001050045 001__ 1050045 001050045 005__ 20251223202202.0 001050045 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05759 001050045 037__ $$aFZJ-2025-05759 001050045 1001_ $$0P:(DE-Juel1)200181$$aBolsmann, Katrin$$b0$$eCorresponding author 001050045 1112_ $$aScalability Conference 2025$$cKeble College, Oxford$$d2025-04-01 - 2025-04-04$$wUK 001050045 245__ $$aQuantum Information Processing with Trapped Rydberg Ions 001050045 260__ $$c2025 001050045 3367_ $$033$$2EndNote$$aConference Paper 001050045 3367_ $$2BibTeX$$aINPROCEEDINGS 001050045 3367_ $$2DRIVER$$aconferenceObject 001050045 3367_ $$2ORCID$$aCONFERENCE_POSTER 001050045 3367_ $$2DataCite$$aOutput Types/Conference Poster 001050045 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1766476511_5767$$xAfter Call 001050045 520__ $$aCombining the strong and long-range interaction of cold Rydberg atoms with the controllability of trapped ions, ultracold trapped Rydberg ions provide a promising platform for scalable quantum computing. We demonstrate how microwave-dressed Rydberg states result in rotating permanent dipole moments causing strong dipole-dipole interaction between ions in highly excited Rydberg states. Due to the large difference in time scales, the fast electronic dynamics of the Rydberg ions decouple from the slower oscillator modes in the linear Coulomb crystal. These properties allow us to realize a submicrosecond two-qubit gate between two Rydberg ions confined in a Paul trap reaching fidelities of > 99% under consideration of the finite lifetime of the Rydberg states at room temperature. 001050045 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0 001050045 536__ $$0G:(EU-Grant)101046968$$aBRISQ - Brisk Rydberg Ions for Scalable Quantum Processors (101046968)$$c101046968$$fHORIZON-EIC-2021-PATHFINDEROPEN-01$$x1 001050045 7001_ $$0P:(DE-Juel1)194121$$aGuedes, Thiago Lucena Macedo$$b1 001050045 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b2 001050045 7001_ $$0P:(DE-HGF)0$$aLesanovsky, Igor$$b3 001050045 7001_ $$0P:(DE-HGF)0$$aWilkisnon, Joseph W P$$b4 001050045 8564_ $$uhttps://juser.fz-juelich.de/record/1050045/files/Poster.pdf$$yOpenAccess 001050045 909CO $$ooai:juser.fz-juelich.de:1050045$$popenaire$$popen_access$$pVDB$$pdriver$$pec_fundedresources 001050045 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200181$$aForschungszentrum Jülich$$b0$$kFZJ 001050045 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194121$$aForschungszentrum Jülich$$b1$$kFZJ 001050045 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b2$$kFZJ 001050045 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0 001050045 9141_ $$y2025 001050045 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001050045 920__ $$lyes 001050045 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0 001050045 980__ $$aposter 001050045 980__ $$aVDB 001050045 980__ $$aUNRESTRICTED 001050045 980__ $$aI:(DE-Juel1)PGI-2-20110106 001050045 9801_ $$aFullTexts