001     1050057
005     20251223202202.0
024 7 _ |a 10.34734/FZJ-2025-05771
|2 datacite_doi
037 _ _ |a FZJ-2025-05771
041 _ _ |a English
100 1 _ |a Boltes, Maik
|0 P:(DE-Juel1)132064
|b 0
|e Corresponding author
|u fzj
111 2 _ |a IAS Retreat
|c Jülich
|d 2025-05-27 - 2025-05-27
|w Germany
245 _ _ |a 3D Motion in Crowds
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1766491165_4046
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a For understanding the dynamics inside crowds, reliable empirical data are needed, which could increase safety and comfort for pedestrians and the design of models reflecting the real dynamics. In dense crowds a well-calibrated camera system can extract absolute head positions with high accuracy. The inclusion of inertial sensors or even self-contained full-body motion capturing systems allows the relative tracking of body parts or even capturing the locomotion of the whole body. To capture the 3D motion of people inside a crowd relative to surrounding people movement data of both systems have to be fused.To analyze effects like clogging, overtaking or the threading into a bottleneck the orientation and with this the space usage of body parts like shoulder, pelvis, arms and feet are of high interest. Other research using the 3D motion of body parts is looking at the movement adaptations as a reason for injury risks or how pushes are propagated through a crowd.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
700 1 _ |a Adrian, Juliane
|0 P:(DE-Juel1)173971
|b 1
|u fzj
700 1 _ |a Kilic, Deniz
|0 P:(DE-Juel1)179494
|b 2
|u fzj
700 1 _ |a Wings, Carina
|0 P:(DE-Juel1)207846
|b 3
|u fzj
700 1 _ |a Boomers, Ann Katrin
|0 P:(DE-Juel1)178633
|b 4
|u fzj
700 1 _ |a Feldmann, Sina
|0 P:(DE-Juel1)185055
|b 5
856 4 _ |u https://juser.fz-juelich.de/record/1050057/files/3D-MotionInCrowdsV5.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1050057
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)132064
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)173971
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179494
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)207846
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)178633
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21