001     1050027
005     20251219202235.0
024 7 _ |a 10.1016/j.neurobiolaging.2025.09.007
|2 doi
024 7 _ |a 0197-4580
|2 ISSN
024 7 _ |a 1558-1497
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-05741
|2 datacite_doi
037 _ _ |a FZJ-2025-05741
082 _ _ |a 610
100 1 _ |a Kuzu, Taylan D.
|0 0000-0003-2146-2442
|b 0
|e Corresponding author
245 _ _ |a Apraxic deficits in Alzheimer’s disease are associated with altered dynamic connectivity in praxis-related networks
260 _ _ |a Amsterdam [u.a.]
|c 2026
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1766155207_16742
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a THe DFG funded this study. Project ID 431549029 SFB 1451 and Project ID DR445/9-1.Gereon R. Fink and Oezguer A. Onur were supported by the Marga and Walter Boll-Foundation.
520 _ _ |a Apraxia is a common symptom in Alzheimer's disease (AD) that reduces autonomy and quality of life. However, the neural basis underlying apraxia in AD, for example, reflected by functional connectivity (FC) alterations, remains unexplored. We investigated static and dynamic FC using resting-state functional imaging in 14 patients with biomarker-confirmed AD pathology and 14 matched healthy participants. FC was estimated as average (static) and short-term (dynamic) connectivity strengths between motor- and praxis-related functional networks. Recurring connectivity patterns were clustered into dynamic states to compute temporal connectivity measures. Connectivity measures were used for correlations with apraxic deficits. In AD patients, static connectivity between visual and inferior parietal networks correlated with apraxic imitation (r = 0.762, PFDR = 0.043) and arm/hand gesture deficits (r = 0.848, PFDR = 0.020), while dynamic connectivity between these networks correlated with apraxic imitation deficits (r = 0.851, PFDR = 0.020). Dynamic FC analysis revealed a segregated and integrated state. AD patients spent more time overall (fraction time, PFDR < 0.001) and remained longer without switching (dwell time, PFDR = 0.004) in the segregated state. Both fraction (ρ = -0.858, PFDR = 0.015) and dwell time (ρ = -0.914, PFDR = 0.003) correlated with apraxic imitation deficits. Connectivity strengths between visual and inferior parietal networks and fraction time in the segregated state predicted apraxic imitation deficits (adjusted R2 = 0.782, P < 0.001). We conclude that apraxia in AD patients is associated with altered FC in praxis-related networks, suggesting FC as a potential clinical indicator for predicting motor-cognitive deficits.Keywords: Aging; Alzheimer’s disease; Cologne apraxia screening (KAS); Functional magnetic resonance imaging; Motor system; Praxis; Resting-state.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)431549029 - SFB 1451: Schlüsselmechanismen normaler und krankheitsbedingt gestörter motorischer Kontrolle (431549029)
|0 G:(GEPRIS)431549029
|c 431549029
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Brinkmann, Elena
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bonkhoff, Anna K.
|0 P:(DE-Juel1)162183
|b 2
700 1 _ |a Wunderle, Veronika
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bischof, Gérard N.
|0 P:(DE-Juel1)166265
|b 4
700 1 _ |a Giehl, Kathrin
|0 P:(DE-Juel1)178805
|b 5
|u fzj
700 1 _ |a Schmieschek, Maximilian H. T.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Onur, Oezguer A.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Jessen, Frank
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Fink, Gereon R.
|0 P:(DE-Juel1)131720
|b 9
|u fzj
700 1 _ |a Drzezga, Alexander
|0 P:(DE-Juel1)177611
|b 10
|u fzj
700 1 _ |a Weiss-Blankenhorn, Peter
|0 P:(DE-Juel1)131748
|b 11
|u fzj
773 _ _ |a 10.1016/j.neurobiolaging.2025.09.007
|g Vol. 157, p. 36 - 47
|0 PERI:(DE-600)1498414-3
|p 36 - 47
|t Neurobiology of aging
|v 157
|y 2026
|x 0197-4580
856 4 _ |u https://juser.fz-juelich.de/record/1050027/files/1-s2.0-S0197458025001691-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1050027
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)178805
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)177611
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)131748
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROBIOL AGING : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-13
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21