| Hauptseite > Publikationsdatenbank > 3D Motion in Crowds > print |
| 001 | 1050057 | ||
| 005 | 20251223202202.0 | ||
| 024 | 7 | _ | |a 10.34734/FZJ-2025-05771 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2025-05771 |
| 041 | _ | _ | |a English |
| 100 | 1 | _ | |a Boltes, Maik |0 P:(DE-Juel1)132064 |b 0 |e Corresponding author |u fzj |
| 111 | 2 | _ | |a IAS Retreat |c Jülich |d 2025-05-27 - 2025-05-27 |w Germany |
| 245 | _ | _ | |a 3D Motion in Crowds |
| 260 | _ | _ | |c 2025 |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
| 336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
| 336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1766491165_4046 |2 PUB:(DE-HGF) |x Other |
| 520 | _ | _ | |a For understanding the dynamics inside crowds, reliable empirical data are needed, which could increase safety and comfort for pedestrians and the design of models reflecting the real dynamics. In dense crowds a well-calibrated camera system can extract absolute head positions with high accuracy. The inclusion of inertial sensors or even self-contained full-body motion capturing systems allows the relative tracking of body parts or even capturing the locomotion of the whole body. To capture the 3D motion of people inside a crowd relative to surrounding people movement data of both systems have to be fused.To analyze effects like clogging, overtaking or the threading into a bottleneck the orientation and with this the space usage of body parts like shoulder, pelvis, arms and feet are of high interest. Other research using the 3D motion of body parts is looking at the movement adaptations as a reason for injury risks or how pushes are propagated through a crowd. |
| 536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
| 700 | 1 | _ | |a Adrian, Juliane |0 P:(DE-Juel1)173971 |b 1 |u fzj |
| 700 | 1 | _ | |a Kilic, Deniz |0 P:(DE-Juel1)179494 |b 2 |u fzj |
| 700 | 1 | _ | |a Wings, Carina |0 P:(DE-Juel1)207846 |b 3 |u fzj |
| 700 | 1 | _ | |a Boomers, Ann Katrin |0 P:(DE-Juel1)178633 |b 4 |u fzj |
| 700 | 1 | _ | |a Feldmann, Sina |0 P:(DE-Juel1)185055 |b 5 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1050057/files/3D-MotionInCrowdsV5.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1050057 |p openaire |p open_access |p VDB |p driver |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)132064 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)173971 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)179494 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)207846 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)178633 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-7-20180321 |k IAS-7 |l Zivile Sicherheitsforschung |x 0 |
| 980 | _ | _ | |a poster |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-7-20180321 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|