001     1050046
005     20251223202202.0
024 7 _ |a 10.34734/FZJ-2025-05760
|2 datacite_doi
037 _ _ |a FZJ-2025-05760
100 1 _ |a Bolsmann, Katrin
|0 P:(DE-Juel1)200181
|b 0
|e Corresponding author
111 2 _ |a GRS/GRC Quantum Control of Light and Matter
|c Newport, Rhode Island, United States
|d 2025-08-02 - 2025-08-08
|w USA
245 _ _ |a Quantum Information Processing with Trapped Rydberg Ions
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1766476550_4855
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Combining the strong, long-range interactions of cold Rydberg atoms with the controllability of trapped ions, trapped Rydberg ions provide a promising platform for scalable quantum information processing. As demonstrated in a breakthrough experiment [1], microwave dressing of Rydberg states induces permanent rotating dipole moments leading to strong interactions between highly excited ions. Due to the separation of timescales, the fast electronic dynamics of Rydberg ions decouple from the slower motional modes of the linear Coulomb crystal, which typically mediate entangling gates in ground-state ion systems. Therefore, Rydberg ions enable significantly faster gate operations. We demonstrate how the unique properties of trapped Rydberg ions can be exploited to realize fast and high-fidelity entangling gates, along with the associated challenges and strategies to overcome them. Different types of gate protocols for two- and three-qubit entangling gates with trapped Rydberg ions are presented and sources of infidelity are analyzed.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
536 _ _ |a BRISQ - Brisk Rydberg Ions for Scalable Quantum Processors (101046968)
|0 G:(EU-Grant)101046968
|c 101046968
|f HORIZON-EIC-2021-PATHFINDEROPEN-01
|x 1
700 1 _ |a Müller, Markus
|0 P:(DE-Juel1)179396
|b 1
700 1 _ |a Guedes, Thiago Lucena Macedo
|0 P:(DE-Juel1)194121
|b 2
700 1 _ |a Lesanosky, Igor
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wilkinson, Joseph W. P.
|0 P:(DE-HGF)0
|b 4
856 4 _ |u https://juser.fz-juelich.de/record/1050046/files/Poster_GRC_final.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1050046
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)200181
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179396
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)194121
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21