001050027 001__ 1050027
001050027 005__ 20251219202235.0
001050027 0247_ $$2doi$$a10.1016/j.neurobiolaging.2025.09.007
001050027 0247_ $$2ISSN$$a0197-4580
001050027 0247_ $$2ISSN$$a1558-1497
001050027 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05741
001050027 037__ $$aFZJ-2025-05741
001050027 082__ $$a610
001050027 1001_ $$00000-0003-2146-2442$$aKuzu, Taylan D.$$b0$$eCorresponding author
001050027 245__ $$aApraxic deficits in Alzheimer’s disease are associated with altered dynamic connectivity in praxis-related networks
001050027 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2026
001050027 3367_ $$2DRIVER$$aarticle
001050027 3367_ $$2DataCite$$aOutput Types/Journal article
001050027 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1766155207_16742
001050027 3367_ $$2BibTeX$$aARTICLE
001050027 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001050027 3367_ $$00$$2EndNote$$aJournal Article
001050027 500__ $$aTHe DFG funded this study. Project ID 431549029 SFB 1451 and Project ID DR445/9-1.Gereon R. Fink and Oezguer A. Onur were supported by the Marga and Walter Boll-Foundation.
001050027 520__ $$aApraxia is a common symptom in Alzheimer's disease (AD) that reduces autonomy and quality of life. However, the neural basis underlying apraxia in AD, for example, reflected by functional connectivity (FC) alterations, remains unexplored. We investigated static and dynamic FC using resting-state functional imaging in 14 patients with biomarker-confirmed AD pathology and 14 matched healthy participants. FC was estimated as average (static) and short-term (dynamic) connectivity strengths between motor- and praxis-related functional networks. Recurring connectivity patterns were clustered into dynamic states to compute temporal connectivity measures. Connectivity measures were used for correlations with apraxic deficits. In AD patients, static connectivity between visual and inferior parietal networks correlated with apraxic imitation (r = 0.762, PFDR = 0.043) and arm/hand gesture deficits (r = 0.848, PFDR = 0.020), while dynamic connectivity between these networks correlated with apraxic imitation deficits (r = 0.851, PFDR = 0.020). Dynamic FC analysis revealed a segregated and integrated state. AD patients spent more time overall (fraction time, PFDR < 0.001) and remained longer without switching (dwell time, PFDR = 0.004) in the segregated state. Both fraction (ρ = -0.858, PFDR = 0.015) and dwell time (ρ = -0.914, PFDR = 0.003) correlated with apraxic imitation deficits. Connectivity strengths between visual and inferior parietal networks and fraction time in the segregated state predicted apraxic imitation deficits (adjusted R2 = 0.782, P < 0.001). We conclude that apraxia in AD patients is associated with altered FC in praxis-related networks, suggesting FC as a potential clinical indicator for predicting motor-cognitive deficits.Keywords: Aging; Alzheimer’s disease; Cologne apraxia screening (KAS); Functional magnetic resonance imaging; Motor system; Praxis; Resting-state.
001050027 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001050027 536__ $$0G:(GEPRIS)431549029$$aDFG project G:(GEPRIS)431549029 - SFB 1451: Schlüsselmechanismen normaler und krankheitsbedingt gestörter motorischer Kontrolle (431549029)$$c431549029$$x1
001050027 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001050027 7001_ $$0P:(DE-HGF)0$$aBrinkmann, Elena$$b1
001050027 7001_ $$0P:(DE-Juel1)162183$$aBonkhoff, Anna K.$$b2
001050027 7001_ $$0P:(DE-HGF)0$$aWunderle, Veronika$$b3
001050027 7001_ $$0P:(DE-Juel1)166265$$aBischof, Gérard N.$$b4
001050027 7001_ $$0P:(DE-Juel1)178805$$aGiehl, Kathrin$$b5$$ufzj
001050027 7001_ $$0P:(DE-HGF)0$$aSchmieschek, Maximilian H. T.$$b6
001050027 7001_ $$0P:(DE-HGF)0$$aOnur, Oezguer A.$$b7
001050027 7001_ $$0P:(DE-HGF)0$$aJessen, Frank$$b8
001050027 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b9$$ufzj
001050027 7001_ $$0P:(DE-Juel1)177611$$aDrzezga, Alexander$$b10$$ufzj
001050027 7001_ $$0P:(DE-Juel1)131748$$aWeiss-Blankenhorn, Peter$$b11$$ufzj
001050027 773__ $$0PERI:(DE-600)1498414-3$$a10.1016/j.neurobiolaging.2025.09.007$$gVol. 157, p. 36 - 47$$p36 - 47$$tNeurobiology of aging$$v157$$x0197-4580$$y2026
001050027 8564_ $$uhttps://juser.fz-juelich.de/record/1050027/files/1-s2.0-S0197458025001691-main.pdf$$yOpenAccess
001050027 909CO $$ooai:juser.fz-juelich.de:1050027$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001050027 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178805$$aForschungszentrum Jülich$$b5$$kFZJ
001050027 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b9$$kFZJ
001050027 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177611$$aForschungszentrum Jülich$$b10$$kFZJ
001050027 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131748$$aForschungszentrum Jülich$$b11$$kFZJ
001050027 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001050027 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
001050027 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
001050027 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-13
001050027 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-13
001050027 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13
001050027 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROBIOL AGING : 2022$$d2024-12-13
001050027 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-13
001050027 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
001050027 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
001050027 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-13
001050027 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001050027 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13
001050027 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
001050027 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001050027 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-13$$wger
001050027 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
001050027 920__ $$lyes
001050027 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
001050027 980__ $$ajournal
001050027 980__ $$aVDB
001050027 980__ $$aUNRESTRICTED
001050027 980__ $$aI:(DE-Juel1)INM-3-20090406
001050027 9801_ $$aFullTexts