| Hauptseite > Publikationsdatenbank > Upward transport of boundary layer air to altitudes of the Asian summer monsoon anticyclone in Eulerian and Lagrangian model simulations > print |
| 001 | 1050086 | ||
| 005 | 20260108204825.0 | ||
| 024 | 7 | _ | |a 10.1127/metz/1266 |2 doi |
| 024 | 7 | _ | |a 0941-2948 |2 ISSN |
| 024 | 7 | _ | |a 1610-1227 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2025-05794 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2025-05794 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 550 |
| 100 | 1 | _ | |a Becker, Frederike |0 P:(DE-Juel1)190644 |b 0 |
| 245 | _ | _ | |a Upward transport of boundary layer air to altitudes of the Asian summer monsoon anticyclone in Eulerian and Lagrangian model simulations |
| 260 | _ | _ | |a Stuttgart |c 2025 |b E. Schweizerbart Science Publishers |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1767786159_8010 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The Asian summer monsoon anticyclone is a dominant circulation system in the upper troposphere and lowerstratosphere (UTLS) in boreal summer (about June–September). An appropriate simulation of the monsoon anticycloneis an important challenge for chemistry climate and chemistry transport models. Here we compare simulations of theECHAM5/MESSy Chemistry Climate model (EMAC) and the Chemical Lagrangian Model of the Stratosphere (CLaMS)based on the European Centre for Medium-Range Weather Forecasts Reanalysis-Interim (ERA-Interim); EMAC simulations are nudged towards ERA-Interim, whereas transport in CLaMS is driven by ERA-Interim. We employ surfaceorigin tracers for continental South Asia. These surface origin tracers are lifted upward into the Asian summer monsoonanticyclone, both in EMAC and CLaMS. We investigate monsoon conditions for boreal summer 2015. In summer 2015,the entire monsoon, and in particular upward transport in the monsoon anticyclone, was strongly influenced by El Niño. Inboth models, in 2015, the simulated impact of surface origin tracers on the composition of air in the Asian summer monsoonanticyclone is very weak at 420 K. Further, in both models, a very strong decline with altitude (between ≈ 370–400 K) ofsurface origin tracers is obvious. The pattern of the Asian monsoon anticyclone in August and early September is represented very similarly in EMAC and CLaMS, with a lower fraction of the surface origin tracer for continental South Asia inCLaMS. The simulated pattern of surface origin tracers in the Asian summer monsoon anticyclone in CLaMS is much lesssmooth than in EMAC. Finally, we find a strong day-to-day variability in the Asian summer monsoon anticyclone and aconfinement of monsoon air at UTLS altitudes (≈370 K to 400 K) similarly in both, EMAC and CLaMS. |
| 536 | _ | _ | |a 2112 - Climate Feedbacks (POF4-211) |0 G:(DE-HGF)POF4-2112 |c POF4-211 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Vogel, Bärbel |0 P:(DE-Juel1)129164 |b 1 |
| 700 | 1 | _ | |a Günther, Gebhard |0 P:(DE-Juel1)129123 |b 2 |
| 700 | 1 | _ | |a Ploeger, Felix |0 P:(DE-Juel1)129141 |b 3 |
| 700 | 1 | _ | |a Riese, Martin |0 P:(DE-Juel1)129145 |b 4 |
| 700 | 1 | _ | |a Rosanka, Simon |0 P:(DE-Juel1)173788 |b 5 |
| 700 | 1 | _ | |a Taraborrelli, Domenico |0 P:(DE-Juel1)167439 |b 6 |
| 700 | 1 | _ | |a Nützel, Matthias |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Jöckel, Patrick |0 P:(DE-Juel1)188765 |b 8 |
| 700 | 1 | _ | |a Brinkop, Sabine |0 P:(DE-HGF)0 |b 9 |
| 700 | 1 | _ | |a Müller, Rolf |0 P:(DE-Juel1)129138 |b 10 |e Corresponding author |
| 773 | _ | _ | |a 10.1127/metz/1266 |g Vol. 34, no. 3, p. 195 - 211 |0 PERI:(DE-600)2045168-4 |n 3 |p 195 - 211 |t Meteorologische Zeitschrift |v 34 |y 2025 |x 0941-2948 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1050086/files/metz_Vol_34_No_3_p195-211_Upward_transport_of_boundary_layer_air_to_altitudes_of_the_Asian_summer_monsoon_anticyclone_in_Eulerian_and_Lagrangian_model_simulations_107442.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1050086 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129164 |
| 910 | 1 | _ | |a CASA |0 I:(DE-HGF)0 |b 1 |6 P:(DE-Juel1)129164 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129123 |
| 910 | 1 | _ | |a CASA |0 I:(DE-HGF)0 |b 2 |6 P:(DE-Juel1)129123 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129141 |
| 910 | 1 | _ | |a CASA |0 I:(DE-HGF)0 |b 3 |6 P:(DE-Juel1)129141 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129145 |
| 910 | 1 | _ | |a CASA |0 I:(DE-HGF)0 |b 4 |6 P:(DE-Juel1)129145 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)173788 |
| 910 | 1 | _ | |a CASA |0 I:(DE-HGF)0 |b 5 |6 P:(DE-Juel1)173788 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)167439 |
| 910 | 1 | _ | |a CASA |0 I:(DE-HGF)0 |b 6 |6 P:(DE-Juel1)167439 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)129138 |
| 910 | 1 | _ | |a CASA |0 I:(DE-HGF)0 |b 10 |6 P:(DE-Juel1)129138 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-211 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Die Atmosphäre im globalen Wandel |9 G:(DE-HGF)POF4-2112 |x 0 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC (No Version) |0 LIC:(DE-HGF)CCBYNCNV |2 V:(DE-HGF) |b DOAJ |d 2020-04-15T14:23:36Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2020-04-15T14:23:36Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2020-04-15T14:23:36Z |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-02 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Double anonymous peer review |d 2020-04-15T14:23:36Z |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
| 915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
| 915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
| 915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
| 915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)ICE-4-20101013 |k ICE-4 |l Stratosphäre |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)ICE-4-20101013 |
| 980 | _ | _ | |a APC |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|