001     1050047
005     20251223202202.0
037 _ _ |a FZJ-2025-05761
100 1 _ |a Bolsmann, Katrin
|0 P:(DE-Juel1)200181
|b 0
111 2 _ |a DPG Fall Meeting 2025
|c Göttingen
|d 2025-09-08 - 2025-09-12
|w Germany
245 _ _ |a Quantum Information Processing with Trapped Rydberg Ions
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1766485742_29350
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Combining the strong, long-range interactions of cold Rydberg atoms with the controllability of trapped ions, trapped Rydberg ions provide a promising platform for scalable quantum information processing. As demonstrated in a breakthrough experiment (Zhang et al., Nature 580, 345, 2020), microwave dressing of Rydberg states induces permanent rotating dipole moments leading to strong interactions between highly excited ions. Due to the separation of timescales, the fast electronic dynamics of Rydberg ions decouple from the slower motional modes of the linear Coulomb crystal, which typically mediate entangling gates in ground-state ion systems. Therefore, Rydberg ions enable significantly faster gate operations. In this talk, we will discuss how the unique features of trapped Rydberg ions can be used to realize fast and high-fidelity entangling gates, along with the associated challenges and strategies to address them. We will present different types of gate protocols for two- and multi-qubit entangling gates with trapped Rydberg ions, analyze sources of infidelity, and compare the performance with other platforms based on neutral atoms and ground-state ions.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
536 _ _ |a BRISQ - Brisk Rydberg Ions for Scalable Quantum Processors (101046968)
|0 G:(EU-Grant)101046968
|c 101046968
|f HORIZON-EIC-2021-PATHFINDEROPEN-01
|x 1
909 C O |o oai:juser.fz-juelich.de:1050047
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)200181
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21