001050044 001__ 1050044
001050044 005__ 20251223202202.0
001050044 0247_ $$2doi$$a10.48550/ARXIV.2512.16641
001050044 0247_ $$2doi$$ahttps://doi.org/10.48550/arXiv.2512.16641
001050044 0247_ $$2doi$$a10.48550/arXiv.2512.16641
001050044 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05758
001050044 037__ $$aFZJ-2025-05758
001050044 1001_ $$0P:(DE-Juel1)200181$$aBolsmann, Katrin$$b0$$eCorresponding author
001050044 245__ $$aFast Native Three-Qubit Gates and Fault-Tolerant Quantum Error Correction with Trapped Rydberg Ions
001050044 260__ $$barXiv$$c2025
001050044 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1766476471_5378
001050044 3367_ $$2ORCID$$aWORKING_PAPER
001050044 3367_ $$028$$2EndNote$$aElectronic Article
001050044 3367_ $$2DRIVER$$apreprint
001050044 3367_ $$2BibTeX$$aARTICLE
001050044 3367_ $$2DataCite$$aOutput Types/Working Paper
001050044 520__ $$aTrapped ions as one of the most promising quantum-information-processing platforms, yet conventional entangling gates mediated by collective motion remain slow and difficult to scale. Exciting trapped ions to high-lying electronic Rydberg states provides a promising route to overcome these limitations by enabling strong, long-range dipole-dipole interactions that support much faster multi-qubit operations. Here, we introduce the first scheme for implementing a native controlled-controlled-Z gate with microwave-dressed Rydberg ions by optimizing a single-pulse protocol that accounts for the finite Rydberg-state lifetime. The resulting gate outperforms standard decompositions into one- and two-qubit gates by achieving fidelities above 97% under realistic conditions, with execution times of about 2 microseconds at cryogenic temperatures. To explore the potential of trapped Rydberg ions for fault-tolerant quantum error correction, and to illustrate the utility of three-qubit Rydberg-ion gates in this context, we develop and analyze a proposal for fault-tolerant, measurement-free quantum error correction using the nine-qubit Bacon-Shor code. Our simulations confirm that quantum error correction can be performed in a fully fault-tolerant manner on a linear Rydberg-ion chain despite its limited qubit connectivity. These results establish native multiqubit Rydberg-ion gates as a valuable resource for fast, high-fidelity quantum computing and highlight their potential for fault-tolerant quantum error correction.
001050044 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001050044 536__ $$0G:(EU-Grant)101046968$$aBRISQ - Brisk Rydberg Ions for Scalable Quantum Processors (101046968)$$c101046968$$fHORIZON-EIC-2021-PATHFINDEROPEN-01$$x1
001050044 588__ $$aDataset connected to DataCite
001050044 650_7 $$2Other$$aQuantum Physics (quant-ph)
001050044 650_7 $$2Other$$aFOS: Physical sciences
001050044 7001_ $$0P:(DE-Juel1)194121$$aGuedes, Thiago L. M.$$b1$$ufzj
001050044 7001_ $$0P:(DE-HGF)0$$aLi, Weibin$$b2
001050044 7001_ $$0P:(DE-HGF)0$$aWilkinson, Joseph W. P.$$b3
001050044 7001_ $$0P:(DE-HGF)0$$aLesanovsky, Igor$$b4
001050044 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b5$$ufzj
001050044 773__ $$a10.48550/arXiv.2512.16641
001050044 8564_ $$uhttps://juser.fz-juelich.de/record/1050044/files/main.pdf$$yOpenAccess
001050044 909CO $$ooai:juser.fz-juelich.de:1050044$$popenaire$$popen_access$$pdriver$$pVDB$$pec_fundedresources$$pdnbdelivery
001050044 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200181$$aForschungszentrum Jülich$$b0$$kFZJ
001050044 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194121$$aForschungszentrum Jülich$$b1$$kFZJ
001050044 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b5$$kFZJ
001050044 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001050044 9141_ $$y2025
001050044 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001050044 920__ $$lyes
001050044 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001050044 980__ $$apreprint
001050044 980__ $$aVDB
001050044 980__ $$aUNRESTRICTED
001050044 980__ $$aI:(DE-Juel1)PGI-2-20110106
001050044 9801_ $$aFullTexts