001050046 001__ 1050046
001050046 005__ 20251223202202.0
001050046 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05760
001050046 037__ $$aFZJ-2025-05760
001050046 1001_ $$0P:(DE-Juel1)200181$$aBolsmann, Katrin$$b0$$eCorresponding author
001050046 1112_ $$aGRS/GRC Quantum Control of Light and Matter$$cNewport, Rhode Island, United States$$d2025-08-02 - 2025-08-08$$wUSA
001050046 245__ $$aQuantum Information Processing with Trapped Rydberg Ions
001050046 260__ $$c2025
001050046 3367_ $$033$$2EndNote$$aConference Paper
001050046 3367_ $$2BibTeX$$aINPROCEEDINGS
001050046 3367_ $$2DRIVER$$aconferenceObject
001050046 3367_ $$2ORCID$$aCONFERENCE_POSTER
001050046 3367_ $$2DataCite$$aOutput Types/Conference Poster
001050046 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1766476550_4855$$xAfter Call
001050046 520__ $$aCombining the strong, long-range interactions of cold Rydberg atoms with the controllability of trapped ions, trapped Rydberg ions provide a promising platform for scalable quantum information processing. As demonstrated in a breakthrough experiment [1], microwave dressing of Rydberg states induces permanent rotating dipole moments leading to strong interactions between highly excited ions. Due to the separation of timescales, the fast electronic dynamics of Rydberg ions decouple from the slower motional modes of the linear Coulomb crystal, which typically mediate entangling gates in ground-state ion systems. Therefore, Rydberg ions enable significantly faster gate operations. We demonstrate how the unique properties of trapped Rydberg ions can be exploited to realize fast and high-fidelity entangling gates, along with the associated challenges and strategies to overcome them. Different types of gate protocols for two- and three-qubit entangling gates with trapped Rydberg ions are presented and sources of infidelity are analyzed.
001050046 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001050046 536__ $$0G:(EU-Grant)101046968$$aBRISQ - Brisk Rydberg Ions for Scalable Quantum Processors (101046968)$$c101046968$$fHORIZON-EIC-2021-PATHFINDEROPEN-01$$x1
001050046 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b1
001050046 7001_ $$0P:(DE-Juel1)194121$$aGuedes, Thiago Lucena Macedo$$b2
001050046 7001_ $$0P:(DE-HGF)0$$aLesanosky, Igor$$b3
001050046 7001_ $$0P:(DE-HGF)0$$aWilkinson, Joseph W. P.$$b4
001050046 8564_ $$uhttps://juser.fz-juelich.de/record/1050046/files/Poster_GRC_final.pdf$$yOpenAccess
001050046 909CO $$ooai:juser.fz-juelich.de:1050046$$popenaire$$popen_access$$pVDB$$pdriver$$pec_fundedresources
001050046 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200181$$aForschungszentrum Jülich$$b0$$kFZJ
001050046 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b1$$kFZJ
001050046 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194121$$aForschungszentrum Jülich$$b2$$kFZJ
001050046 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001050046 9141_ $$y2025
001050046 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001050046 920__ $$lyes
001050046 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001050046 980__ $$aposter
001050046 980__ $$aVDB
001050046 980__ $$aUNRESTRICTED
001050046 980__ $$aI:(DE-Juel1)PGI-2-20110106
001050046 9801_ $$aFullTexts