001050086 001__ 1050086
001050086 005__ 20260108204825.0
001050086 0247_ $$2doi$$a10.1127/metz/1266
001050086 0247_ $$2ISSN$$a0941-2948
001050086 0247_ $$2ISSN$$a1610-1227
001050086 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05794
001050086 037__ $$aFZJ-2025-05794
001050086 041__ $$aEnglish
001050086 082__ $$a550
001050086 1001_ $$0P:(DE-Juel1)190644$$aBecker, Frederike$$b0
001050086 245__ $$aUpward transport of boundary layer air to altitudes of the Asian summer monsoon anticyclone in Eulerian and Lagrangian model simulations
001050086 260__ $$aStuttgart$$bE. Schweizerbart Science Publishers$$c2025
001050086 3367_ $$2DRIVER$$aarticle
001050086 3367_ $$2DataCite$$aOutput Types/Journal article
001050086 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767786159_8010
001050086 3367_ $$2BibTeX$$aARTICLE
001050086 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001050086 3367_ $$00$$2EndNote$$aJournal Article
001050086 520__ $$aThe Asian summer monsoon anticyclone is a dominant circulation system in the upper troposphere and lowerstratosphere (UTLS) in boreal summer (about June–September). An appropriate simulation of the monsoon anticycloneis an important challenge for chemistry climate and chemistry transport models. Here we compare simulations of theECHAM5/MESSy Chemistry Climate model (EMAC) and the Chemical Lagrangian Model of the Stratosphere (CLaMS)based on the European Centre for Medium-Range Weather Forecasts Reanalysis-Interim (ERA-Interim); EMAC simulations are nudged towards ERA-Interim, whereas transport in CLaMS is driven by ERA-Interim. We employ surfaceorigin tracers for continental South Asia. These surface origin tracers are lifted upward into the Asian summer monsoonanticyclone, both in EMAC and CLaMS. We investigate monsoon conditions for boreal summer 2015. In summer 2015,the entire monsoon, and in particular upward transport in the monsoon anticyclone, was strongly influenced by El Niño. Inboth models, in 2015, the simulated impact of surface origin tracers on the composition of air in the Asian summer monsoonanticyclone is very weak at 420 K. Further, in both models, a very strong decline with altitude (between ≈ 370–400 K) ofsurface origin tracers is obvious. The pattern of the Asian monsoon anticyclone in August and early September is represented very similarly in EMAC and CLaMS, with a lower fraction of the surface origin tracer for continental South Asia inCLaMS. The simulated pattern of surface origin tracers in the Asian summer monsoon anticyclone in CLaMS is much lesssmooth than in EMAC. Finally, we find a strong day-to-day variability in the Asian summer monsoon anticyclone and aconfinement of monsoon air at UTLS altitudes (≈370 K to 400 K) similarly in both, EMAC and CLaMS.
001050086 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001050086 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001050086 7001_ $$0P:(DE-Juel1)129164$$aVogel, Bärbel$$b1
001050086 7001_ $$0P:(DE-Juel1)129123$$aGünther, Gebhard$$b2
001050086 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b3
001050086 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b4
001050086 7001_ $$0P:(DE-Juel1)173788$$aRosanka, Simon$$b5
001050086 7001_ $$0P:(DE-Juel1)167439$$aTaraborrelli, Domenico$$b6
001050086 7001_ $$0P:(DE-HGF)0$$aNützel, Matthias$$b7
001050086 7001_ $$0P:(DE-Juel1)188765$$aJöckel, Patrick$$b8
001050086 7001_ $$0P:(DE-HGF)0$$aBrinkop, Sabine$$b9
001050086 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b10$$eCorresponding author
001050086 773__ $$0PERI:(DE-600)2045168-4$$a10.1127/metz/1266$$gVol. 34, no. 3, p. 195 - 211$$n3$$p195 - 211$$tMeteorologische Zeitschrift$$v34$$x0941-2948$$y2025
001050086 8564_ $$uhttps://juser.fz-juelich.de/record/1050086/files/metz_Vol_34_No_3_p195-211_Upward_transport_of_boundary_layer_air_to_altitudes_of_the_Asian_summer_monsoon_anticyclone_in_Eulerian_and_Lagrangian_model_simulations_107442.pdf$$yOpenAccess
001050086 8767_ $$877222/BO$$92025-12-18$$a1200221482$$d2026-01-08$$eAPC$$jZahlung erfolgt
001050086 909CO $$ooai:juser.fz-juelich.de:1050086$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery
001050086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129164$$aForschungszentrum Jülich$$b1$$kFZJ
001050086 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)129164$$a CASA$$b1
001050086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129123$$aForschungszentrum Jülich$$b2$$kFZJ
001050086 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)129123$$a CASA$$b2
001050086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b3$$kFZJ
001050086 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)129141$$a CASA$$b3
001050086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b4$$kFZJ
001050086 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)129145$$a CASA$$b4
001050086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173788$$aForschungszentrum Jülich$$b5$$kFZJ
001050086 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)173788$$a CASA$$b5
001050086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167439$$aForschungszentrum Jülich$$b6$$kFZJ
001050086 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)167439$$a CASA$$b6
001050086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b10$$kFZJ
001050086 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)129138$$a CASA$$b10
001050086 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001050086 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001050086 915__ $$0LIC:(DE-HGF)CCBYNCNV$$2V:(DE-HGF)$$aCreative Commons Attribution-NonCommercial CC BY-NC (No Version)$$bDOAJ$$d2020-04-15T14:23:36Z
001050086 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
001050086 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-04-15T14:23:36Z
001050086 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-04-15T14:23:36Z
001050086 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
001050086 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-02
001050086 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001050086 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001050086 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Double anonymous peer review$$d2020-04-15T14:23:36Z
001050086 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-02
001050086 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
001050086 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001050086 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001050086 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001050086 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001050086 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001050086 920__ $$lyes
001050086 9201_ $$0I:(DE-Juel1)ICE-4-20101013$$kICE-4$$lStratosphäre$$x0
001050086 9801_ $$aFullTexts
001050086 980__ $$ajournal
001050086 980__ $$aVDB
001050086 980__ $$aUNRESTRICTED
001050086 980__ $$aI:(DE-Juel1)ICE-4-20101013
001050086 980__ $$aAPC