001     1050049
005     20251219155726.0
024 7 _ |a 10.23919/ISC.2025.11018303
|2 doi
037 _ _ |a FZJ-2025-05763
100 1 _ |a Schätzle, Fabian
|0 P:(DE-Juel1)184395
|b 0
|e Corresponding author
111 2 _ |a ISC High Performance 2025 Research Paper Proceedings (40th International Conference)
|c Hamburg
|d 2025-06-10 - 2025-06-13
|w Germany
245 _ _ |a Modeling Chiplet-to-Chiplet (C2C) Communication for Chiplet-based Co-Design
260 _ _ |c 2025
|b IEEE
295 1 0 |a ISC High Performance 2025 Research Paper Proceedings (40th International Conference) - IEEE, 2025. - ISBN 978-3-9826336-1-9 - doi:10.23919/ISC.2025.11018303
300 _ _ |a 11
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1766155978_15646
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a Chiplet-based processor design, which combines small dies called chiplets to form a larger chip, enables scalable designs at economical costs. This trend has received high attention such that standards for chiplet design have rapidly established, including packaging, protocols, and Chiplet-to-Chiplet (C2C) interfaces. With numerous well-defined chiplet options available, hardware architects would leverage on the co-design process to make optimal decisions on design parameters. An important performance limitation in multi-chiplet designs come from the protocol translation in the C2C communication, needed to maintain cache coherency and avoid risk of deadlocks. When integrating multiple chiplets, deadlocks can happen from both protocol and routing, making deadlock-free designs important. This paper tackles these challenges by introducing a Chiplet-to-Chiplet Gateway (C2CG) architecture, a C2C interface that bridges two chiplet protocols and ensures deadlock-free C2C communication. We also extend the Coherent Hub Interface (CHI) protocol to support cache coherent data sharing among cores across chiplets. The complete design is implemented in the gem5 simulator, constructing a modeling tool for chiplet-based co-design targeting next-generation High-performance Computing (HPC) processors. We demonstrate the benefit of the model through a design space exploration of three 64-core Armv8 HPC processor configurations: monolithic, two- and four-chiplet. The exploration, using representative HPC benchmarks, provides insights into C2C parameters and studies the impact of Non-Uniform Memory Access (NUMA) configuration, giving valuable co-design feedback for hardware architects.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5122 - Future Computing & Big Data Systems (POF4-512)
|0 G:(DE-HGF)POF4-5122
|c POF4-512
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Falquez, Carlos
|0 P:(DE-Juel1)179531
|b 1
700 1 _ |a Ho, Nam
|0 P:(DE-Juel1)176469
|b 2
|u fzj
700 1 _ |a Zambanini, André
|0 P:(DE-Juel1)145837
|b 3
700 1 _ |a van den Boom, Johannes
|0 P:(DE-Juel1)162349
|b 4
700 1 _ |a Suarez, Estela
|0 P:(DE-Juel1)142361
|b 5
773 _ _ |a 10.23919/ISC.2025.11018303
856 4 _ |u https://ieeexplore.ieee.org/abstract/document/11018303
856 4 _ |u https://juser.fz-juelich.de/record/1050049/files/Post-Print.pdf
|y Restricted
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184395
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179531
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176469
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145837
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)162349
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)142361
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-512
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Supercomputing & Big Data Infrastructures
|9 G:(DE-HGF)POF4-5122
|x 1
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Integrated Computing Architectures
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 _ _ |a contrib
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21