk PtTe, in order
to disentangle the final state effects from the initial state.

88
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5.1 Asymmetric E(k,) spin-resolved maps

In this section I will discuss the main idea of the work presented in this thesis.
This work is the demonstration of the existence of asymmetries in the spin-resolved
spectra of bulk PtTe, based on the set-up used during the experiment i.e. the
sample alignment together with the incident light. These asymmetries, besides the
spin-integrated asymmetries already discussed in Sec. 4.10, are measured taking
advantage of the newly developed high-resolution Hel spin-polarized ARPES (S-
ARPES) spectrometer.
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Figure 5.1: Spin-resolved asymmetries. Upper panel {Symmetry geometry}: (a)
schematic geometry where the M, mirror plane coincides with the reaction plane. (b) Cor-
responding Fermi surface map. (c),(d) Experimental Hel spin-resolved (280 x 251 pixels)
energy dispersion maps, E(k,), measured using the lens deflector system probing along the
z-axis perpendicular to M, mirror plane, as defined in (a) and along the magenta-dashed
line in (b), while the sample in normal emission. Lower panel { Asymmetry geometry}: (e)
Achieved from (a) by rotating the sample around the z-axis by 30°. The reaction plane
is now perpendicular to the M, mirror plane. (f) Corresponding Fermi surface map.
(g),(h) Experimental Hel spin-resolved (280 x 251 pixels) energy dispersion maps, E(k,),
measured using the lens deflector system probing along the z-axis i.e. along the magenta-
dashed line in (f), not perpendicular to any of the system’s mirror planes, as defined in
(e) while the sample in normal emission. (i-iv) labeled regions in (g) are selected highly
asymmetric spin polarized regions. In (c¢) and (g) the intensity and spin-polarization are
simultaneously displayed using the inset 2D color code, where the false color scale refers
to the in-plane spin polarization Sy in the ensemble of the photoemitted electrons. (d),(h)
The corresponding pure in-plane Sy spin polarization.

The data presented in Fig. 5.1 demonstrates this idea. The way the experiments
are done is similar to the spin-integrated experiments discussed in Sec. 4.10. In the
upper symmetry geometry panel, the sample was rotated around the out-plane z-axis
such that one of the three M-I'-M mirror planes of PtTe,, M, in this case, coincides
with the reaction plane. Therefore, the symmetry rules of that mirror plane hold
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for the spin degree of freedom of an electron. Under symmetry operations, spin
polarization transforms as an azial vector. The distinction between the axial vector
and the polar vector rules under such symmetry mirror operation is summarized
in Fig. 5.2. Back to Fig. 5.1(a), the mirror plane under investigation is the M,
mirror plane perpendicular to the x-axis and labeled in the right panel of Fig. 5.2.
When probing along the z-direction perpendicular to the M, mirror plane to resolve
the in-plane S, spin component, a reversing in the spin direction of the electron is
expected on either side of the M, mirror plane based on the axial vector rules
summarized in Fig. 5.2.
IR

| |
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&® ® a ®

Polar vectors Axial vectors

Figure 5.2: Effects of the symmetry operation M, on axial and polar vectors.
In the left panel, the dashed black line represents a mirror plane perpendicular to the
z-axis. Under this symmetry operation, the polar vector ¢, perpendicular to this plane
flips its direction while the other two polar vectors gy, ¢. keep their signs (q: e.g. electric
dipole). The right panel illustrates the axial vector behaviour under the same symmetry
operation. Here, the axial vector S, spin component perpendicular to the M, mirror
plane keeps its sign, while the parallel components S, S, flip their signs (S: spin vector).
The spin component Sy is marked and is the component mainly propped in this thesis,
where red and blue indicate flipping of the .S, spin component either side of the mirror
plane.

Figures 5.1 (c-d) show spin-polarized energy dispersion maps of bulk PtTe,'.
These maps are obtained by probing perpendicular to the M, mirror plane along
the high symmetry direction K-I'-K in the reciprocal space that is delineated by
the magenta-dashed line in (b). In Fig. 5.1(c) the photoemission intensity as well
as the spin polarization are plotted together were the spin polarization is saturated
to 50% as illustrated by the 2D color code inset. In Fig. 5.1(d) the corresponding
pure spin polarization is shown. In Figs. 5.1(c-d), the measured spin polarization
maps exhibit symmetric behaviour with respect to the M, operation, where the
photoemission intensity, spin polarization strength as well as the band structures
shapes and positions are copy paste of each other on either side of the k, = 0
line. The only difference between the two halves of each figure is the flipping of
the spin-polarization color from red (blue) 2 blue (red) obeying the axial vector

rules for the final state measured in-plane S, spin-component, Sy (k,) = —S,(—k;),

1Raw data for the spin-resolved energy dispersion maps presented in Fig. 5.1 are shown in
Appendix B.
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summarized in Fig. 5.2.

In the lower asymmetry geometry panel, the sample was aligned as shown in
Fig. 5.1(e). This is achieved via rotating the sample by 30° around the z-axis as
compared to Fig. 5.1(a). Now the mirror plane M, is perpendicular to the reaction
plane. The spin polarized maps Figs. 5.1 (g-h), similar to Figs. 5.1 (c-d), are
filtered through probing along the z-direction. However, in this case the probed
spectrum along the magenta-dashed line in Fig. 5.1(f) is not perpendicular to any
of PtTes mirror planes. One can see very strongly asymmetric behavior in these
spin polarized maps both regarding the intensity distributions and location of the
dispersive features along negative and positive k,. Some of the highly asymmetric
regions are labeled (i)-(iv) in Fig. 5.1(g). Some of these asymmetries are happening
for the surface states as for the (i)-labeled surface state as well as (ii)-labeled region.
Some asymmetries are happening in the bulk manifold regions labeled (iii) and (iv).
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Figure 5.3: Spin-resolved momentum distribution curves for PtTes. Upper panel:
(a)-(d) momentum distribution curves (MDCs) for the spin polarization at the indicated
binding energies, averaged over 8 energy pixels (AE ~ 100 meV) as represented by the
black frames in (e). Magenta and green curves show P(k;) and —P(—k,), where P is
the spin polarization along S,. Light- and dark gray areas depict standard deviations
for spin-polarization curves. (f)-(i) Data from the spin-up (red) and spin-down spectrum
(blue) of the spin-detector corrected by the Sherman function S = 0.29, for the magenta
P(ky) curve. Lower panel: (j)-(r) same as upper panel, but for the energy-momentum
shown in (n).

To address these asymmetries, a quantitative standard deviation analysis is pre-
sented in Fig. 5.3. In the upper symmetry panel of Figs. 5.3(a)-(d) the spin polar-
ization is averaged over 8-energy pixels (AE ~ 100 meV), and plotted along k, with
its standard deviation at selected binding energies represented by the black frames
in Fig. 5.3(e). Magenta curves represent the spin polarization P(k,) along S, with
their standard deviations shown by the light gray areas. Additionally, green curves
representing —P(—k,) are also plotted with their standard deviations represented
by the dark gray areas.

Figures 5.3(f)-(i) show data from the spin-up (red) and spin-down spectrum
(blue) of the spin-detector corrected by the Sherman function S = 0.29, for the
magenta P(k,) curves of the respective panels (a)-(d) of Fig. 5.3. At each k-point
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of E(k,) spin-polarized map, FERRUM detector measures two intensities I, and I_
for the target magnetized in opposite directions. Spin polarization is calculated as
discussed in Sec. 3.2.2, P = (1/5) ﬁ ;ﬁ: , and the up/down spectra are reconstructed
as Lypan) = 0.5(J4 + I_)(1 £ P). The lower asymmetry panel is same, but for the
energy-momentum map in Fig. 5.3(n).

In Figs. 5.3(a)-(d), the P(k,) and —P(—k,) curves coincide within the noise
level. This confirms the M, invariance quantitatively. However, in Fig. 5.3(j-m),
the difference between P(k,) and —P(—k,) is beyond the noise level. This in turn
quantitatively demonstrates asymmetries.
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Figure 5.4: Spin-resolved energy distribution curve for PtTe;. (a),(b) Polarization
vs. binding energy and spin-polarized EDCs, respectively, for the region indicated by the
black frame in (c)-(d). Gray areas depict standard deviations for the spin-polarization
curve.

Figure 5.4(a) shows the spin polarization energy distribution curve (EDC) for the
region indicated by the black frames in Figs. 5.4(c)-(d) with standard deviations
represented as gray areas. In Fig. 5.4(b) the respective data from the spin-up
(red) and spin-down spectrum (blue) of the spin-detector corrected by the Sherman
function S = 0.29 is plotted.

Based on the MDCs of Fig. 5.3 and the EDC of Fig. 5.4, measured spin-polarized
maps of PtTey show in-plane spin polarization up to ~ 56%.

5.2 Spin-resolved calculations

Figure 5.5 shows the initial state calculations of the .S, spin component of 30-layer
PtTey slab. A 3D spin polarized calculations is presented in Fig. 5.5(a), while at
selected binding energies within an energy window of 100 meV each, are shown in Fig.
5.5(b). Spin-polarized calculations along the high symmetry direction K-T—-Kis
presented in Fig. 5.5(c) for surface Tel and Pt atoms, and in Fig. 5.5(d) for the 5p,
orbital of the surface Tel atom. For convenience, Fig. 5.5(g) schematically depicts
the outermost Te and Pt atoms from which the majority of the photoemission signal
originates through the method’s surface sensitivity. Figure 5.5(h) shows 3D spin-
polarized calculations for the binding energy window and k-scale range indicated
by the black box in Fig. 5.5(f). The black dashed lines in Fig. 5.5(h) refer to the
K —T — K and M —T — M directions.
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Figure 5.5: Calculations of the S, spin component of 30 layer slab of PtTe;. (a)
Theoretical 3D spin-resolved calculations for the in-plane .S, spin component of 30L slab of
PtTey. (b) Spin-resolved momentum maps with energy window 100 meV at the indicated
binding energies. (c),(d) Spin-resolved calculations along the high symmetry direction
(K —T — K) for the surface (Tel and Pt atoms) and for Tel 5p, orbitals, respectively.
(e),(f) Same but along (M —T — M). (g) Schematic indication of the surface Tel atom,
the outermost Pt atom and third layer Te2 atom. (h) Spin-resolved calculations for the
energy window and k-scale range indicated by the black box in (f). The size of the symbols
(thickness of lines in (c)-(f)) indicates the orbitals weight, while the color indicates the
spin expectation value S.

Calculations show highly spin-polarized surface states close to the Fermi level, at
Elinding ~ 0.85 €V, at Eyinaing ~ 1.75 eV as well as the strongly spin-polarized surface
Dirac cone at Eyinging ~ 2.2 €V in agreement with the spin polarized measurements
of Fig. 5.1. Comparing Figs. 5.5(c) and 5.5(d) with the experimental results in Fig.
5.1(c), Fig. 5.5(d) exhibits better agreement, particularly in the region of ladder
states at Epinding ~ 0.85 €V. Similarly, Figs. 5.5(e) and 5.5(f), which depict the same
analysis along the M — T — M direction, show better agreement between Fig. 5.5(f)
and Fig. 5.1(g).

The theoretical S, calculations presented in Figs. 5.5(c) and 5.5(e) indicates that
the topological ladder wave functions are strongly mixed between the surface-most
Pt and Te sites.

However, contrary to the asymmetries in the spin-resolved measurements in Figs.
5.1 (g)-(h), no such asymmetries exist in the calculated spin-polarized initial state.
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5.3 Out-plane S, spin-resolved F(k,)

In this section we present the only out-of-plane S, measured spin polarization from
PtTe,, using the symmetry geometry presented in Fig. 5.6(a), in which the reac-
tion plane coincides with the M, mirror plane of the sample surface. Figure 5.6(b)
presents the corresponding measured ARPES Fermi surface map. A schematic draw-
ing showing the scattering target of the Ferrum spin detector that is rotated by 15°
around the y-axis away from the yz-plane and towards the negative z-direction is
shown in Fig. 5.6(c). Therefore, using the normal emission of Fig. 5.6(a), we are
probing a spin component Size that is 15° away from the z-axis, which is primarily
S, but with small component of S, as indicated in Fig. 5.6(c). A demonstration of
such a measurement is presented in Fig. 5.6(d).
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Figure 5.6: Measured and calculated S, spin component from PtTe;. (a) Ex-
perimental symmetry geometry where the reaction plane coincides with the M, mirror
plane of the sample’s surface. (b) Corresponding measured ARPES Fermi surface map.
(¢) Schematic drawing shows the rotated scattering target by 15° around the y-axis to-
wards the negative x-direction, indicating the measured spin-polarization component Syso.
(d) Measured Sjse spin component using the geometry presented in (a) for the cut along
the magenta line shown in (b). (e) Corrected .S, spin component from (d). (f),(g) Spin-
resolved calculations for the out-plane S, spin component along the high symmetry direc-
tion (K —T — K) for the surface (Tel and Pt atoms) and for Tel 5p, orbitals, respectively.
Thickness of lines indicates the orbitals weight, while the color indicates the spin expec-
tation value S,. (h) Schematic indication of the surface Tel atom, the outermost Pt atom
and third layer Te2 atom.

In the geometry in Fig. 5.6(a) an M, mirror plane is conserved for the ex-
perimental setup. Through the M, axial vector reflection rules this means that
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Sy(ky, ky, Eg) = Sy(—ky, ky, Ep) and S, (ky, ky, Eg) = —S.(—ky, ky, Eg). These
conditions allow, to calculate S, map presented in Fig. 5.6(e) from the map of Fig.
5.6(d). Spin-polarized calculations for the out-plane spin component S, along the
high symmetry direction K —I' — K, is presented in Fig. 5.6(f) for surface Tel and
Pt atoms, and in Fig. 5.6(g) for the 5p, orbital of the surface Tel atom. Figure
5.6(h) schematically depicts the outermost Te and Pt atoms. This out-of-plane spin
texture results from the intra-layer in-plane dipoles, which are parallel to the M,
mirror plane [35]. Again, comparing Figs. 5.6(f) and 5.6(g) with Fig. 5.6(e), a
favorable agreement is found for the calculations using only the partial charge of
5p. orbital of the surface Te atom. The S, and S, spin polarizations in Fig. 5.1(c)
and Fig. 5.6(e), respectively, appear to be similar, with the main difference being a

small S, polarization in the Dirac cone, theoretically reproduced in Figs. 5.6(f) and
-

5.6(g).
5.4 Spin-resolved momentum maps close to the Fermi level

To investigate the highly spin-polarized surface states near the Fermi level, identified
in Fig. 5.1(g) by the label (i) and visualized in Fig. 5.4, spin-resolved momentum
maps were measured at the corresponding binding energies and are shown in Fig. 5.7.
Panels (a)-(i) show the experimental geometry and spin-ARPES constant energy
maps for two different binding energies and different sample rotations ¢ as defined
in panel (a). Panels (b)-(e) correspond to measurements at Epinging = 0.1 €V, while
panels (f)-(i) correspond to Epinging = 0.3 €V. The same 2D color map, displayed in
the inset, is applied across all panels. The related calculated initial band structure
maps are shown in panels (j)-(k).

In panels (b),(c),(f) and (g), the mirror plane M, coincides with the reaction
plane. This explains the symmetric spin-APRES maps with respect to the M,
operation such that Sy (k,, ky) = —Sy(—ks, ky).

By comparing the structure enclosed by rectangles in panels (b) and (c), one
can see a notably reduced photoemission intensity in (b) compared to its equivalent
structure in (c). Additionally, one can as well see a decrease in the spin polarization
signal in panels (c¢) and (g) compared to the equivalent geometry in panels (b) and
(f). To clarify this, the spin-polarized momentum distribution curves (MDCs) for
the two boxes labeled in (f) and (g) are plotted in panel (1), where the green MDC
of Box1 demonstrates a stronger spin polarized signal compared to the magenta
MDC of Box2. Data from the spin-up (red) and spin-down spectrum (blue) of
the spin-detector corrected by the Sherman function S = 0.29, for Boxl (green
curve) and Box2 (magenta curve), are presented in panels (m) and (n), respectively.
These strong effects are related to incident light direction, where due to the trigonal
symmetry of PtTe, (rather that hexagonal), when ¢ is changed by 60° the spin-
ARPES results are different. This makes the maps of panels (b) and (c) (as well
(f) and (g)), not only appearing rotated by Ay = 60° but also exhibiting different
intensity pattern and different strength of spin polarization.

On the other hand, in panels (d),(e),(h) and (i), the mirror plane M, is perpen-
dicular to the reaction plane. A visual inspection suggests that the spin polarized
momentum maps of the two asymmetry geometries are connected by the M, mirror
operation. Indeed, Fig. 5.7(d) can be transformed into Fig. 5.7(e) through the
symmetry operations of the M, mirror plane by Sy(ks,k,) = —S,(—Fks, ky). The
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Figure 5.7: Spin-resolved momentum maps of PtTes near Fermi level. (a) Exper-
imental geometry indicating the rotation of the sample with respect to the z-axis by an
angle ¢. (b)-(e) Experimental spin-resolved photoemission intensities at Epinding = 0.1 €V,
for ¢ = 30°,90°,0° and 60°, respectively. (f)-(i) Same but measured at Epinging = 0.3 €V.
In (b),(c),(f) and (g) the mirror plane M, coincides with the reaction plane. In (d),(e),(h)
and (i) the mirror plane M, is perpendicular to the reaction plane. (j)-(k) Theoretical
spin-polarized constant energy maps at Epinding = Er30.05 eV and at Epinging = 0.2£0.05
eV, respectively. Dashed boxes in (j) and (k) represent the probed region of the momen-
tum space in (b)-(e) and (f)-(i), respectively. (1) Spin-polarized MDCs for the structure
enclosed by Box1 and Box2 in (f) and (g). (m)-(n) Data from the spin-up (red) and spin-
down spectrum (blue) of the spin-detector corrected by the Sherman function S = 0.29,
for Box1 (green curve in (1)) and Box2 (magenta curve in (1)), respectively. Boxes in (b)
and (c) enclose a measured structure that exhibits a stronger photoemission intensity in
(c) compared to (b). (b)-(i) Plotted using the 2D color code inset showing intensity and
spin polarization. Hel (hv = 21.22 €V) used for all maps.

same transformation applies to Figs. 5.7(h) and 5.7(i). This point will be discussed
in detail later in this chapter.

Indeed, in all maps one can see spin-polarization sign inversion between Epinging =
0.1 eV and Epinging = 0.3 eV. This sign flipping is consistent with the spin polariza-
tion sign of the Fermi surface states in Fig. 5.1 (g), Fig. 5.1(h) and Fig. 5.4.
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5.5 Spin-resolved E(k,) maps for two symmetry geometries

Figure 5.8 shows spin-resolved energy-momentum maps measured using the two
symmetry geometries depicted in Figs. 5.8 (a) and (b)?. These geometries are
connected by a ¢ = 60° rotation around the z-axis. The spin-resolved maps in
panels (¢) and (d) were measured using the first symmetry geometry shown in panel
(a), which is the same geometry used in measuring Figs. 5.7(b) and 5.7(f). Panels
(e) and (f) were measured using the second symmetry geometry shown in panel (b),
which is the same geometry used in measuring Figs. 5.7(a) and 5.7(e)®. The spin-
resolved maps (c)-(f) consistently exhibit a symmetric spin texture with respect to
the preserved M, mirror plane when symmetric geometries are employed during the
experiments.
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Figure 5.8: Spin-resolved band dispersion maps for two symmetry geometries
of PtTey. (a),(b) Schematically shown two nonequivalent symmetry geometries. Each
of the two geometries is a symmetry geometry that can be reached from the other via
rotating the sample by ¢ = 60° around the z-axis as labeled. (c)-(d), (e)-(f) Experimental
Hel-driven (hv = 21.22 €V) spin-resolved energy dispersion maps F(k;) (280 x 251 pixels
each), measured using the lens deflector system probing along the z-axis perpendicular to
the M, mirror plane of the crystal as defined in (a) and (b) respectively while the sample
in normal emission. Box; in (d) and (f) enclose a structure that exhibits stronger spin
polarization signal in (d) compared to (f) as demonstrated by the corresponding not equal
MDCs in (g). Boxs is same, and the corresponding difference in spin signal is demonstrated
in (h). Magenta MDCs in (g) and (h) refer to (f), while green MDCs refer to (d). (i),(j)
Data from the spin-up (red) and spin-down spectrum (blue) of the spin-detector corrected
by the Sherman function S = 0.29, for Box1 (g) and Box2 (h), respectively. (c) and (e)
plotted using the spin and intensity color code inset.

However, the spin-resolved maps in panels (c) and (d) display a stronger spin
signal compared to those in panels (e) and (f), consistent with the enhanced spin-

polarization observed in Figs. 5.7(b) and 5.7(f) relative to Figs. 5.7(a) and 5.7(e),

2Raw data for the spin-resolved band dispersion maps presented in Fig. 5.8 are shown in
Appendix C.
3Determining the absolute assignment of the two geometries requires further investigation.



98 5.6. Spin-resolved E(k,) maps for four asymmetry geometries

despite all measurements being conducted under symmetrical geometry.

This shows that light incidence has an effect on the measurements. The difference
in spin polarization is illustrated using the spin-polarized momentum distribution
curves (MDCs) in panels (g) and (h). In panel (g), the green MDC corresponds
to Box; in panel (d), while the magenta MDC corresponds to Box; in panel (f).
The mismatch between these two MDCs indicates a light-induced disparity in spin
polarization. The MDCs in panel (h) represent the same analysis but for Boxy. The
corresponding data from the spin-up (red) and spin-down spectrum (blue) of the
spin-detector corrected by the Sherman function S = 0.29, for Box1 and Box2, are
plotted in panels (i) and (j), respectively.

5.6 Spin-resolved E(k,) maps for four asymmetry geometries
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Figure 5.9: Spin-resolved band dispersion maps for four asymmetry geometries
of PtTe;. (a-d) Vertical panels are experimental Hel-driven (hr = 21.22 eV) highly spin-
resolved energy dispersion maps E(k,), measured using the lens deflector system probing
along the z-axis not perpendicular to any mirror plane of the crystal as defined in the top
geometry panel while the sample in normal emission. The corresponding Fermi surface
map for each geometry is also plotted. The transition between geometries (a) to (b), (c),
and finally (d) was done by successive 60° rotations of the sample around the z-axis. Panel
(a) is equivalent to (c), while panel (b) is equivalent to (d).

Panels (a-d) of Fig. 5.9 depict four asymmetry geometries alongside their respec-
tive spin-resolved F(k,) maps probed along the magenta line in the corresponding



99 5.7. Off-center spin-resolved E(k,) maps

Fermi surface maps shown in the insets. The transition in Fig. 5.9 between ge-
ometries (a) to (b), (¢), and finally (d) was done by successive 60° rotations of the
sample around the z-axis, having M, as the xz mirror plane in all of them.

Contrary to the symmetric spin-resolved maps presented in Sec. 5.5, all the spin-
resolved maps in Fig. 5.9 exhibit asymmetric spin texture as a result of the absence
of any mirror plane of the crystal preserved in the entire experimental setup, that
is the sample and the incidence light.

By examining the crystal structure depicted in the first horizontal panel of Fig.
5.9(a-d), one can observe that the alignment of the crystal in both (a) and (c) is
identical, achieved through a 120° rotation of the sample around the z-axis. This
consistency aligns with the crystal’s inherent 3-fold rotational symmetry. Similarly
the alignment of the crystal in (b) and in (d) is equivalent. This correspondence is
evident in the reciprocal space measurements, as the spin-resolved maps in panels
(a) and (c) are identical, as are those in panels (b) and (d)*.

5.7 Off-center spin-resolved E(k,) maps

Up to this point, all preceding spin-resolved measurements were conducted via the
" point along high symmetry directions. Panels (a)-(e) of Fig. 5.10 display spin-
resolved E(k,) maps utilizing both symmetry and asymmetry geometries, however,
the maps are measured probing along the yellow lines of the corresponding Fermi
surface maps. Notably, all yellow lines in Fig. 5.10(a)-(e) are off-center. While
panels (a)-(c) of Fig. 5.10 depict symmetry geometries, panels (d)-(e) of Fig. 5.10
portray asymmetry geometries. The spin texture of the symmetry panels shown
in Fig. 5.10(a)-(c) demonstrates symmetric behaviour, contrasting with the asym-
metric spin-resolved maps of Fig. 5.10(d)-(e). The asymmetries observed in Figs.
5.10(d), 5.10(e) and Fig. 5.9 demonstrate that the origin of these asymmetries are
not due to misalignment of the sample neither due to missing the I" line.

5.8 Spin-resolved momentum maps at £, ~ 1.3 eV

Spin-resolved momentum maps for the in-plane S, spin component and the corre-
sponding spin-integrated maps of PtTe; at Epnging ~ 1.13 €V, close to the lower
part of the surface states SS-labeled in Fig. 4.3, are depicted in Fig. 5.11°.

Panel (a) of Fig. 4.3 shows the spin-integrated momentum map at Epinding ~
1.13 €V, for the symmetry orientation of the sample equivalent to the geometry
shown in Fig. 5.10(b), measured using the lens deflector system. Panel (b) is the
corresponding intensity and spin-polarization simultaneously displayed using the
2D color code inset, while panel (c) is the pure spin-polarization momentum map
saturated to 40%. The spin-resolved maps in panels (b) and (c) exhibit strong
agreement with the spin-integrated lens deflector map in panel (a), indicating a
high degree of consistency between the two measurement techniques. Panels (d)-(f)
are similar to panels (a)-(c), but for a rotated sample by ¢ = 60° around the z-axis
as shown in the geometry of Fig. 5.10(a).

4Raw data for the spin-resolved band dispersion maps presented in Fig. 5.9 are shown in
Appendix D.

5Raw data for the spin-resolved momentum maps presented in Fig. 5.11 are shown in Appendix
E.
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Figure 5.10: Off-center spin-resolved energy dispersion maps of PtTes. (a)-(e)
Bottom panel: spin-resolved band dispersion maps of PtTes measured using the corre-
sponding geometries illustrated in (a)-(e) upper panel respectively. Second panel shows
the corresponding Fermi surface maps with the yellow lines indicating the off-center energy
cuts along which the spin maps were filtered. (a)-(c) Symmetry geometries manifested with
the corresponding symmetric spin-resolved maps. (d)-(e) Asymmetry geometries demon-
strated with the corresponding highly asymmetric spin-resolved maps. Measurements were
performed using the unpolarized Hel-light (hrv = 21.22 V).

For the two geometries used to measure panels (a)-(f), the mirror plane M, pre-
serves its symmetry rules. This is demonstrated in the corresponding spin-integrated
as well as the spin-resolved momentum maps. In the spin-integrated maps, the pos-
itive k, side is a copy of the negative k, side. In the spin-resolved maps, similarly,
both sides of the k, axis exhibit mirrored features, additionally, they exhibit switch-
ing the spin polarization color from red (blue) to blue (red) obeying the axial vector
rules of the M, mirror plane as explained in Fig. 5.2 for the S, spin component.

On the other hand, the geometry used to measure Figs. 5.11(g)-(i) is asymmetry
geometry equivalent to that shown in Fig. 5.10(e). Panels (j)-(1) are similar to
panels (g)-(i), but for a rotated sample by ¢ = 60° around the z-axis as shown in
the geometry of Fig. 5.10(d).

Based on these geometries, all crystal mirror planes are broken, including the
horizontal M,, mirror plane. Therefore, one can not compare the negative k, side
with the positive k, side due to light effects. This leaves the whole system without
any preserved mirror plane. As a consequence of this, the negative k, side does not
have to be a mirror of the positive k, side. This is demonstrated in the corresponding
spin-integrated as well as the spin-resolved momentum maps.

Let us analyze the a-labeled region in panel (h) that is plotted using the 2D color
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Figure 5.11: Measured spin-resolved constant energy contours in the (k; — k)
plane of PtTe; at Eypging ~ 1.13 €V for the in-plane S, spin component. (a)-(c)
Measured using the symmetry geometry of Fig. 5.10(b). (a) Spin-integrated photoemission
map at Epinding ~ 1.13 €V, measured using the lens deflector system. (b) corresponding
photoemission intensity and spin-polarization simultaneously displayed using the inset 2D
color code. (c) Corresponding pure Sy spin polarization map. (d)-(f) Equivalent to (a)-(c)
but using another symmetry geometry shown in Fig. 5.10(a), that is connected to the
first symmetry geometry by ¢ = 60° as labeled. (g)-(i), (j)-(1) Same but measured using
geometries of Figs. 5.10 (e) and (d) respectively, which are connected by ¢ = 60°. a (B),
o' (B')and &” (B”) refer to regions enclosed inside the corresponding circles. o (8)-region
in the 2D color code momentum map shows stronger (weaker) spin polarization signal
compared to o (,B”)—region in the pure spin-resolved momentum map. Measurements
are conducted utilizing the unpolarized Hel-light (hv = 21.22 eV).

code where intensity and spin polarization are plotted simultaneously®. This region
shows strong spin polarization. However, comparing this with the corresponding
a”-labeled region in the pure spin-resolved momentum map of panel (i) reveals a
weaker spin polarization signal. Indeed, « in panel (h) is generated by plotting o
in panel (i) atop o’ in panel (g) with transparency. Consequently, the heightened
signal observed in the a-labeled region is attributed to the high intensity of the
corresponding spin-integrated a'-labeled region.

Now, let us follow a similar way of analysis for the 3, 3" and 3" labeled regions
in panels (k), (1) and (j) respectively. The S-labeled region in the 2D color code map
displays a weaker spin-polarization signal compared to the corresponding 5 labeled
region in the pure spin-polarization map. However, in this case it is due to the
corresponding weak spin-integrated 4’ labeled region (8 is generated by plotting g
atop ). Therefore, relying solely on the intensity-spin maps may occasionally lead

6The method for plotting using the 2D color code is detailed in Appendix F.
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to misinterpretation, underscoring the necessity of examining the pure spin-resolved
maps as well. On the other hand, spin polarization primarily matters in the high
intensity regions of the reciprocal space.

5.9 Two asymmetry geometries connected by M, mirror plane
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Figure 5.12: Transitioning between two asymmetry geometries via the mirror
plane M,. First horizontal panel: (a),(b) Two asymmetry geometries connected by 60°
rotation around the z-axis. Geometry (a) can be transformed into geometry (b) via the
miarror operation M. Second horizontal panel: left half of each figure in the panel is the
negative k, side corresponds to geometry (a), while the right half of each figure is the
positive k, side corresponds to geometry (b). Third horizontal panel: left half of each
figure in the panel is the negative k, side corresponds to geometry (b), while the right
half of each figure is the positive &, side corresponds to geometry (a). Left and right sides
of each spin-polarized momentum map as well as spin-polarized band dispersion map are
connected by the symmetry rules of the M, mirror plane. Measurements are conducted
using the unpolarized Hel-light (hv = 21.22 V).

In the previous section 5.8, upon visual inspection, it appears that in Fig. 5.11
transforming panels (g)-(i) into panels (j)-(1), respectively, is achievable through the
symmetry operations of the M, mirror plane explained in Fig. 5.2. Likewise, in
Sec. 5.6, the correspondence in Fig. 5.9 between panels (a = ¢) and panels (b = d)
can be established using a similar reasoning.

In order to provide clarity to this idea, two asymmetry geometries, (a) and (b)
related by ¢ = 60°, are depicted in the first panel of Fig. 5.12. One can see that
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geometry (a) can be transformed into geometry (b) by mirroring through the M,
mirror plane. In the second panel of Fig. 5.12, the left half of each figure of the
spin-resolved band dispersion maps as well as the spin-resolved momentum maps
is the negative k, side corresponds to geometry (a), while the right half of each
figure is the positive k, side corresponds to geometry (b). In the third panel of Fig.
5.12, the left half of each figure is the negative k, side corresponds to geometry (b),
while the right half of each figure is the positive k, side corresponds to geometry
(a). One can see that, the right- and left sides of each spin-resolved map in Fig.
5.12 are connected through the symmetry operations of the M, mirror plane for
the in-plane S, spin component.

5.10 Spin-resolved measurements and calculations for the surface Dirac
cone of PtTe,
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Figure 5.13: Measured spin-resolved PtTe; surface Dirac cone. (a) Spin-resolved
photoemission (ki-k,) maps measured at selected binding energies below, at, and above
the Dirac point of the surface Dirac cone using the 2D color code. (b) Corresponding
spin-integrated ARPES maps. (c¢) Spin-resolved band dispersion map using the 2D color
code, and the corresponding pure spin-resolved band dispersion map (d). (a)-(d) Measured
using the geometry of Fig. 5.1(a). Right panels (e)-(h) equivalent to (a)-(d) respectively
but measured using the asymmetry geometry of Fig. 5.1(e). ARPES maps in (b) and (f)
were measured using the lens deflector system. Measurements were carried out using the
unpolarized Hel-light (hr = 21.22 eV).

A detailed spin-resolved analysis of the surface Dirac cone centered at Eppnging ~
2.3 €V is presented in Fig. 5.13. Measurements in Fig. 5.13 were carried out using
the unpolarized Hel-light (hv = 21.22 eV). The geometry used in panels (a)-(d) was
the symmetry geometry depicted in Fig. 5.1(a). Spin-resolved momentum maps
at selected binding energies below, at, and above the Dirac point are presented in
panel (a), while panel (b) displays the corresponding spin-integrated momentum
maps acquired using the lens deflector system. The spin-resolved maps in panel
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(a) demonstrate strong agreement with the spin-integrated lens deflector maps in
panel (b), underscoring the consistency between these measurement techniques and
highlighting the high resolution of the spin-detection system. Additionally, spin-
resolved band dispersion maps with an energy window covering the surface Dirac
cone are depicted in panels (c¢)-(d). Figure 5.13(a) shows closing and re-opening
of the Dirac cone with increasing binding energy. It also shows the flipping of the
spin-polarization sign S, either sides of the Dirac point, red (blue) — blue (red), in
agreement with the spin texture behaviour of the surface Dirac cone. Panels (e)-(h)
are the same but measured using the asymmetry geometry alignment of the crystal
as shown in Fig. 5.1(e).
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Figure 5.14: spin-resolved calculations for the surface Dirac cone of PtTes. (a)
Three-dimensional spin-resolved calculations of the in-plane Sy spin component for the
surface Dirac cone of PtTes. (b), (c) Extended energy range compared to (a), plotted
along half of the k-scale for improved visualization of the Dirac cone. (d) Spin-resolved
Fermi momentum map (AE = 100 meV) with the mirror symmetry line k; = 0. The color
of the symbols corresponds to the spin polarization as indicated by the false-color scale
in (d). (e) Axial vector rule for the S, spin component mirrored through the M, mirror
plane indicated by the dashed line. (f)-(j) and (k)-(o) Analogous calculations for the S,
and S, spin components, respectively, with their corresponding axial vector rules depicted
in (j) and (o). In (o), the three M — I' — M mirror planes are indicated by the dashed
lines. The color scale is saturated to 17% in (k) and to 50% in (1)-(m). These calculations
consider contributions from the outermost atomic orbitals of the topmost Pt and Te atoms
in the 30-layer slab.

Spin resolved calculations, illustrating the behaviour of the spin-texture of the
surface Dirac cone, are presented in Fig. 5.14. Figure 5.14(a) shows the spin-resolved
bands contributing to the Dirac cone, over the limited energy and momentum ranges,
for the in-plane S, spin component. Figures 5.14(b) and 5.14(c) present extended
energy range with the momentum scale being limited to better visualizing the surface
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Dirac cone. Spin-resolved Fermi momentum map (AE = 100 meV) with the mirror
symmetry line k, = 0 is presented in Fig. 5.14(d). The color of the symbols
corresponds to the spin polarization as indicated by the false-color scale in (d).
The axial vector rule for the S, spin component, mirrored through the M, mirror
plane, is shown in (e), with the mirror plane marked by a dashed line. Figures
5.14(f)-(j) and Figs. 5.14(k)-(o) present similar calculations but for the S, and
S, spin components, respectively. In Fig. 5.14(j), the dashed line indicates the
M, mirror plane, while the three dashed lines in Fig. 5.14(0) indicate the M —
I — M mirror planes. The axial vector rules associated with these mirror planes
directly correspond to the spin-resolved Fermi maps, demonstrating a clear one-to-
one correspondence between the axial vector rules and the spin polarization behavior.
In Fig. 5.14(k), the color scale is saturated at 17%, while in Figs. 5.14(1)-(n), it
is saturated at 50%, indicating a smaller out-of-plane spin polarization in PtTe,
compared to the in-plane component. This is consistent with the spin-resolved
measurements presented in Fig. 5.6.

In Fig. 5.1, Fig. 5.9, Fig. 5.10, Fig. 5.11, Fig. 5.12 and Fig. 5.13, the
asymmetries in the measured spin-resolved band dispersion maps as well as the
(k; — k) spin-resolved energy contours were present when the reaction plane was
not coinciding with any of the mirror planes of the crystal. In the next section,
various processes that might lead into such asymmetries will be discussed.

5.11 One-step model simulations
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Figure 5.15: E(k;) simulated maps for PtTes. (a) Symmetry geometry. (b) Spin-
integrated simulation of Fig. 4.25(d), using the geometry in (a). (c)-(d) Corresponding
spin-polarized simulations: (c¢) shown with a 2D color map, and (d) depicting the spin-
polarization magnitude. Maps (b)-(d) were calculated using the FEFS. (e)-(g) Corre-
sponding simulations based on the TR-LEED final state. (h)-(n) Equivalent simulations
using the asymmetry geometry shown in (h), with (i) and (1) simulating Fig. 4.25(h).

Figure 5.15 presents one-step model calculations, which are simulations that take
into account our experimental conditions (i.e., the combined system of light and the
symmetries of the sample surface) used in measuring the spin-integrated as well as
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the spin-resolved maps of PtTe, in the PGI-6 spin-ARPES laboratory’.

Figures 5.15(a)-(g) display E(k,) simulations at the symmetry geometry shown in
panel (a). Panels (b)—(d) were simulated using the free-electron final state (FEFS),
while panels (e)—(g) were simulated using the time-reversed low-energy electron
diffraction (TR-LEED) final state. Figures 5.15(b) and (e) correspond to the ex-
perimental data presented in Fig.4.25(d). The 2D spin-polarized maps in panels (c)
and (f) simulate the experimental results shown in Fig.5.1(c), whereas panels (d)
and (g) simulate the spin-resolved pure map presented in Fig. 5.1(d).

Figures 5.15(h)-(n) present equivalent simulations for the asymmetry geometry
depicted in panel (h). In this case, panels (i) and (1) correspond to the experimen-
tal data shown in Fig.4.25(h). The 2D spin-polarized maps in panels (j) and (m)
simulate the experimental results from Fig.5.1(g), while panels (k) and (n) simulate
the spin-resolved pure map from Fig. 5.1(h).

Both FEFS and TR-LEED simulations show excellent agreement with experi-
mental data, with FEFS offering particularly stronger correspondence. Since the
TR-LEED picture accounts for the scattering events discussed in Sec. 2.6, this in-
dicates that SOC-scattering in PtTes (to be discussed in Sec. 5.12.2) is not critical.

5.12 Various contributions to the photoemission spin polarization

Figure 5.16 schematically illustrates various processes which may modify the initial
state spin polarization during the photoemission process taking the PtTe, lattice as
an example. Fig. 5.16(a) shows the 3 atomic sites within the primitive unit cell
labeled as Tel, Te2, and Pt, and a generic final state wavevector k; along which the
photoelectrons are detected.

Fig. 5.16(b) shows atomic photoemission scattering waves from the 3 sites along
k; within the formalism of IACA discussed in Sec. 2.6. Since PtTe, valence band
wave functions are strongly mixed between Te and Pt sites, as demonstrated in
Sec. 4.6, these final states will interfere [90, 112] (see Sec. 2.6). This may lead
to a modification of the spin-ARPES spin polarization, as demonstrated in Ref.
[16]. This interference is related to different positions of the Tel, Te2, and Pt
sites along k;. Indeed, the photoemission amplitude along ks is a coherent sum
of the photoemission amplitudes originating from all the atomic-emitters, Tel, Te2
and Pt, participating in the photoemission process, taking into account the relative
phase shift which depends on the relative positions of these emitters leading to the
relative phase e (Brei=Rre2=Rro) where R, is a real space vector from origin to the
j* atom; j € {Tel, Te2, Pt}. In this discussion we neglect emission from deeper
layers, which must be considered in precise modeling.

Figure 5.16 (c) shows the scenario, where electron photoemitted from the Tel site
is elastically scattered on the Pt site. An intuitive way of thinking of such scattering
process is by considering electron plane wave scattering on atomic targets where for
atoms with high atomic number Z high spin polarization of the scattered beam can
be generated at selected scattering angles [167-109] event at low kinetic energies.
Therefore, scattering processes in PtTey, a material made from large atoms, are
expected to lead to spin polarization even if it was not present in the initial state.

"The calculations presented in this section were performed by Dr. Jakub Schusser at the
University of Wiirzburg, calculated with the SPR-KKR package [166].
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(d)

Surface Bulk
state state

Figure 5.16: Various processes modifying the initial state spin polarization. (a)
Indication of the Tel, Te2, and Pt atoms within the primitive unit cell of bulk PtTes,
and depiction of a generic final state wavevector ky. (b) Illustration of the interatomic
interference process, waves emitted from the three atomic sites will interfere due to different
positions of the emission sources. (c) Illustration of the scattering process. Blue arrow
depicts an electron emitted from the source atom Tel and scattered on the Pt atom. (d)
Schematic illustration of the charge density of the surface and bulk state below the surface.

In addition, Fig. 4.27(d) schematically illustrates the charge density of the lo-
calized surface state and the delocalized bulk state below the surface. This figure
was discussed in detail in Sec. 4.10.

In the following subsections, we will discuss the impact of each process, as
schematically illustrated in Figs. 4.27(b)-(d), on the measured spin-polarized spec-
tra.

5.12.1 Atomic sites-induced asymmetric spin polarization

Considering that initial parallel momenta components are conserved in the photoe-
mission process, let’s relate the regions labeled by squares S1 and 52 in Fig. 5.17(a).
Probing initial parallel momenta k;s; = k;; and k;s0 = —k;, indicated by squares
S1 and S2 in Fig. 5.17(a) via ARPES requires measuring electrons emitted along
kisi = (kiz, kyp.) and krgo = (—kiz, ky2).

Another way of thinking regarding the process illustrated in Fig. 5.16(b) is that,
any non-equivalent site within the primitive unit cell will only contribute a phase
factor into the matrix element. To have a better visualization of this idea, one can
think of photoemission from a simple one-dimensional zigzag shape shown in Fig.
5.17(b). Within the FEFS picture, one can intuitively consider a plane wave emitted
from Pt atom along the two emission directions kg, and kg2 shown by the brown-
and blue plane waves, respectively. Complex part of the emitted plane wave is also
plotted. The real space positions of the Pt atoms are §(x —la), and for the Te atoms
are d(x — la — d)d(z — h), where [ is an integer, a is the lattice constant and the
distances d and h represent the relative displacement of Pt and Te atoms.

As discussed before (see Sec. 2.6), shifts in space introduce phase shifts in recip-
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Figure 5.17: Asymmetric spin polarization by non-equivalent atomic sites. (a)
Part of the spin-polarized energy dispersion map for the asymmetry geometry. S1 and
S2 labeled squares represent the surface states close to Fermi level. (b) One dimensional
zigzag model representing a side view of the asymmetry geometry of PtTes where M,
mirror plan is broken. The lattice constant a and the relative displacement of Pt and Te
atoms is indicated by the distances d and h. Real space positions of Pt and Te toms are
shown in brackets. Probing the squares S1 and S2 in (a) via ARPES requires measuring
electrons emitted along kg1 represented by the brown plane wave, and kg2 represented
by the blue plane wave. Real and complex parts of the plane waves are plotted. Wave
fronts of the plane waves are indicated by the dashed lines.

rocal space. The zigzag model in Fig. 5.17(b) can be considered as equivalent to
the asymmetry geometry of the PtTe, lattice once is it extended to 3D. One can see
that atomic sites in the zigzag model are positioned such that M, mirror plane is
broken. This will introduce different phase shifts in the S1 and S2 matrix elements
Mgy = (e*ss17|ohy(kigy, 7)) and Mgy = (e®*5527|1);(Kkis2,7)). Indeed, one can show

ikig(a—d)e”Ff"

that Mg; will have a term with a phase factor e , while Mg, will have a

term with a different phase factor ei=de " where the parallel momentum com-
ponent is conserved and ky, = k;,. One can as well show that in a generic case this
leads to different final measured spin polarizations for the two emission directions
kfs1 and kygo, despite equal initial state polarizations S, (kyss1) and Sy (krse) as
shown in the theoretical calculations in Fig. 5.5(d). A full derivation of this inter-
ference model for the minimal case of two orbitals on two different sites is presented
in the next Sec. 5.12.1.1, while a coupled zigzag chains model can be found in Sec.
SIV of the Supplemental Material in Ref. [410].

On the other hand, the zigzag model for the symmetry orientation will be re-
shaped such that the relative distance d will be half of the lattice constant a, i.e.
d = a/2, recovering the M, mirror plane. In this case, the phase shift eikiade™ 15"
is same for the two emission directions, leading to symmetric final measured spin
polarizations for the two emission directions kyg; and ksgo as demonstrated in the
measured spin-polarized maps in Fig. 5.8 as well as in the calculated maps in Fig.

5.5(c).
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5.12.1.1 Analytical zigzag model

We model the experimental geometry by the one-dimensional zigzag shape, as de-
picted in Fig. 5.18. Top surface Pt sites are referred to by «, while top surface
Te atoms are referred to by . In this thesis, spin-resolved E(k,) band dispersion
maps measures spin polarization in the photoemitted ensemble P, (ky,,ky,) and
P(—kys, ky.) as indicated by the emission directions in Fig. 5.18. To establish the
rules of the underlying initial state wave-functions W, (k;, 7) and W, (—k,, 1), we
shall define the direction of the quantization axis. Since in most of the experiments
presented in this thesis we measure .S, we should couple it to orbitals with non-
zero orbital angular momentum (magnetic quantum number m;) along y. As it was
shown earlier in Sec. 4.6, PtTe, valence bands are highly mixed of Te 5p, Pt 6s and
Pt 5d orbitals.

Figure 5.18: Visualization of the 1D zigzag model. Schematic visualization of the
zigzag model. The one-dimensional unit cell with the lattice constant a is shown as a
yellow rectangle in the (z — z) plane. The relative displacement of o and § atoms is
indicated by the yellow triangle with the distances d and h.

For simplicity we consider the orbital angular momentum on Te 5p, namely
|p+) = |p. £ ip.) (my = £1) orbitals on site 3, and the isotropic Pt |s) orbital on
site ae. We set the spin quantization axis to y and we write for the initial state Bloch
wave function

oo

Wini(ke,t) = €7 37 (0(z — 1a)d(2) - (arlsy) +aylsy)) +

l=—00

0(z —la—d)o(z = h) - (Brlpa) + B4lp—1) + Builps) + B-ilp-1)))  (5.1)

where a is the lattice constant along x, and 1, | depict up/down initial state .S,
spin, (see Fig. 5.18). Shifting the [ site by d along the z direction (see Fig. 5.18)
is equivalent to the phase shift of e~*=(4*+e) where [ is an integer®.

8At the I' points of the Brillouin zone, where k, = 27l/a, the phase shift disappears for d = a
and d = 0.
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We consider wave-vectors in the first Brillouin zone, 0 < k, < 27/a, and follow
the convention that Fourier frequencies are positive, therefore we consider a positive
phase shift e=#=(d-0) = ¢ike(a=d) gince d < q. Therefore, we can write

o0

Ui (ky, ) = ket > (5(36 —1a)d(z) - (aq|st) + aylsy)) +

l=—00

B = )3z = W™D (By1lpy) + Boilp-) + Bralpis) + Blp-1))) (5.2

Now the goal is to derive W;,,;(—k,,r). Since the system is time-reversal invariant,
we calculate

o0

Wi~k x) = WE (g 1) = e o7 3 {5@ —1a)8(2) - (a]st) + als))) +

l=—00

6(x —la—d)o(z — h) - (8% |pr) + B p-1) + B4 1p4y) + 53&\?—0)}

ke 3 6z~ 10)6(2) - (als1) + atlsy)) +

l=—00

§(z —1a)d(z — h)e=d. (BZy|p+1) + BLy|p—1) + B24p4y) + 51?‘?—0)} (5.3)

where we performed the complex conjugation by exchanging the T / | and +
indices and their assignment to the respective orbitals, then we pulled out the phase
shift e*=9 due to the shift of the 3 site by d (it is positive because now we have —k,
in the Bloch wave exponent).

We consider a simplified form of the photoemission matrix element (e™/7|W;.:(k,, r))
where the influence of the polarization of the incoming light, the A . P operator (see
Sec. 2.5.1.1), is neglected. This operator could be added and will lead to additional
effects, but it is not needed to derive the effect of the interest.

The goal of the calculation is to show that spin polarizations for two different
final state free-clectron wave vectors, kg, = [kfs, k.| and kg = [—kys, kg.] are dif-
ferent. We will show that this is realized by the matrix elements:

w, = (™| Wy (ke 1)) (5.4)
wy = (€™ Wi (—ky, 1)) (5.5)

We write the w matrix elements as

wr(kfzy kfz) = <€i[kfz7ku]r

lllini (kz I'))

= / /dxdz e kratemikez o gikar N {5(9& —1a)d(z) - (on|st) + aylsy))

l=—00

+6(x —1a)d(z — h) - e*D(B4par) + Btlp-r)

+ Bualpe) + B-ilp-1)| (5.6
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wilkps, k) = (W W (kg 1)) = (Pt UG (ks )

—//d:rdze ihpatemikyzz i gmiker N7 {6(:rfla)5(z)o(a1|5¢>+o¢ﬂs¢>)

l=—00

+6(z — la)d(z — h) - e*=4 (B Ipsr) + Biylp—r)
+B4lpes) + Bilp-1))| (57)

We see that the non-zero solutions (remembering that we are considering wave
functions at a certain energy E) are for w,(k,,k,) and w,(k,, k.), which indicates
the parallel momentum conservation’. We also see that for the 3 site, the shift by
h along z will result in the e=*/=" From this we have

wr(km kfz) =

anlsy) + aylsy) + @OV (B4 pyg) + Boplpr) + Beylpis) + B-ilp-))
(5.8)

wy (7]%’ kfz) =

als1) + ailsy) + et (B [py) + B3 b + Balpa) + Bialp-))  (5.9)

For clarity we can write all wy and w| parts separately

Wiy (ky, ky2) =at|sp) + e M (B1alpi) + Btlp-r))

wry (K, ky2) =aylsy) + “De= kR (B pay) + Boylp-y)) (5.10)
wir(—kaz, k) =aj|st) +€zk’”d ﬂkfzh(ﬁ Wp) + B p-1))

wyy (—kz, ky2) =afls)) + e le M (B ) + Bilpo))

This allows calculating the 1 and | intensities as I+ = Wy Wy, I, = w;"iww,

,T Iy
Iy +1ry

Iy = wiwyy and I = wjjwyy, and subsequently spin polarizations as P, =

IlT Iu
nd P, = .
and l Iip+1Iy

We can now consider positive k, and assume the |p_) band at positive k, is
shifted in energy, because of the broken M, mirror plane at the surface-vacuum
interface, and does not contribute significantly, that is f_4+ | = 0. Therefore, we can
consider an electron band made from an |s) orbital and hole bands made from |p4 )
orbitals. Due to the spin-momentum locking we consider spin-splitting of |p4+) and
|p+y) bands. We assume these bands hybridize and anticross, leading to E(k,) at
which the band characters are mired. We can assume all a and [ coefficients are
real, and we end up with three different coeflicients ay = o, 514 and Sy4,.

At the Fermi level Ey;, = hv — ®,'°, and we can get the total momentum as

= /2% Epin. We can fix k,, and get ks, = /k* — k2, making the zigzag model hv

9Parallel momentum conservation : e?/* = e*f= and e?Frv = etk
10The work function ®, was set to 4.5 ¢V in the model.
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Figure 5.19: One-dimensional zigzag model calculations. Numerical calculation for
the zig-zag model with a = 3 A, d =14 h =14, ay =2/8, a; = 2/8, By4 = 1/8,
By =3/8 and k, = 0.3 A,

dependent. Figure 5.19 shows the results of the model plotted vs. total momentum
and vs. photon energy for selected parameters and hyv between 5 and 1000 eV. It is
also indicated that at hv = 21.22 eV using Hel discharge lamp, high asymmetry in

the spin polarization is expected, and is demonstrated in e.g. Sec. 5.1.

5.12.2 Scattering-induced asymmetric spin polarization

In materials that contain large atoms such as Pt and Te, the SOC scattering of hot
electrons may play a role, as schematically indicated in Fig. 5.16(c). Indeed, such
a scattering process can induce spin polarization as will be demonstrated in this
section.

To clarify the scattering-induced spin polarization mechanism in PtTe,, let us
discuss the scattering event, schematically illustrated in Fig. 5.20, for a beam of
photoelectrons emitted from Pt atom and scattered by the potential of the Te atom.

A scattering plane is defined by the unit vector, it = ‘Ezziﬁi;‘, perpendicular to
it, where k., and k; are the momenta of the incoming and the scattered electrons
respectively. In Fig. 5.20, the incoming beam is defined along the Pt-Te bond
which is defined along the z-axis, i.e, ko = k.2. If Ny and N are the number of
the electrons parallel and antiparallel, respectively, to the normal of the scattering
plane 7fi, where it = ¢ in Fig. 5.20, then the polarization P of this beam is defined
as

p=-1—""4 (5.11)

The differential cross sections of this beam are given by [170-174]
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Figure 5.20: Scattering-induced asymmetric distribution of spin polarization.
(a) Schematic illustration of asymmetrically scattered P polarized beam of electrons for
¢ = 90° and ¢ = 270° within the green triangular scattering zz-plane. (b) Same as (a) but
for initially unpolarized beam that is considered as two fully polarized beams: one with
spin S;y + and the other with spin S;, |. Both spins are oriented perpendicular to the same
scattering plane as described in (a). 6, ¢, ¥ are the scattering angles, P is polarization of
the beam, and S is the Sherman function.

(0, 6) = I(0)(1 — PS(0)sing) (5.12)

where 6 and ¢ are defined in Fig. 5.20(a), and S is the Sherman function.
Therefore, for an initially spin-polarized beam with polarization P, the scattered
intensity has a left-right asymmetry which depends on the angle ¢. Figure 5.20 (a)
shows this scattering asymmetry for an initially P polarized beam for ¢ = 90° and
¢ = 270°.

To study the scattering case of initially unpolarized beam, P, = 0, one can
think of this beam as a mixture of two fully polarized beams with opposite spin
polarization directions S;, + and S;, | perpendicular to the scattering green triangular
plane defined within the xz-plane in Figs. 5.20(a) and 5.20(b).

Starting with the fully polarized up beam, S;,;, then from Eq. 5.11 it has
polarization P = 1. Then, following Eq. 5.12, this beam will have scattering
intensity to the right, (¢ = 90°), proportional to (1 — S), while the scattering
intensity to the left, (¢ = 270°), will be proportional to (1 + 5), as indicated in
Fig. 5.20(b). On the other hand, for the fully polarized down beam, S;, |, the
corresponding values are (14 S) and (1 — 5), respectively.

For the fully polarized beam, with polarization perpendicular to the scattering
plane, the direction of the polarization vector of the scattered beam is not changed
after the scattering [170], as indicated in Fig. 5.20(b). This means that along any
scattering angle ¥ within the scattering plane, there will be different number of elec-
trons with spin up and spin down, leading to a scattering-induced spin polarization.
Indeed, scattering to the right creates spin polarization of

N =N, (1-9-(1+8)
SN+ N, (1=-S)+(1+95)

while scattering to the left will have a polarization of P = S.

P

-5, (5.13)
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This will lead in general to a non-vanishing scattering-induced spin polarization
as schematically shown in Figs. 5.21(a) and 5.21(b), with respect to the white
dashed line, for the symmetry and asymmetry geometries respectively.

Figure 5.21: Non-vanishing scattering-induced spin polarization. (a),(b) Spin po-
larization induced by scattering in the symmetry and asymmetry geometries, respectively.
To the right of each scattering event: added spin is (—S), while it is (+S) to the left of
the same event.

The scattering-induced spin polarization in the symmetry geometry, as depicted
in Fig. 5.21(a), is symmetrically distributed relative to the white dashed line, in-
dicating a balanced addition of spin polarization. In contrast, in the asymmetry
geometry shown in Fig. 5.21(b), the scattering-induced spin polarization is added
asymmetrically, resulting in scattering-induced asymmetric measured spin polariza-
tion.

To estimate the magnitude of such effects in PtTey, photoelectron diffraction
calculations, that include spin-orbit scattering, were performed using the EDAC
code [51]. The results are shown in Figs. 5.22(a) and 5.22(b) for the in-plane S,
spin component, and in Figs. 5.22(c) and 5.22(d) for the in-plane S, spin component.
The s-wave (an isotropic spherical wave) was emitted from the outermost Pt atoms
of the PtTe, cluster. The cluster radius was 18 A and contained 574 atoms. We
have chosen Ej;, = 16 eV, typical for the Fermi level electrons measured with He-I
radiation (hv = 21.22 eV), and standard values for inner potential V, = 15 eV, and
IMFP of 3 A. The results presented in Fig. 5.22 indicate that spin polarization of up
to & 15% can be expected purely from SOC scattering. We conjecture that in spin-
ARPES spectra the effects are less pronounced through mixing of scattering due to
different emitters and their scattering environments and because intense emission
appears only at parallel momenta related to the bands, therefore might not coincide
with areas of high polarization due to scattering. Figures 5.22(e) and 5.22(f) were
calculated using a plane wave emitted from the source, however, in the Muffin-tin
approximation spherical waves are emitted and get scattered. Nevertheless, these
figures illustrate the mechanism. They as well clearly show that the differential cross
sections are at their maxima when the scattering angle is zero, indicating forward
scattering along the bond. This is consistent with the discussion made in Sec. 2.6,
particularly as illustrated in Fig. 2.11.

For EDAC, the first layer of PtTe; cluster contained Pt site at (0,0,0) and Te sites
at (£ 1.169 A, 2.025 A7 1.365 A) Subsequent layers were separated by 5.48 A along
the z-axis. Two separate calculation for the initial s-wave spin polarized up to down
along the y-axis were performed, this initial emission can be written as Si(6, ¢) and
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Figure 5.22: Photoelectron diffraction from Pt s-orbital in PtTe, at Ej;,, = 16
eV calculated using EDAC [51]. (a) Spin-polarized photoelectron diffraction pattern
for s-wave emission from the outermost Pt site in bulk PtTes. (b) Same as (a), but with
the special 2D colormap inset that simultaneously represents both spin polarization and
intensity. In (a) and (b), the spin quantization axis is aligned with the y-scale. (c),(d) Same
as (a) and (b), but for the spin quantization axis being aligned with the x-scale. (e),(f)
Differential cross sections and Sherman functions, for the Pt and Te atoms respectively,
corresponding to the muffin-tin potentials employed in the photoelectron diffraction (PED)
calculation.

Si1 (0, ¢) which are just fully isotropic spin polarized waves emitted from Pt site. This
is needed to obtain results from non-spin-polarized initial state. Subsequently, in
both cases, the final state spin polarization along the y-axis was calculated, therefore
obtaining 2 multiply scattered wave functions Si ¢4(6, ¢), and S;; 7, (6, ¢). In order
to obtain intensities shown in Fig. 5.22(a), we calculated It = [Si; s+(6, ¢)|* and

I, = |Siy.5,(6,0)I%.

5.12.3 Bulk-induced asymmetric spin polarization

Bulk PtTe; has a centrosymmetric crystal structure belonging to the 1T-phase class
of TMDCs. In this phase, the two chalcogen Te layers are rotated 180° relative to
each other, as discussed in Sec. 4.1 and illustrated in Fig. 5.23 (Te: green atoms;
Pt: yellow atom). Thus, the charge across the Te-Pt-Te bond is symmetrically
distributed, and inversion symmetry is retained even at the single trilayer limit.
However, at a local scale, an effective electric field arises from the Pt-Te bonds,
leading to an out-of-plane site dipole field. This dipole field is localized in the upper
half of the unit cell (indicated by the upper white arrow) and reverses sign in the
lower half, resulting in a vanishing net dipole field.

The local dipole field, combined with spin-orbit coupling, induces in-plane Rashba
R-2 spin splitting perpendicular to the dipole field. In centrosymmetric materials,
all energy bands must be doubly degenerate. As a result, the compensated spins
with opposite signs (depicted by magenta arrows with opposite helicities in Fig.
5.23) exhibit energy degeneracy. Each spin is spatially localized in one of the two
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real-space-separated sectors, which correspond to the inversion partners (top and
bottom Te layers) [165]. This spatial separation underlies the spin-layer locking
effect, a key characteristic of hidden spin polarization.

Therefore, a non-zero spin polarization called hidden spin polarization can only
be uncovered with a surface-sensitive probe of the electronic structure, where the
topmost layer of the material is primarily probed compared to deeper layers. Such
hidden spin polarization has been predicted in the 1T-phase of TMDCs [175] and
has been verified in the Se p, ,-derived bands of the 1T-PtSe; monolayer [33], which
exhibit a local in-plane Rashba polarization. Recently, this hidden spin polarization
has also been reported in bulk 1T-HfSe; single crystals [35].

Rashba spin splitting can be categorized into two main types: R-1, which arises
in systems with structure inversion asymmetry [70, —182] and is typically asso-
ciated with a large internal electric field, and R-2, where spin polarization is layer-
dependent and arises even in centrosymmetric structures with local dipole fields.
The spin-layer-locked nature of the R-2 Rashba spin polarization provides a distinct
advantage over R-1, as it enables easier manipulation of spins via an external elec-
tric field. This property makes R-2 particularly promising for electrically tunable
spintronic devices |

Figure 5.23: Hidden spin polarization in the 1T-phase structure of TMDCs. Unit
cell structure of bulk 1T-PtTey single crystal ( Pt: labeled yellow atom; Te: labeled green
atoms). White arrows indicate the localized out-of-plane dipoles within the same unit
cell, which give rise to in-plane Rashba R-2 spin splitting. Magenta arrows are schematic
representation of the spin helicity showing the spin-layer locking mechanism.

Figure 5.16(d) illustrates the delocalization of the bulk state, with its periodic
charge density distribution extending up to the sample surface. Consequently, the
symmetry of the spin-ARPES measurements is influenced by the intrinsic symme-
tries of the bulk band structure. As discussed in Sec. 4.1 and Sec. 4.10, PtTes
exhibits trigonal symmetry in its bulk form, rather than hexagonal symmetry. Thus,
when probing along the M — T — M direction, which is not perpendicular to any
mirror plane, the measurements will be affected by the initial asymmetry in the
bulk band structure along M — I"' — M as shown previously by the projected band
structure in Fig. 4.27(b).
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5.13 Summary

In its bulk form, PtTes adopts an inversion-symmetric 1T-phase structure, satisfying
E(k,T) = E(—k,T). As a non-magnetic system, it also preserves time-reversal
symmetry, ensuring E(k,T) = E(—k,l). The combination of inversion symmetry
(IS) and time-reversal symmetry (TRS) typically enforces a fully spin-degenerate
bulk band structure. However, in this chapter, we have presented - for the first time
- spin-polarized energy-momentum spectra and constant energy contours of PtTe,,
revealing spin polarization reaching up to ~ 55%.

We attribute most of the in-plane spin texture to a Rashba-like mechanism,
arising from the out-of-plane potential gradient. In contrast, the out-of-plane spin
texture originates from intra-layer in-plane dipoles, a consequence of broken inver-
sion symmetry at the surface. Additionally, we identify spin polarization in the
bulk-derived bands as a manifestation of hidden spin polarization, which is revealed
due to the surface sensitivity of spin-ARPES. Furthermore, calculations using the
EDAC code demonstrate that spin polarization of up to ~ 15% can result from the
scattering of photoelectrons on their way to the detector.

Experiments were performed for different orientations of the sample, taking into
consideration the alignment of the mirror planes hosted by PtTey single crystal
relative to the reaction plane of the experiments, within which the unpolarized Hel
radiation (hv = 21.22 eV) impinged the sample.

In the first set of orientations, referred to as the symmetry geometry, the re-
action plane coincided with one of the mirror planes of the crystal. Under these
conditions, the measured E(k) and (k, — k,) spin-polarized maps obeyed the sym-
metry rules associated with the preserved mirror plane, consistent with theoretical
calculations. However, for two symmetry geometries of the sample, related by a
rotation of ¢ = 60°, one of these geometries exhibited a stronger spin-polarization
signal, even though both geometries showed symmetric spin-polarization maps. We
attribute this to the light incidence direction.

In the second set of orientations, termed the asymmetry geometry, where the
reaction plane did not coincide with any of the mirror planes of the crystal, the
symmetry rules of all mirror planes were broken. In this configuration, we observed
highly asymmetric spin textures, both in the positions of features and in the magni-
tude of the spin-polarization signal, contrasting with the corresponding symmetric
spin-calculated maps.

We have identified several processes that may have modified the initial state
spin polarization during the photoemission process, resulting in these asymmetric
spin-polarized maps. The first process is the interference of waves emitted from
different atomic sites, where non-equivalent atomic sites in the asymmetry geometry
create varying phase shifts that can alter the spin-ARPES spin polarization. The
second process involves the scattering of photoelectrons by neighboring atoms on
their way to the detector, when the asymmetry geometry is employed. Finally, the
third factor is the inherently asymmetric bulk band structure due to the trigonal
crystal structure of bulk PtTe,, rather than a hexagonal one, when the asymmetry
geometry is used.



6. Electronic structure of PdTe,

6.1 ARPES on bulk PdTe,

PdTe, is an intrinsic bulk superconductor with T, ~ 1.7 K [186-188]. Single-crystal
PdTe, belongs to the space group P3ml hosting three mirror planes. The crystal
structure of PdTe; and the corresponding symmetry operations hosted by the crystal
are same as those of PtTe, discussed in Sec. 4.1 and Sec. 4.2.

Figure 6.1 provides an overview of the ARPES measurements of PdTe,. The first
set of measurements were conducted using the symmetry geometry as schematically
depicted in Fig. 6.1(a), in which the sample was aligned such that the incident light
beam coincided with one of the mirror planes of the crystal, preserving its symmetry
rules. The data were acquired as a 3D matrix using p-polarized light with photon
energy hv = 107 eV, as presented in Fig. 6.1(b). For better visualization of the
band structure, part of the 3D data is visualized in Fig. 6.1(c). The Fermi surface
map, representing a constant energy cut at Eg = 0, is shown in Fig. 6.1(d), and the
energy-momentum map along the I' — K direction of the surface BZ is presented in
Fig. 6.1(e), taken from Fig. 6.1(b) at k, = 0 as indicated by the dashed-black line
in Fig. 6.1(d). Fig. 6.1(f) is same as Fig. 6.1(e) indicating the key features by the
dashed- and solid yellow lines highlighting the surface states, as will be discussed
later in this section. Lower panels (g)-(1) correspond to similar measurements as
(a)-(f), but were obtained using the asymmetry geometry depicted in Fig. 6.1(g),
where in this case the incident light breaks all mirror planes symmetries of the
crystal surface, as discussed in Sec. 4.10. Figures 6.1(k) and 6.1(1) show the band
dispersion along the I' — M direction, taken as a cut from Fig. 6.1(h) at k, = 0, as
indicated by the dashed-black line in Fig. 6.1(j), with the key features highlighted
in Fig. 6.1(1).

The corresponding calculated electronic band structure of PdTe, is shown in Fig.
6.2(a)-(g). Figure 6.2(a) presents the 3D band structure calculations for a 30-layer
slab of PdTe,, with key features visualized in Figs. 6.2(b) and 6.2(c) for enhanced
clarity of the band structure. Figure 6.2(d) displays the calculated Fermi surface
map, with the magenta frame delineating the surface Brillouin zone. A magnified
view of the 3D band structure calculation near the Fermi level is provided in Fig.
6.2(e), offering a clearer view of the surface states near the Fermi surface, which will
be discussed in more detail later in this section. Additionally, dispersions of PdTes
bands along the high symmetry directions I' — K and T' — M are plotted in Figs.
6.2(f) and 6.2(g), respectively.

The measured energy-momentum maps presented in Fig. 6.1(e) with its key
features highlighted in 6.1(f) and 6.1(k) with its key features highlighted in 6.1(1),
along with the corresponding calculated maps in Figs. 6.2(f) and 6.2(g), reflect the
similarity between the band structure of PdTe; and the band structure of its sister
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Figure 6.1: Experimentally determined electronic band structure of PdTe;.
Upper panel: (a)-(f) Results obtained using the symmetry geometry schematically shown
in (a), in which one of the three mirror planes of bulk PdTes was aligned such that the
light beam impinged the sample within this plane, preserving the symmetry rules of this
mirror plane. (b) ARPES 3D matrix data of PdTes. (c) Three quarters of (b) for better
visualization of the band structure. (d) ARPES Fermi surface map of PdTes (Er £ 50
meV). (e) In-plane energy-momentum dispersion E(k,) along the high symmetry direc-
tion in reciprocal space I' — K, indicated by the black-dashed line in (d). (d),(e) Taken as
cuts from the measured 3D-stack of data (b) at Epinging = 0 and at k; = 0 respectively.
(f) Same as (e) with the key features indicating surface states highlighted by dotted and
solid yellow lines. Lower panel: (g)-(1) equivalent measurements, but measured as shown
schematically in (g) where one of the three mirror planes of bulk PdTe; was aligned such
that for the complete system of the sample and the incident light, no mirror plane sym-
metry remained. (Measurements were performed at room temperature, hy = 107 €V;
p-polarized light: probing close to A-plane in the three dimensional Brillouin zone along
the k,-direction; see Notes 2 and 3).

compound PtTe; which was discussed in Sec. 4.3. Indeed, one can see a pronounced
feature situated at Eg ~ 1.8 eV below the Fermi level which has been identified
as a topological surface Dirac cone in PdTey [25, 19]. Similar to PtTe,, the upper
legs of the cone emerge and become degenerate with the bulk diffuse spectral weight
where they keep their general shape along the I'— K direction and survive as surface
resonances (see Figs. 6.1(e), 6.1(f) and 6.2(f)). However, along the T — M direction,
these branches diffuse into the bulk manifold and become indistinguishable, though
they re-emerge as distinct surface states at lower binding energies (see Figs. 6.1(k),
6.1(1) and 6.2(g)).

The constant energy momentum contours between Fg = 1.5 €V and Eg = 2.2
eV in Fig. 6.3 show the characteristic closing and re-opening of the Dirac cone with
increasing binding energy, a feature that is also clearly captured in the calculations
presented in Figs. 6.2(b) and 6.2(c). Additionally, another distinct pair of sharp
surface states appear at Ep ~ 0.55 eV in Figs. 6.1(e), 6.1(f), 6.1(k) and 6.1(1).
Unlike the corresponding surface states in PtTe, (see Figs. 4.3(e) and 4.3(1)), the
two branches of these states exhibit a turning point midway along the T'— K direction
(see Figs. 6.1(e), 6.1(f) and 6.2(f)). This behavior induces pronounced hexagonal
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Figure 6.2: Calculated electronic band structure of PdTe,. (a) Three-dimensional
calculated band structure of a 30-layer slab of PdTe;. (b),(c) Parts of (a) for enhanced
visualization of the key features in the band structure. (d) Fermi surface map showing a
constant energy cut derived from (a). (e) Narrow energy range close to the Fermi level
from (a), showcasing the surface states crossing the Fermi level midway along the T — M
direction. (f),(g) Calculations of the band structure along the high symmetry directions of
the surface Brillouin zone T'— K and T — M, respectively. The outermost atomic orbitals of
the top surface Pd and Te atoms are included in all calculations (a)-(g) with their spectral
weight represented by the colorbar.

warping in the constant energy contours, as shown in Fig. 6.3, over the energy range
from Ep = 0.4 eV to Ep = 0.6 €V as highlighted by the yellow-dotted warping curves
in the momentum map at Eg = 0.6 €V, that evolve to arc-like features as highlighted
in the momentum map at Eg = 0.7 eV just below the minimum of the surface states.
Furthermore, a pair of sharp spectral features intersecting the Fermi level can be
seen approximately midway along the T — M direction (see Figs. 6.1(k), 6.1(1) and
6.2(g)), which have been demonstrated to have negligible dispersion along the out-
plane direction, and thus, are identified as surface states (see supplementary in Ref.
[19]). The 3D calculations in Fig. 6.2(e) provide a clearer visualization of these
surface states. Their locations at high kj lead to deviations from circular Fermi
surface geometry, instead forming intricate multi-valley pockets [19], as evidenced
in the Fermi surface maps of PdTe, presented in Figs. 6.1(d),(j) and the calculated
Fermi map in Fig. 6.2(d), as well as in the constant energy contours at Ep = 0.1
eV and Ep = 0.2 ¢V in Fig. 6.3.

In addition to these surface states, several broad diffuse features are observed
in the energy-momentum maps, particularly around Ep ~ 0.8 €V, where a type-II
bulk Dirac cone has been identified in PdTe, [25, 50]. These surface states as well as
the type-II bulk Dirac cone originate from a series of band inversions within the Te
p-orbital manifold, driven by the differing bandwidths of the out-of-plane p, orbitals
compared to the in-plane p, ,-orbitals along the k. direction in reciprocal space [25],
as discussed in Sec. 4.5.

Figure. 6.4 and Fig. 6.5 show surface orbital characters of the 30 layer PdTe;
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Figure 6.3: Constant energy-momentum cuts of PdTe;. Selected constant energy
contours (AE = 20 meV) of PdTey at the indicated binding energies, using p-polarized
light and photon energy hv = 107 eV.

slab calculations. The quantization axis for the complex orbitals is chosen per-
pendicular to the surface as shown in the right insets. For convenience, the most
prominent features in the band structure are highlighted in the left insets named
key features. One can see that the surface Dirac cone centered at EFg ~ 1.8 €V is
formed predominantly from the out-plane orbitals Pd 5d Y;) = d_2 and Te 5p Y,
= p.. The surface states at Ep ~ 1.4 eV are formed predominantly from Te 5p Y,
and Pd 5d Yy orbitals with admixtures of Te 5p Y;*! and Pd 5d Y32 The surface
states at Ep ~ 0.55 ¢V are formed predominantly from Te 5p Y and Te 5p Yi*!
with admixtures of Pd 5d Yy and Pt 5d Y5> orbitals. The surface states close to
Fermi level that appear only along the (f‘ — M) direction are formed predominantly
from the out-plane Te 5p Y orbitals with admixtures of Pd 5d Yy, Y5 and Y52
orbitals. This demonstrates that in PdTey the valence bands wave functions are
strongly mixed between Te and Pd sites.
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Figure 6.4: Band characters for the Pd surface atom of the 30L PdTe; slab
calculation. Band characters for the Pd surface atom of the 30L PdTes slab calculation
for s, p and d complex orbitals for the quantization axis normal to the surface as indicated
in the right inset. The bands are plotted along I' — K of the reciprocal space. The size
of symbols represents the corresponding orbital weight. The left inset highlights the key
features of the band structure.
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Figure 6.5: Band characters for the Te surface atom of the 30L PtTe; slab
calculation. Band characters for the Te surface atom of the 30L PtTey slab calculation
for s, p and d complex orbitals for the quantization axis normal to the surface as indicated
in the right inset. The bands are plotted along I' — K of the reciprocal space. The size
of symbols represents the corresponding orbital weight. The left inset highlights the key
features of the band structure.
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6.2 Spin-ARPES on bulk PdTe,
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Figure 6.6: Spin-resolved asymmetries of PdTe,. Upper panel: (a)-(f) Results ob-
tained within the symmetry geometry schematically shown in (a) where the M, mirror
plane coincides with the reaction plane. (b) Corresponding Fermi surface map. (c¢) Energy-
momentum band dispersion map E(k,), at k, = 0. (d),(e) Corresponding spin-resolved
energy dispersion maps, E(k,), measured using the lens deflector system probing along the
x-axis perpendicular to M, mirror plane, as defined in (a) and along the magenta-dashed
line in (b), while the sample in normal emission. (f) Same as (c) highlighting the strongly
spin-polarized features of the spectrum with the color indicating their spin-polarization
sign. Lower panel: (g)-(1) Equivalent to (a)-(f) respectively, but measured using the asym-
metry geometry schematically shown in (g) where the reaction plane is now perpendicular
to the M, mirror plane and the spin maps were filtered along the magenta line in (h)
not perpendicular to any of the system’s mirror planes. In (d) and (j) the intensity and
spin-polarization are simultaneously displayed using the inset 2D color code shown in (d),
where the false color scale refers to the in-plane spin polarization S, in the ensemble of the
photoemitted electrons. (e),(k) The corresponding pure in-plane Sy spin polarized maps.
(Measurements were performed using the unpolarized Hel radiation hv = 21.22 V).

Figure 6.6 presents two spin-resolved measurements from PdTey, at different
experimental geometries, specifically, the relative orientation of the reaction plane
(defined in Sec. 4.9) with respect to the mirror planes of the crystal surface. The
unpolarized Hel light (hv = 21.22 eV) was used, as in the experiments conducted on
PtTey in Sec. 5.1. Figures 6.6(b)-(e) were measured using the symmetry geometry
shown in Fig. 6.6(a) , where the reaction plane coincides with one of the surface mir-
ror planes, specifically M,. As seen in Fig. 6.6(b), M, is the only preserved mirror
plane out of the three present in the crystal. The spin-integrated energy-momentum
map in Fig. 6.6(c) was measured along the magenta line in Fig. 6.6(b), perpendicular
to M,. Panels (d) and (e) show the corresponding spin-resolved energy-momentum
maps for the in-plane spin component S,. In Fig. 6.6(d), both photoemission inten-
sity and spin polarization are represented using a 2D color code (see inset), while
Fig. 6.6(e) depicts only the spin polarization. Figures 6.6(g)-(j) present equivalent
measurements to those in panels (b)-(e), but taken using the asymmetry geometry
depicted in Fig. 6.6(f), where the reaction plane is perpendicular to another mirror
plane, M,,.
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Figure 6.7: Spin-resolved calculated electronic band structure of PdTe;. (a)
Three-dimensional spin-resolved calculated band structure of a 30-layer slab of PdTes.
(b),(c) Parts of (a) for enhanced visualization of the key spin-polarized features in the
band structure. (d) Spin-resolved Fermi surface map showing a constant energy cut de-
rived from (a). (e) Narrow energy range close to the Fermi level from (a), showcasing
the highly spin-polarized surface states crossing the Fermi level midway along the T — M
direction. (f) Magnified view of the portion of (e) highlighted by the green frame, en-
hancing the visualization of these surface states. (g),(h) Spin-resolved calculations of the
band structure along the high symmetry directions of the surface Brillouin zone I' — K and
T' — M, respectively. The outermost atomic orbitals of the top surface Pd and Te atoms
are included in all calculations (a)-(h).

Figures 6.7(a)-(c) present 3D spin-resolved calculations of PdTe,, with the spin-
polarized Fermi surface map shown in Fig. 6.7(d). A narrower energy range is
depicted in Fig. 6.7(e) to better visualize the highly spin-polarized surface states
near the Fermi level, particularly along the I' — M direction. A magnified 3D
picture of the green-highlighted portion containing these surface states is shown in
Fig. 6.7(f). Additionally, spin-resolved calculations of the band dispersion along the
high symmetry directions I' — K and I — M are shown in Figs. 6.7(g) and 6.7(h),
respectively, highlighting sharp, spin-polarized surface states, discussed in Sec. 6.1,
that are distinct from the surrounding diffuse bulk spectral weight.

In the measured spin-ARPES maps in Figs. 6.6(d) and 6.6(e), the M, mirror
plane is in effect, and since spin follows the axial vector rules (see Fig. 5.2), the spin
polarization reverses as k, changes sign, Sy (k,) = —S,(—k,), in agreement with the
corresponding calculations in Fig. 6.7(g).

In contrast, the spin-polarized maps shown in Figs. 6.6(j) and 6.6(k), are highly
asymmetric with respect to k, = 0, where M, is the mirror plane of the crystal,
not M,, as shown in Fig. 6.6(g). This asymmetry contrasts with the correspond-
ing symmetric spin-polarized map calculated for the initial state, as shown in Fig.
6.7(h).

To address these asymmetries, a quantitative standard deviation analysis is pre-
sented in Fig. 6.8. In panels (a)-(d) of Fig. 6.8, the spin polarization is averaged
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over 8-energy pixels with AE ~ 150 meV, and plotted along k, with its standard
deviation at selected binding energies, as highlighted by the black frames in Figs.
6.6(d) and 6.6(j). Magenta curves represent P(k,) with their standard deviations
shown by the light gray areas. Additionally, green curves representing —P(—k,) are
also plotted with their standard deviations represented by the dark gray areas.

Figures 6.8 (e)-(h) show data from the spin-up (red) and spin-down spectrum
(blue) of the spin-detector corrected by the Sherman function S = 0.29, for the ma-
genta P(k,) curves of the respective panels (a)-(d) of Fig. 6.8. At each k-point of
E(k.) spin-polarized map, FERRUM detector measures two intensities 7, and /_ for
the target magnetized in opposite directions. Spin polarization is calculated as dis-
cussed in Sec. 3.2.2,as P = (1/5) ﬁﬁ: , and the up/down spectra are reconstructed
as Lypiany = 0.5(I4 + I_)(1 £ P).
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Figure 6.8: Spin-resolved momentum distribution curves for PdTe;. (a-d) Mo-
mentum distribution curves (MDCs) for the spin polarization at the indicated geometry
and binding energies, averaged over 8 energy pixels with AE ~ 150 meV. Magenta and
green curves show P(k;) and —P(—k,), where P is the spin polarization along S,. Light-
and dark gray areas depict standard deviations for spin-polarization curves as indicated by
the inset in (a). (e-h) Corresponding data from the spin-up (red) and spin-down spectrum
(blue) of the spin-detector, as indicated by the inset in (e), corrected by the Sherman
function S = 0.29, for the magenta P(k,) curve.

In panels (a) and (c) of Fig. 6.8, the P(k,) and —P(—k,) curves coincide within
the noise level. This confirms the M, invariance quantitatively. However, in panels
(b) and (d) of Fig. 6.8, the difference between P(k,) and —P(—k,) is beyond the
noise level. This in turn quantitatively demonstrates asymmetries.

To investigate the spin-polarized surface states near the Fermi level, analogous
to the states observed in PtTe; (see Sec. 5.4), spin-resolved momentum maps for the
in-plane S, spin component were measured at the relevant binding energies using
unpolarized Hel radiation (hv = 21.22 €V), as shown in Fig. 6.9. The corresponding
spin-integrated and spin-resolved calculated momentum maps are presented in Figs.
6.10(a)-(d).

Figure 6.9(a) shows the spin-integrated momentum map of PdTes; measured at
Eyinding = 0.1 €V, while Fig. 6.9(b) shows the corresponding spin-resolved momen-
tum map. Similarly, Figs. 6.9(c) and 6.9(d) present the same measurements at
Elinding = 0.3 eV. These measurements were performed using the symmetry geome-
try depicted in Fig. 6.6(a), where the mirror plane M, coincides with the reaction
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Figure 6.9: Spin-resolved momentum maps of PdTe; near the Fermi level. (a),(b)
Spin-integrated and spin-resolved photoemission intensities measured at Epipging = 0.1
eV. (¢),(d) Same but measured at Epinging = 0.3 €V. (a)-(d) Measured using the symmetry
geometry of Fig. 6.6 (a). (e)-(h) Same, but measured using the asymmetry geometry of
Fig. 6.6 (f). Spin-resolved maps plotted using the 2D color code showing intensity and
spin polarization. Hel (hv = 21.22 V) excitation has been used for all maps.
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Figure 6.10: Spin-resolved calculated momentum maps of PdTe; near the Fermi
level. (a),(b) Spin-integrated and spin-resolved calculated intensities at Epinding = 0.1 €V.
(c),(d) Same but calculated at Epinging = 0.3 €V. Black frames highlight same structure
that shows a spin-polarization sign flipping when moving from Ep = 0.1 eV to Ep = 0.3
eV. The outermost surface Pd and Te atoms are included in all calculations (a)-(d).

plane. The preserved symmetry of the M, mirror plane is evident in the symmet-
ric behavior of the spin-integrated maps in Figs. 6.9(a) and 6.9(c) with respect to
the M, plane. Furthermore, the spin polarization maps in Figs. 6.9(b) and 6.9(d)
obey the axial vector rules for the in-plane S, spin component relative to the M,
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mirror plane, such that S, (k,, k,) = —S,(—ks, k). One can also see flipping of the
spin polarization between the structures in Fig. 6.9(b) and those in Fig. 6.9(d).
This behavior is consistent with the sign reversal in the spin polarization observed
in the band dispersion maps in Figs. 6.6(i) and 6.6(j), as well as the calculated
spin-polarized map in Fig. 6.7(g). The observed spin polarization sign flip is also
in agreement with the calculated spin-polarized momentum maps for the in-plane
spin component S, as highlighted by the black frames in Figs. 6.10(b) and 6.10(d)
where the spin-polarization sign flips between Eyinging = 0.1 eV and Epinging = 0.3
ev.

On the other hand, Figs. 6.9(e)-(h) were measured using the asymmetry geometry
depicted in Fig. 6.6(f), where the reaction plane is perpendicular to the crystal’s
M, mirror plane. In this configuration, all symmetries of the mirror planes are
broken by the incident light, as evidenced by the absence of any symmetry plane in
all panels (e)-(h). However, in panels (f) and (h), the spin polarization still exhibits
a tendency to follow the axial vector rules for the in-plane S, spin component,
but now with respect to the M, mirror plane. This results in a relation where
Sy(ky, ky) ~ Sy(ks, —k,) at least with respect to the spin-polarization sign.

Focusing on the structure highlighted by the green frame in Fig. 6.10(b), a
red spin-polarized feature can be observed sandwiched between two blue structures.
This observation closely matches the measured spin-resolved map in Fig. 6.9(f),
demonstrating the high resolution of the spin-ARPES apparatus. As the binding
energy increases to Epinging = 0.3 €V, this red spin-polarized structure evolves and
opens at its center, as depicted in Fig. 6.10(d). This is also in strong agreement
with the measured spin-polarized map in Fig. 6.9(h). Spin-resolved ARPES for the
Sz, Sy and S, spin components for this structure can be found in Ref. [19].
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6.3 Summary

In this chapter, we conducted a comprehensive investigation of the spin-resolved
electronic structure of PdTe,; over a wide range of energy and momentum, enabling
the imaging of the topological ladder in PdTe,. Particular attention was given to
the observed asymmetric spin textures in comparison to the symmetric initial states.
This research builds upon the observations made in Chapters 3 and 4, which focused
on its sister compound, PtTe,. The spin-resolved momentum maps revealed that,
in symmetric geometries where the reaction plane coincides with a mirror plane of
the crystal, the spin textures followed the expected symmetry rules. Under these
conditions, the measured spin polarization demonstrated clear symmetric behavior
relative to the preserved mirror plane, with the sign of spin polarization reversing
for positive and negative k,. These results align with theoretical predictions and
previous observations in PtTe,, confirming theoretically predicted spin textures of
initial states.

However, significant deviations from this symmetry were observed when the
experimental geometry was altered, such that the reaction plane no longer coin-
cided with any of the crystal’s mirror planes. In this asymmetric geometry, the
spin-polarized momentum maps exhibited pronounced asymmetries, both in the po-
sitioning of features within the electronic structure and in the magnitude of the
spin-polarization signal.

This chapter further demonstrated the similarity in the electronic structure of
PdTey; and PtTey, both of which exhibit a trigonal structure in their bulk form.
Additionally, it was shown that the valence band wavefunctions in PdTe; are strongly
hybridized between Pd and Te sites. As a result, the observed asymmetries in the
spin-polarized maps of PdTes can be attributed to the same factors discussed in
Chapter 4, namely intrinsic bulk asymmetries, non-equivalent atomic sites leading
to phase shifts in reciprocal space, and scattering of hot photoemitted electrons on
their way to the surface.

These findings underscore the critical influence of both the experimental setup
and intrinsic material symmetries on the determination of the spin-polarized elec-
tronic structure in PdTey. The contrast between the symmetric initial states and
the observed asymmetric spin textures offers valuable insights into the complexities
of spin polarization in this material. These results emphasize the need for careful
consideration of experimental geometries when investigating spin-dependent prop-
erties, which is crucial for advancing PdTe; and similar compounds in spintronic
and quantum material applications.



7. Electronic structure of PtSe,

PtSe, is a layered transition-metal dichalcogenide that crystallizes in the 1T-phase
structure. Its crystal structure is analogous to that of PtTey, as described in Sec.
4.1, and exhibits a 3-fold rotational symmetry about the c-axis in real space, which
corresponds to a similar symmetry about the k, axis in momentum space. Con-
sequently, the surface of PtSe, features three mirror planes aligned along the TM
directions in reciprocal space.

7.1 ARPES on bulk PtSe,
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Figure 7.1: Experimentally determined electronic band structure of PtSe,.
Upper panel: (a)-(e) Results obtained using the symmetry geometry schematically shown
in (a), in which one of the three mirror planes of bulk PtSe; was aligned such that the light
beam impinged the sample within this plane, preserving the symmetry rules of this mirror
plane. (b) ARPES 3D matrix data of PtSey. (¢) Three quarters of (b) for better visualiza-
tion of the band structure. (d) ARPES Fermi surface map of PtSes (Er + 60 meV). (e)
In-plane energy-momentum dispersion E(k,) along the high symmetry direction in recip-
rocal space I' — K, indicated by the black-dashed line in (d). (d),(e) Taken as cuts from the
measured 3D-stack of data (b) at Epinding = 0 and at k; = 0 respectively. Lower panel:
(f)-(j) equivalent measurements, but measured as shown schematically in (f) where one of
the three mirror planes of bulk PtSe, was aligned such that for the complete system of
the sample and the incident light, no mirror plane symmetry remained. Electron and hole
pockets are marked with red- and green-dashed circles as in (i), and highlighted as well
in (j) and its inset. (Measurements were performed at room temperature, hv = 107 eV;
p-polarized light: probing close to A-plane in the three dimensional Brillouin zone along
the k,-direction; see Notes 2 and 3).
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An overview of ARPES measurements of PtSes is provided in Fig. 7.1. The first
set of measurements were conducted using the symmetry geometry as schematically
depicted in Fig. 7.1(a), in which the sample was aligned such that the incident light
beam coincided with one of the mirror planes of the crystal, preserving its symmetry
rules. The data were acquired as a 3D matrix using p-polarized light with photon
energy hv = 107 eV, as presented in Fig. 6.1(b). For better visualization of the
band structure, part of the 3D data is visualized in Fig. 7.1(c). The Fermi surface
map, representing a constant energy cut at Ep = 0, is shown in Fig. 7.1(d), and the
energy-momentum map along the T' — K direction of the surface BZ is presented in
Fig. 7.1(e), taken from Fig. 7.1(b) at k, = 0 as indicated by the dashed-black line in
Fig. 7.1(d). Lower panels (f)-(j) correspond to similar measurements as (a)-(e), but
were obtained using the asymmetry geometry depicted in Fig. 6.1(f), where in this
case the incident light breaks all mirror planes symmetries of the crystal surface, as
discussed in Sec. 4.10. Figure 7.1(j) shows the band dispersion along the T' — M
direction, taken as a cut from Fig. 6.1(g) at k, = 0, as indicated by the dashed-black
line in Fig. 7.1(i).

The ARPES Fermi surface maps in Figs. 7.1(d) and 7.1(i) exhibit distinct char-
acteristics, including a hole pocket centered at the Brillouin zone and electron pock-
ets located approximately midway along the T' — M direction. These features are
highlighted by green and red dashed circles, respectively, in Fig. 7.1(i). Additional
insights are provided in Fig. 7.1(j) and its inset, illustrating that the hole pocket
crosses the Fermi level before reaching its apex, while the electron pockets are em-
phasized by concave-up red frames.

The band dispersion maps in Figs. 7.1(e) and 7.1(j) reveal several pronounced
spectral features located at binding energies of approximately E, ~ 1.4 eV, E, ~ 2.1
eV, and Ej, ~ 2.7 eV. These features are identified as surface states with negligible
k. dispersion, as evidenced by their insensitivity to variations in photon energy [1415,

|. The first two states merge into the bulk diffuse spectral weight near & ~ 0
and away from the Brillouin zone (BZ) center T at ky 2 0.5. The third feature,
attributed to a surface Dirac cone, displays distinct behavior compared to Dirac
cones observed in PtTe, and PdTe,, as discussed earlier in this thesis. Specifically,
its upper legs bend away from & = 0 and avoid degeneracy with the surrounding
bulk states. A more detailed representation of this behavior can be found in [19,

, 189].

The higher electronegativity of selenium (Se) compared to tellurium (Te) strength-
ens the metal-chalcogen bonds, thereby diminishing the interlayer hopping in PtSes
relative to PtTe; and PdTey. As a result, the Se p,-derived band exhibits a narrower
bandwidth along the out-plane T'— A direction in reciprocal space. This reduction in
bandwidth prevents the Se p,-derived band from overlapping with the antibonding
Se p,,-derived bands (see Fig. 4.11), thus inhibiting the formation of an inverted
band gap above the Fermi level. Consequently, the topological surface states, which
would reside within such a band gap, are absent along the I' — M direction in PtSe,
[145]. This behavior contrasts with that observed in PtTes and PdTe,, discussed
earlier in this thesis, and is linked to the topological ladder discussed in Sec. 4.5.

Figure 7.2 displays spin-resolved measurements from PtSe,, conducted using
unpolarized Hel light (hv = 21.22 €V), under two distinct experimental geometries.
These geometries differ in the orientation of the reaction plane, as defined in Sec.
4.9, relative to the mirror planes of the crystal surface.
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Figure 7.2: Spin-resolved asymmetries of PtSes. Upper panel: (a)-(f) Results ob-
tained within the symmetry geometry schematically shown in (a) where the M, mirror
plane coincides with the reaction plane. (b) Spin-integrated experimental 3D data. (c)
Corresponding Fermi surface map. (d) Energy-momentum band dispersion map E(ks),
at ky = 0. (e),(f) Corresponding spin-resolved energy dispersion maps, E(k;), measured
using the lens deflector system probing along the z-axis perpendicular to M, mirror plane,
as defined in (a) and along the magenta-dashed line in (c), while the sample in normal
emission. Lower panel: (g)-(1) Equivalent to (a)-(f) respectively, but measured using the
asymmetry geometry schematically shown in (g) where the reaction plane is now perpen-
dicular to the M, mirror plane and the spin maps were filtered along the magenta line in
(i) not perpendicular to any of the system’s mirror planes. In (e) and (k) the intensity
and spin-polarization are simultaneously displayed using the inset 2D color code shown in
(e), where the false color scale refers to the in-plane spin polarization Sy in the ensemble
of the photoemitted electrons. (f),(1) The corresponding pure in-plane S, spin polarized
maps. (Measurements were performed at room temperature using the unpolarized Hel
radiation hr = 21.22 eV).

Figures 7.2(b)-(f) were measured using the symmetry geometry shown in Fig.
7.2(a), where the reaction plane coincides with one of the surface mirror planes,
specifically M, . The spin-integrated energy-momentum map presented in Fig.
7.2(d) was measured along the magenta line in Fig. 7.2(c), perpendicular to M,.
Panels (e) and (f) show the corresponding spin-resolved energy-momentum maps
for the in-plane spin component S,. In Fig. 7.2(e), both photoemission intensity
and spin polarization are represented using a 2D color code (see inset), while Fig.
7.2(f) depicts only the spin polarization. Figures 7.2(g)-(1) present equivalent mea-
surements, but taken using the asymmetry geometry depicted in Fig. 7.2(g), where
the reaction plane is perpendicular to another mirror plane, M,.

Consistent with the spin-integrated and spin-resolved experimental results ob-
tained from the sister compounds PtTe, (see Sec. 5.1) and PdTe; (see Sec. 6.2), the
energy-momentum maps shown in Figs. 7.2(d)-(f) exhibit symmetry with respect
to the k, = 0 line. In contrast, the maps in Figs. 7.2(j)-(1) are asymmetric.
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7.2 Summary

Continuing our spin-resolved study of the topological ladder in the band structure
of 1T-phase transition-metal dichalcogenides, this chapter visualizes the topologi-
cal ladder of PtSey. Using the same methodologies previously applied to its sister
compounds, PtTe, and PdTe,, we employed both symmetry and asymmetry geome-
tries. Consistent with previous findings, spin-integrated and spin-resolved E(k)
maps exhibit symmetric behavior, reflecting the preserved mirror plane of the sam-
ple surface. However, when the reaction plane does not coincide with any of the
sample surface mirror planes, a highly asymmetric spin texture of the topological
ladder emerges.

Due to the similarities in the band structure of PtSes with PtTey; and PdTe,, we
attribute the observed asymmetries in the spin-polarized maps of PtSe; to the same
factors discussed in Chapters 4 and 5.

Despite its trigonal structure in bulk form, similar to PtTe; and PdTe,, the high
electronegativity of selenium (Se) prevents the formation of an inverted band gap
above the Fermi level. As a result, Fermi-crossing topological surface states are
absent, unlike in PtTe, and PdTey, where these states are strongly spin-polarized.



8. Conclusion

This thesis presents an in-depth investigation into the spin-resolved electronic struc-
ture of PtTes, a type-II Dirac semimetal with a complex topological ladder of sur-
face states. Utilizing high-resolution spin-ARPES, we have examined the complex
interplay between initial-state properties and final-state effects in photoemission ex-
periments. These final-state effects, arising from various experimental interactions,
pose significant challenges in spin-ARPES by altering the intrinsic spin polarization
of emitted electrons. Distinguishing these effects is essential for accurate character-
ization of material properties.

In this work, we systematically examined the manifestation of these effects by
varying experimental geometries and comparing results to theoretical calculations.
Specifically, we demonstrated that spin asymmetries may arise from interatomic
interference due to non-equivalent atomic sites, scattering events, and light-induced
asymmetries, all of which can be mistakenly attributed to intrinsic spin polarization.

Our findings confirm that PtTey exhibits strong spin-momentum locking within
its topological ladder, where the spin polarization of surface states evolves as a result
of both intrinsic and extrinsic factors. The observed spin-resolved band dispersion
and momentum maps support the idea that spin-orbit coupling and crystal symme-
try govern the formation of spin textures. Additionally, we extended our analysis to
PdTe, and PtSe,, revealing similar spin polarization and topological surface state
behavior, suggesting that the methodologies developed here can be applied to a
broader range of spintronic materials.

An important aspect of this work is the necessity to span large energy-momentum
and momentum-momentum regions in spin-resolved measurements. The spin tex-
tures extracted from these measurements contribute directly to the Bloch wavefunc-
tions, which describe the quantum states of electrons in a crystal. These Bloch
wavefunctions, in turn, play a crucial role in transport applications, where spin-
polarized currents must be accurately modeled and controlled. The ability to map
spin states across an extensive momentum space ensures a more complete under-
standing of spin-momentum coupling, which is essential for optimizing materials
in spintronic devices. Without a comprehensive mapping, the extracted spin tex-
tures may be incomplete, leading to uncertainties in predicting material behavior in
transport experiments.

Beyond its implications for fundamental condensed matter physics, this work has
direct relevance to the advancement of spintronic devices, where control over spin-
polarized currents is essential for energy-efficient information processing. The ability
to precisely manipulate and understand spin textures in materials like PtTe, paves
the way for their potential integration into next-generation quantum technologies,
including spin-orbit torque (SOT) applications. The insights gained here provide
a valuable reference for future studies exploring spin-polarized transport and novel
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quantum phases in materials with strong SOC.

In conclusion, this thesis has provided a deeper understanding of the electronic
properties of PtTe, and related materials, highlighting the role of final-state effects in
spin-resolved photoemission experiments. By carefully distinguishing intrinsic spin
textures from extrinsic influences, we have established a more reliable framework for
analyzing spin-polarized states in SOC materials. Expanding the energy-momentum
coverage in spin-resolved measurements has proven essential for accurately capturing
Bloch wavefunctions, which are directly relevant for transport applications. The
insights gained here contribute to the broader study of spintronic materials and
may help guide future efforts in designing more efficient spin-based devices.



9. Outlook

Following the same methodology used in studying spin-ARPES from PtTe,, Fig. 9.1
presents circular dichroic angle-resolved photoemission (CD-ARPES) maps from
PtTey. The CD signal is defined as

oD — Ticp — IRCP7
Icp + Ircp
where Ircp and Igcp are the photoemission intensities measured using left- and
right-circularly polarized light, respectively. This normalized definition accounts for
variations in total intensity.
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Figure 9.1: Experimental Fermi-surface CD-ARPES from PtTe,. (a) Symmetry
geometry where the reaction plane coincides with the mirror plane M, of the sample sur-
face. (b) Fermi surface CD-ARPES map, plotted using the colormap shown in the left
inset. (c¢) Corresponding CD magnitude, plotted according to the colormap in the right
inset. (d) 3D CD-ARPES data from which (b) and (c) are extracted. (e)-(h) Equivalent
measurements performed in the asymmetry geometry, where the reaction plane is perpen-
dicular to the mirror plane M,, as depicted in (e). Photon energy hu = 108 eV used for
all measurements.

Figures 9.1(a)-(d) show CD maps from PtTe, measured using the symmetry

geometry, visualized in (a), where the reaction plane coincides with the M, mirror
plane of the sample surface. Figure 9.1(b) presents the CD Fermi surface map,
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displayed using the 2D colormap provided in the left inset. Panel (c) represents the
absolute CD signal from (b), plotted according to the colormap in the right inset.
Both panels (b) and (c) are taken as cuts from (d) at Ep = 0 €V, and they exhibit
odd symmetry with respect to k,, as the mirror plane M, is preserved.

Figures 9.1(e)-(h) show equivalent CD maps from PtTes, but measured using the
asymmetry geometry, visualized in (e), where the reaction plane is perpendicular
to the M, mirror plane of the sample surface. Using this geometry, all mirror
symmetries of the crystal are broken, and consequently, the CD-ARPES maps in
panels (f) and (g) are not symmetric. Specifically, the CD signal is no longer odd
with respect to the M, mirror plane.
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Figure 9.2: Experimental F(k,) CD-ARPES from PtTe;. (a)-(f) CD-ARPES energy-
momentum maps along T-K reciprocal direction, plotted using the 2D colormap from
Fig. 9.1, and measured using the symmetry geometry visualized in Fig. 9.1(a). (g)-(1)
Corresponding CD magnitude maps according to the colormap from Fig. 9.1. (m)-(x)
Same, but probed along the I-M reciprocal direction and measured using the asymmetry
geometry shown in Fig. 9.1(e). Spectra taken at ~ 40K. Features indicated by boxes 1 to
5 in (b),(d),(h) and (n) are discussed in the text.

Energy-momentum CD maps from PtTe, are shown in Figs. 9.2(a)-(t). Pan-
els (a)-(j) were measured using the symmetry geometry shown in Fig. 9.1(a), where
panels (a)-(e) are plotted using the 2D colormap, while panels (f)-(j) show the corre-
sponding absolute CD signal, each measured using the indicated photon energy. In
all panels (a)-(j), conservation of the M, mirror plane is demonstrated by the sym-
metric odd CD signal in k,. On the other hand, panels (k)-(t) were measured using
the asymmetry geometry shown in Fig. 9.1(e). The demonstration of the resultant
asymmetries in CD is indicated, for example, by Box1 in (1) and Box2 in (m), where
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both the CD sign and the energy positions of bands are asymmetric for £k,. These
observations confirm the asymmetries shown in Figs. 9.1(f)-(g). These asymmetries
originate primarily from interatomic interferences [16], as detailed in Sec. 5.12.1,
and asymmetric multiple scattering, as discussed in Sec. 5.12.2. Additionally, the
trigonal symmetry of the bulk band structure, in connection with approximate k;
sensitivity of ARPES, may also contribute to these effects, as elaborated in Sec.
4.10.

As extensively analyzed in this thesis, PtTe; exhibits a surface Dirac cone that
is part of the topological ladder centered at T' at Ep ~ 2.3 €V, as indicated by
Box3 in panel (b) and Box4 in panel (d). This Dirac cone exhibits pronounced spin
polarization and spin-momentum locking, resulting in two branches with opposite
spin polarization, as confirmed by our spin-resolved measurements and corroborated
by the theoretical calculations presented in Sec. 5.10. Previous studies have sug-
gested that CD-ARPES can serve as a potential probe for spin-momentum locking
in topological insulators [190, |. However, this behavior is not observed in our
experiments. Specifically, in Box3, for positive k,, both upper and lower branches
of the Dirac cone exhibit the same CD sign, and in Box4, the CD signal is nearly
absent.

A comparison of panels (a)-(e) with (f)-(j), and (k)-(o) with (p)-(t), reveals that
a non-vanishing CD signal is also present in regions corresponding to projected band
structure gaps. As exemplified by Box5 in Fig. 9.2(g), a flat CD-ARPES feature
emerges at the Fermi level, where inelastic scattering effects are expected to be
minimal.

The projected band structure consists of overlapping continuous regions in energy-
momentum space, which typically originate from a specific type of orbital [192]. As
a result, distinct regions within the projected band structure can exhibit different
CD responses. This phenomenon is illustrated in Box6 and Box7 of Fig. 9.2(1),
where the topological surface states, located within the projected bulk gap (see Fig.
4.6(c)), display a CD sign opposite to that of the surrounding projected bands. A
similar behavior is observed for the small electron pockets crossing the Fermi level
along the T-K direction, see Fig. 9.2(j).

A promising direction for future research involves integrating spin-resolved mea-
surements with circular dichroism to further probe spin textures in PtTe, and related
materials. While CD-ARPES has provided valuable insights into electronic states
and symmetry properties, its ability to reveal spin-momentum locking remains de-
bated. The lack of a clear correlation between CD signals and spin polarization
in our experiments suggests that spin-resolved CD-ARPES could help disentangle
intrinsic spin properties from extrinsic influences. Future studies could refine exper-
imental methodologies by optimizing photon energy, sample orientation, or detector
configurations to enhance sensitivity to spin-dependent effects. Extending such in-
vestigations to other transition metal dichalcogenides may uncover new topological
and spintronic functionalities, contributing to the broader understanding of spin-
orbit interactions in condensed matter physics. Furthermore, the integration of
spin-resolved CD-ARPES with advanced theoretical modeling could provide a more
comprehensive picture of orbital contributions, potentially leading to the discov-
ery of novel materials with engineered spin textures for next-generation spintronic
applications.



Appendix A

Tight binding model

In Sec. 2.1 we looked at the band structure through the free-electron and the
nearly-free electron point of view, which would fit more the metallic case where the
electronic states are highly delocalized. In this section I will introduce another im-
portant method called tight binding model that is highly used in describing mostly
the electronic structure of insulators and the electronic bands arising from the par-
tially filled heavy d-shells of the transition metal atoms [53, 54]. Within the frame
of this model, the potential is large such that electrons spend most of their time
bound to the ionic cores and rarely hope from atom to another. To describe the
system one can divide the crystal Hamiltonian H into atomic Hamiltonian #H,; and
the remaining all other potentials

H = Hao + AU(r) (A.1)

If ¢, (7) is an atomic wavefunction, Ha:¢n(r) = Endn(r), then an approximate
Bloch shaped normalized wavefunction, equivalent to Eq. 2.1, for one electron in the
whole crystal can be taken as a linear combination of these atomic wavefunctions'?

V(T Ry o(r — R) (A.2)

- R

where R is a real space translation vector of the crystal and the sum runs over
all N lattice sites. The heart assumptions of this model are, close to a lattice
site H ~ Hat, and the atomic orbitals are highly localized such that ¢,(r) decays
exponentially away from the lattice site, hence, AU(r) — 0 at the centre of each
atom in the crystal. This makes ¢, (r) a good approximation for a crystal stationary
state [193]. To illustrate this picture we consider the simplest example of one-site
per unit cell contributing with the non-degenerate s-orbital ¢.(r) to the crystal
structure, hence, a single s-orbital character band n = 1 is expected. The energy
dispersion inside the crystal £(k) is then given by finding the expectation value of

H

'Hence, it is also known by the (linear combination of atomic orbitals) approximation LCAO.

2 A more accurate treatment would require writing the crystal wave function 1, (r) as a linear
combination of functions © that are not precisely atomic orbitals but can be expanded in relatively
small number of atomic orbitals ¥,k (r) = Y. g e* EO,k(r — R);0(r) =3, Crubyn(r). This will
B, - B+, eFOy(5)

produce a dispersion relation for a single s-orbital case given by £(k) = S a)
where a(d)=(¢(r)|¢p(r — R)) and usually the term containing it is neglected due to its small
magnitude [54], while f= I-labeled term in the context which is also neglected, to end up with

similar dispersion as Eq. A.3.
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In the 4" line the translation vector R =R — R is used, hence, the sum over
R contributes by N terms. The sum over lattice sites has been separated into
R"=0 case which produced the onsite energies E, and the I-labeled term that can
be neglected because it is a product of two atomic wavefunctions on the same site
with a potential that goes to zero at that site. The other case is for R* # 0 that
produces a term labeled II requiring multiplication of atomic orbitals on different
lattice sites, and due to the exponentially decaying nature of the atomic orbitals as
indicated before, the sum is typically limited just up to near neighbors (6 = n.n)
as shown in the 6" and 7" equalities, additionally, it produces the III-labeled term
which can also be neglected due to a combination of the reasons explained for the I-
and II- labeled terms. Most importantly, is the 4(d) term in the last two equalities
which gives an indication for the hopping energy needed for an electron to jump
from lattice site into its neighboring site (hopping matrix element).

A.1 Chain of s-orbitals

To illustrate this, we can imagine a chain of atoms with only a single s-orbital per
site and one site pet unit cell as shown in Fig. A.1 (a). Then, there are two nearest
neighbors such that § in Eq. A.3 will be given by d=+aZ, where a is the lattice
constant, and the crystal band dispersion becomes

g(k) _ E.s _ Z eik:-(i,y((s) — Es _ (eik-ai + e—ik-ai),y(a)

o={az,—az}

eik,;a + efik,,a

A plot of this cosine band dispersion £(k) is shown in Fig. A.1 (b) with the
bandwidth, 47y, also marker which is defined as the difference between the maximum

) = B, — 2v(a)cos(kza) (A4)
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Figure A.1: Tight binding model for 1D lattice with a single s-orbital per site.
(a) Shows a chain of atoms with a single s-orbital per site, and a lattice constant a.
(b) The cosine shaped band dispersion £ (k) showing the bandwidth, 4+, plotted over a
complete reciprocal space unit cell. (c) £(k) plotted for different values of the hopping
matrix element (overlap integral) .

and minimum of the band either sides of the onsite energy E,. The band spreads
out from the s-orbital and its energy F, due to the hopping between adjacent sites.
One can see also in Fig. A.1 (¢) that reducing the hopping matrix element, =,
decreases the bandwidth of the band (red — blue) and if ~ is reduced totally to
zero the band flattens into completely localized s-orbitals with energies all equal to
FE, independent of k,.

A.2 2D crystal of s-orbitals

In the case of square lattice with again single s-orbital per site as shown in Fig.
A.2 (a) (upper panel), there will be four nearest neighbors (pink-colored sites sur-
rounding the red-colored site) such that = {+aZ, £ag} and the dispersion relation
Eq. A.3 becomes

g(k) _ Es _ Z Elkd"}’((s) — Es _ (eik:-ai + e—ik:-ai + eik:-ag.} + e—ik-azj),y(a)

0={at,—a,af,~af}

_ B 27(@){ <eikwa zeiikﬂl) . <eikya J;eikya>}
=K, — 27(&){cos(kza) + Cos(k‘ya)} (45)

A 3D visualization, a top view, as well as £(k,) of the band dispersion are
shown in Fig. A.2 (a) (lower panel) with the colorbar indicating the different energy
values. One can note the concave up shape of the 3D band dispersion representing
a minimum energy of E; — 4vy(a) via substituting (k,,k,)=(0,0) in Eq. A.5.
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This picture can also be extended to include the second nearest neighbors, as indi-
cated by the blue-colored sites in Fig. A.2 (b) (upper panel), so 6= {+a#, taf, Tai+
aj}

Ek)=E, — > e™*0m(5)

0={+ai,tay,taitay}

= B, — ~y(a)(eo® 4 ~had y gikai | o-ikay |

_ ,\/(a\/i) (eik»(aﬁ:Jrag}) + eik<(7ai'+a’g) + eik-(fafcfagj) + eik-(aﬁffag)))
=FE,— 27(@){005(/@,;@) + cos(kya)} + ..

_ 'y(a\@){eiky“ <eik1a + e*ik1a> + e*ikya<6ikza + eikza)}
=E,— 27(a){cos(kza) + cos(kya)} + ..

ikya —ikza ikya —ikya
_7((“/5) 4(6 +e )(e +e )
2 2

=F,— 27(a){cos(kza) + cos(kya)} — 47(a\/§){cos(kma)cos(kya)} (A.6)

Again the 3D visualization, a top view, as well as £(k,) of the band dispersion
are plotted in the lower panel of Fig. A.2 (b). Now the minimum of the band is
deeper in energy and is given from Eq. A.6 by {Es —4v(a) — 47(aﬂ)}.
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ky A —nja ky n/a "y A% —nja ky m/a

&

Figure A.2: Tight binding model for 2D and 3D lattices with a single s-orbital
per site. (a) (upper panel): square lattice with a single s-orbital per site with a lattice
constant a, and the corresponding tight binding 3D, top view and E(k;) of the energy
dispersion are shown in the (lower panel) where only nearest neighbors represented as
pink-colored sites are included. Upper and lower panels in (b) are similar to (a) but second
nearest neighbors marked with blue color are included as well in the model. (c) Real space
3D lattice with six nearest neighbors marked with pink color. Colorbars represent energy
scales.
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A.3 3D crystal of s-orbitals

The method can also be generalized for the 3D lattice case as illustrated in Fig.
A2 (c). However, now it is not trivial to visualize the 4D space of &(k,, ky, k),
but this still can be visualized for any desired k, value which will reduce the energy
dispersion relation into a similar dispersion to Eq. A.5.

E(k)=E;— > e*0my ()

0={+tad,tag,+az}
_ Es _ ,y(a)(eik-aai' 4 e*ikui' + eikug} + e*ik-u;& 4 eik-ué 4 e*ik'aé)
=FB,— 27(@){003(/%@) + cos(kya) + cos(kza)} (A7)

A.4 Multi atoms/orbitals per unit cell

In reality, materials will have more than one atom per unit cell, and each atom will
contribute with more than one atomic orbital into the band structure. Even though,
the problem is still solvable through defining a Bloch wavefunction like [194]

oY (r *Rig (r— R;) (A.8)

_ \/7 Z e
where j=A B,C ... represent the dlﬁerent atomic sites per unit cell, R; are the
translation vectors that run over all lattice sites of type j, and a = s, ps, py, p» ...
are the atomic orbitals. Therefore, @;cjw will represent a linear combination of the
h atomic orbitals on site j. Now, the crystal momentum wavefunction will be a
linear combination of these Bloch wavefunctions summed over all different atomic
sites j’s per unit cell and over all a’s atomic orbitals per site j, so

Yan(r) = 2 () (A.9)

Using the variation theorem, the ground state of the system is achieved via
minirmzmg the expectation value of the energy with respect to the basis set coeffi-
cients C(J , which will form a system of simultaneous linear equations of the form
{H(W)(JB 5(k:)5(m)(j5>c§c } =0, where Ha)(jp) = (@3 UPY This will have a

non-trivial solution if the corresponding secular determinant is zero [195, 196]

H — E(k)S| ~ |H — E(k)I| =0 (A.10)

Here, H is the energy matrix of elements Hay(jg), I is the identity matrix, and
S is the overlap matrix of elements S(;a)(;3), where

d(i5)0(apy orthogonality of atomic orbitals on same site.
Stiayig) = 4~ 0 well-separated orbitals on different sites (origin of )
as explained in note 2.

A simple but non-trivial example that is enough to examine how to proceed in
this situation, is to have two different atomic sites per unit cell with 1s-orbital on
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one site and 2p,-orbital on the other as illustrated in Fig. A.3. This will require
solving the following 2 X 2 secular determinant?

4 Y@ h

site (B)

Figure A.3: Tight binding model for two different atomic sites per unit cell with
a single atomic orbital per site. A theoretical model showing two different atomic
sites pet unit cell, that is denoted by the dashed square, with 1s-orbital on site (A) and
2p,-orbital on site (B). The 1s-orbitals as well as 2p,-orbitals are separated by the lattice
constant a along the z-direction. R4 and Rp represent the translation vectors that run
over the lattice sites (A) and (B) respectively, wile R4p are the translation vectors that
connect both sites. y(a), v(b) are the hopping matrix elements between 1s-orbitals and
2p,-orbitals respectively, while v(R 4p) refer for the hopping between 1s- and 2p,-orbitals.

Hia) (4, — E(R) H (A1) (Bop,)
H B2y, )(Ars) H (Bay, )(Bay,) — E(K)

’— 0 (A.11)

that leads to the following band dispersion

1 1 2
Elk) = —5 (H<Als)(ms>+H<sz,,.><szm))i¢ 1 (i) are) = Hiap)(Ban)) HH a8

(A.12)

One can see that two atoms per unit cell with one orbital per atom has led to a

dispersion relation with two energy values at each wavevector k, that is two bands.
All needed is to determine the Hamiltonian matrix elements.

Har)(A) = (¢£A15)|H\®£A“)> = {chain of s-orbitals separated by a = Eq. A.4}
= Ea,, — 2v(a)cos(k.a) (A.13)

with the hopping matrix integrals up to nearest neighbors only, that is § = {£aZ}.
Similarly,

H(Bay, )(Bapy) = <q)232pz)|7.[|(1)§€32”)> = Ep,, — 2v(a)cos(kqa) (A.14)

Now, let’s evaluate the off-diagonal matrix elements

3If there is additionally p,-orbital on site (B), one would need to solve the following 3x3

Hiar)(ar) — E(K) H(A1.)(Bap,) H(A1.)(Bap,)
secular determinant H (Bap, ) (A1) H(Bap, ) (Bap,) — E(K) H(Bap,)(Bap,) = 0 with
H(Bay, (A1) H(Bay, ) (Bay) H(Bay,)(B2,) — E(F)

H(A.)(Bs) being determined same as explained in the context.
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Al Bap,
M) (Bay) = (@5 |H |G )

1 )
= N Zzezk»(RH—RA)<¢(*Als)(,r o RA)|H‘Q5(B2PI)(T‘ _ RB)>

R. Rp
~ YRR (gry (1) Hat| f(8sy, ) (7 — Rag))
fan Y(RaB)
= ¥ e Ranny(Ryp) ~ 3 e®Rasy(R,p)
Rup Raop=n.n=

{E:59)(549)}

= QV(RAB){M} = 2’7(RAB)COS(]{JZ§>
= 27(%)“”(’%%) = HiBapa)(a1) (A.15)

Here, R4 and Rp are translation vectors that run over the two different lattice
sites (A) and (B) respectively, where Ry=+ma& and Rp= Rap + naf such that
{m,n}€ Z. While, Rop=Rp-R are translation vectors that connect the two sites
as shown in Fig. A.3. Moving from the second line into the third line was done
like this, 7' =r-R4 = r-Rp=r'+Rs-Rp=r"-(Rp-R,)=r"-Rp then replacing the
dummy variable " — r, additionally reducing H — H,; following the same logic in
deriving Eq. A.3. Finally, putting all terms together to have the following energy
band dispersion

£(k) = —5{~ty(@)cos(hua) + (Ba,, + B, )}

a

V3B~ Bo 2+ o o) (A16)

The corresponding two energy bands are plotted in Fig. A.4.* It is also impor-

tant to notice that because (Rlz =nn= % < a) R <’y(%) > 7((1)) which

was taken into consideration in plotting the band dispersion.

One can see through the discussed examples that, the energy bands reflect the
atomic orbital characters that contribute in producing these bands. Moreover, near
the bottom of a tight binding band, the dispersion looks locally parabolic similar
to the free electron dispersion, hence, when an electron at this position an effective
mass m* « %; . a—lz can be associated with the band®. This inverse relation means
that the smaller the hopping matrix element, the heavier the effective mass of the
electron and the harder for it to hope from site to another, hence, the narrower
the bandwidth. On the over hand, the larger the matrix element is, the lighter the

electrons effective mass and the easier for it to jump, hence, the wider the bandwidth.

4If both sites (A) and (B) were occupied by 1s-orbital, Eq. A.16 becomes, after replacing
Ep,, — Ea,,, into £(k) = —Ea,, + 2v(a)cos(k.a) =+ 27(%)005(1{?1%).
SExpanding the energy dispersion e.g. in Eq. A.5 at the bottom of the band {(k,,k,)=(0,0)}
2

will give: £(k) = Bo—27(6){1- 2" 11— B0} — B4y (8) 44(6)a? (K2 + K2} = m* = gl
—_————

h2k2
2m*
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Figure A.4: Energy dispersion of two different atomic sites per unit cell and a
single orbital per site. Energy dispersion in the 15 Brillouin zone for the tight binding
model of Fig. A.3, where the solid lines correspond for a non-zero hopping matrix element
between 1s-orbitals as will as between 2p,-orbitals, while the dashed lines include only
zigzag hopping between 1s- and 2p,-orbitals. the magenta color refers to £, band while
the green color is for the £_ band.

Similarly, the larger the real space lattice constant a along a direction, the farther
the distance separating the atoms and the harder for the electron to hope, consistent
with the larger effective mass and hence narrow bandwidth expected in reciprocal
space along that direction and vice versa.

Now we look shortly at the example discussed in Appendix A.4, with a zigzag-
lattice structure with site (B) off-center as shown in Fig. A.5.

e h

siteca)

i
.,,(—).
T i

|
|
H site (B)
|
1
!
1

Figure A.5: Tight binding model for two different atomic sites per unit cell
with a single atomic orbit per site in a zigzag sites arrangement. A theoretical
model showing two different atomic sites pet unit cell, that is denoted by the dashed
square, with 1s-orbit on site (A) and 2p,-orbit on site (B). The 1s-orbits are separated
by a and 2p.-orbits are separated by b along the x-direction. R4 and Rp represent the
translation vectors that run over the lattice sites (A) and (B) respectively, while Rap are
the translation vectors that connect both sites. vy(a), () are the hopping matrix elements
between 1s-orbits and 2p,-orbits respectively. v(R4 B(Shom) refer for the hopping between
1s- and 2p,-orbits along the short path, while ¥(R4p(short)) refer for the hopping between
1s- and 2p,-orbits along the long path.

Hia)aw) = Eay, — 27v(a)cos(kya) (A.17)
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7‘[(32”)(32”) = EBz,)I — 2‘)’([))008(]{,‘1[)) (A.18)
Ars Bap,
Har)Bs,,) = (05 [H D))
1 ool R i
= 2 2 IR (r = Ra)[H|é(5,,,) (7 — Rp))
R4 Rp
~ D e RAE g () [ Hatl @By, (T — RaB))
R
e Y(Rag)
C S R
Rap
D
Rap=n.n=

{7(RaB(short)) Y (RaB(1ong))}
_ Z eik-RAB,Y(RAB)
Rap=n.n=
{(¢,§),(=(a—0),5)}
—ikz(a—c)

W(RAB(short))eikmc + 7(RAB(long))€
= eikwc{v(RAB(shm"t)) + 67ikwa7(RAB(long))}

ikzC a —ikga a %
- ) = )

Note: ((a —¢) > C> = 7( e+ (%)2> > 7( (a—c)2+ (g)2>



Appendix B

Raw data of spin-resolved band dispersion maps of PtTe,
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Figure B.1: Raw data of for the spin-polarized band dispersion maps of PtTey
presented in Fig. 5.1 of the main text. The upper Symmetry geometry panel shows
the intensity maps Iy and I} for the opposite scattering target magnetizations measured
pixel-by-pixel. While the x-deflection is fixed, 280-energy pixels are scanned. This cor-
responds to a vertical line in (a). At energy-pixel 280, the scattering target is being
re-magnetized and an equivalent vertical line in (b) is being scanned. This is done simi-
larly for the 251-points along the z-direction. The whole process is done equivalently for
the lower Asymmetry geometry panel (c-d).
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Appendix C

Raw data of spin-resolved band dispersion maps for two sym-
metry geometries of PtTe,
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Figure C.1: Raw data of spin-resolved band dispersion maps for two symmetry
geometries of PtTe; presented in Fig. 5.8 of the main text. (b),(c) Intensity maps
I; and I respectively for the opposite scattering target magnetizations measured pixel-by-
pixel using the geometry shown in (a). While the x-deflection is fixed, 280-energy pixels
are scanned. This corresponds to a vertical line in (b). At energy-pixel 280, the scattering
target is being re-magnetized and an equivalent vertical line in (c) is being scanned. This
is done similarly for the 251-points along the z-direction. The whole process is done
equivalently for (e-f), that are measured using the other symmetry geometry (d).
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Appendix D

Raw data of spin-resolved band dispersion maps for four
asymmetry geometries of PtTe,

0
ke [A71]

Figure D.1: Raw data of the spin-resolved band dispersion maps of PtTe; pre-
sented in Fig. 5.9 of the main text. First row in panels (a-d) shows the set-up
geometry used in the corresponding panel. Second row in panels (a-d) displays the in-
tensity maps Iy with the scattering target being magnetized along one direction of the
quantization axis y. Third row in panels (a-d) displays the intensity maps I, with the
scattering target being re-magnetized along the opposite direction of the same quantiza-
tion axis y. For panel (a): While the x-deflection is fixed, the energy scale is scanned.
This corresponds to a vertical line in I4-map. At last energy-pixel, the scattering target
is being re-magnetized and an equivalent vertical line in Ij-map is being scanned. This is
done similarly for all k,-points along the z-direction. Same for panels (b-d).
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Appendix E

Raw data of spin-resolved momentum maps of PtTe;
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Figure E.1: Raw data of the spin-resolved band dispersion maps of PtTe; pre-
sented in Fig. 5.11 of the main text. First row in panels (A-D) shows the set-up
geometry used in the corresponding panel. Second row in panels (A-D) displays the in-
tensity maps Iy with the scattering target being magnetized along one direction of the
quantization axis y. Third row in panels (A-D) displays the intensity maps I with the
scattering target being re-magnetized along the opposite direction of the same quantiza-
tion axis y. For panel (A): While the y-deflection is fixed, the z-deflection is scanned.
This corresponds to a horizontal line in It+-map. At last 2-pixel, the scattering target is
being re-magnetized and an equivalent horizontal line in Ij-map is being scanned. This is
done similarly for all ky-points along the y-direction. Same for panels (B-D).
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Appendix F

Visualization of Spin Polarization with 2D Color Mapping

The following MATLAB code snippet demonstrates a method to plot a three-
dimensional surface representing spin polarization as a function of parallel momen-
tum k) and binding energy Ep. The plot is color-coded to visually represent the
magnitude of spin polarization SP together with the photoemission intensity simul-
taneously.

surf (k_parallel, Binding_energy, Spin_polarization,
’edgecolor’, ’none’,’facealpha’, ’flat’,’alphadata’,
(Spin_up + Spin_down) / max(max(Spin_up + Spin_down));

Explanation of parameters:

o surf:
surf function generates a 3D surface plot, where k)| is plotted along the z-axis,
FEp along the y-axis, and S P along the z-axis. Color coding is used to visually
encode variations in spin polarization across different values of k| and Ep.

e ’edgecolor’,; mone’:
setting the ’edgecolor’ option to 'none’ removes gridlines from the plot surface,
giving a smooth appearance. This reduces visual noise, allowing the color
representation of SP to stand out.

o ’facealpha’, flat’:
the ’'facealpha’ property controls the transparency of the surface plot. By
setting it to 'flat’, the transparency is applied independently to each face (cell)
of the surface, enhancing contrast.

e ’alphadata’:
alphadata is used to set the transparency based on the intensity of the un-
derlying data. Here, the transparency is scaled by the combined spin com-
ponents Spin up and Spin down, normalized by their maximum value us-
ing max(max(Spin up + Spin down)). This normalization ensures consistent
transparency scaling across all values, highlighting regions with higher spin
polarization.
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