| Home > Publications database > Fast Native Three-Qubit Gates and Fault-Tolerant Quantum Error Correction with Trapped Rydberg Ions > print |
| 001 | 1050044 | ||
| 005 | 20251223202202.0 | ||
| 024 | 7 | _ | |a 10.48550/ARXIV.2512.16641 |2 doi |
| 024 | 7 | _ | |a https://doi.org/10.48550/arXiv.2512.16641 |2 doi |
| 024 | 7 | _ | |a 10.48550/arXiv.2512.16641 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2025-05758 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2025-05758 |
| 100 | 1 | _ | |a Bolsmann, Katrin |0 P:(DE-Juel1)200181 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Fast Native Three-Qubit Gates and Fault-Tolerant Quantum Error Correction with Trapped Rydberg Ions |
| 260 | _ | _ | |c 2025 |b arXiv |
| 336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1766476471_5378 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
| 336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
| 336 | 7 | _ | |a preprint |2 DRIVER |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
| 520 | _ | _ | |a Trapped ions as one of the most promising quantum-information-processing platforms, yet conventional entangling gates mediated by collective motion remain slow and difficult to scale. Exciting trapped ions to high-lying electronic Rydberg states provides a promising route to overcome these limitations by enabling strong, long-range dipole-dipole interactions that support much faster multi-qubit operations. Here, we introduce the first scheme for implementing a native controlled-controlled-Z gate with microwave-dressed Rydberg ions by optimizing a single-pulse protocol that accounts for the finite Rydberg-state lifetime. The resulting gate outperforms standard decompositions into one- and two-qubit gates by achieving fidelities above 97% under realistic conditions, with execution times of about 2 microseconds at cryogenic temperatures. To explore the potential of trapped Rydberg ions for fault-tolerant quantum error correction, and to illustrate the utility of three-qubit Rydberg-ion gates in this context, we develop and analyze a proposal for fault-tolerant, measurement-free quantum error correction using the nine-qubit Bacon-Shor code. Our simulations confirm that quantum error correction can be performed in a fully fault-tolerant manner on a linear Rydberg-ion chain despite its limited qubit connectivity. These results establish native multiqubit Rydberg-ion gates as a valuable resource for fast, high-fidelity quantum computing and highlight their potential for fault-tolerant quantum error correction. |
| 536 | _ | _ | |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) |0 G:(DE-HGF)POF4-5221 |c POF4-522 |f POF IV |x 0 |
| 536 | _ | _ | |a BRISQ - Brisk Rydberg Ions for Scalable Quantum Processors (101046968) |0 G:(EU-Grant)101046968 |c 101046968 |f HORIZON-EIC-2021-PATHFINDEROPEN-01 |x 1 |
| 588 | _ | _ | |a Dataset connected to DataCite |
| 650 | _ | 7 | |a Quantum Physics (quant-ph) |2 Other |
| 650 | _ | 7 | |a FOS: Physical sciences |2 Other |
| 700 | 1 | _ | |a Guedes, Thiago L. M. |0 P:(DE-Juel1)194121 |b 1 |u fzj |
| 700 | 1 | _ | |a Li, Weibin |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Wilkinson, Joseph W. P. |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Lesanovsky, Igor |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Müller, Markus |0 P:(DE-Juel1)179396 |b 5 |u fzj |
| 773 | _ | _ | |a 10.48550/arXiv.2512.16641 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1050044/files/main.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1050044 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)200181 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)194121 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)179396 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5221 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-2-20110106 |k PGI-2 |l Theoretische Nanoelektronik |x 0 |
| 980 | _ | _ | |a preprint |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|