001050081 001__ 1050081
001050081 005__ 20260107202518.0
001050081 0247_ $$2doi$$a10.1039/D5CP02620B
001050081 0247_ $$2ISSN$$a1463-9076
001050081 0247_ $$2ISSN$$a1463-9084
001050081 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05789
001050081 037__ $$aFZJ-2025-05789
001050081 082__ $$a540
001050081 1001_ $$0P:(DE-Juel1)164884$$aYaqoob, Najma$$b0
001050081 245__ $$aOn the origin of phase transition suppression of P2–Na 0.67 MnO 2 by substitution of Mn with Li
001050081 260__ $$aCambridge$$bRSC Publ.$$c2025
001050081 3367_ $$2DRIVER$$aarticle
001050081 3367_ $$2DataCite$$aOutput Types/Journal article
001050081 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767786289_8146
001050081 3367_ $$2BibTeX$$aARTICLE
001050081 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001050081 3367_ $$00$$2EndNote$$aJournal Article
001050081 520__ $$aMn-based layered oxides are promising cathode materials for Na-ion batteries, but their low cyclability due to phase transition during charge/discharge remains a challenge. P2–Na0.67MnO2 compound undergoes a severe phase transition of P2 → O2 during charging. It has been proposed that this behavior results from the desodiation-induced change in the Jahn–Teller (J–T) activity of Mn after its oxidation from 3+ to 4+. In this work, we show that the driving force of the phase transition is indeed the oxidation of Mn3+ to Mn4+ but not the suppression of J–T activity with desodiation. Combining density functional theory calculations and electrostatic analyses indicates that the main factor stabilizing the P2 phase is the Na–Mn interaction, which strongly favors this phase over the O2 phase. Desodiation induced-weakening of this interaction leads to the formation of O2–Na0.11MnO2, which is driven by O–O interaction. Substituting Mn with Li stabilizes P2–NaxLi0.22Mn0.78O2 even at low Na content (x = 0.11). This is because the Na–Mn interaction is more favorable for the P2 phase, and this energy preference remains almost unchanged after desodiation. The absorption energy of Na at Na sites close to LiTM is much stronger than at sites near MnMn, and favors P2 phase. As the overall Na absorption energy (dictated by Na–Mn repulsion) is mainly determined by the nearest Na–Mn neighbor interaction, which does not change much with desodiation, no phase transition to O2 occurs for NaxLi0.22Mn0.78O2 at x = 0.11. Overall, the phase stability of Na-based layered oxide materials is driven by electrostatic forces, which can be tuned by substitution of Mn by a metal ion of appropriate charge and concentration.
001050081 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001050081 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001050081 7001_ $$0P:(DE-HGF)0$$aHuijben, Mark$$b1
001050081 7001_ $$0P:(DE-Juel1)174502$$aKaghazchi, Payam$$b2$$eCorresponding author
001050081 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D5CP02620B$$gVol. 27, no. 48, p. 26131 - 26138$$n48$$p26131 - 26138$$tPhysical chemistry, chemical physics$$v27$$x1463-9076$$y2025
001050081 8564_ $$uhttps://juser.fz-juelich.de/record/1050081/files/d5cp02620b.pdf$$yOpenAccess
001050081 8767_ $$d2025-12-22$$eHybrid-OA$$jPublish and Read
001050081 909CO $$ooai:juser.fz-juelich.de:1050081$$popenaire$$popen_access$$pdriver$$pVDB$$popenCost$$pdnbdelivery
001050081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164884$$aForschungszentrum Jülich$$b0$$kFZJ
001050081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174502$$aForschungszentrum Jülich$$b2$$kFZJ
001050081 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001050081 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001050081 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
001050081 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001050081 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001050081 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001050081 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
001050081 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001050081 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-09
001050081 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001050081 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2022$$d2024-12-09
001050081 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-09$$wger
001050081 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
001050081 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001050081 9201_ $$0I:(DE-Juel1)IMD-2-20101013$$kIMD-2$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001050081 980__ $$ajournal
001050081 980__ $$aVDB
001050081 980__ $$aUNRESTRICTED
001050081 980__ $$aI:(DE-Juel1)IMD-2-20101013
001050081 980__ $$aAPC
001050081 9801_ $$aAPC
001050081 9801_ $$aFullTexts