001050093 001__ 1050093
001050093 005__ 20260107202518.0
001050093 0247_ $$2doi$$a10.1038/s44287-025-00157-7
001050093 037__ $$aFZJ-2025-05801
001050093 1001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b0$$eCorresponding author
001050093 245__ $$aUltra-low-power cryogenic complementary metal oxide semiconductor technology
001050093 260__ $$a[London]$$bNature Publishing Group UK$$c2025
001050093 3367_ $$2DRIVER$$aarticle
001050093 3367_ $$2DataCite$$aOutput Types/Journal article
001050093 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767809705_17300
001050093 3367_ $$2BibTeX$$aARTICLE
001050093 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001050093 3367_ $$00$$2EndNote$$aJournal Article
001050093 520__ $$aUniversal cryogenic computing, encompassing von Neumann, neuromorphic and quantum computing, paves the way for future big-data processing with high energy efficiency. Complementary metal oxide semiconductor (CMOS) technology operating at cryogenic temperatures with ultra-low power consumption is a key component of this advancement. However, classical CMOS technology, designed for room temperature applications, suffers from band-tail effects at cryogenic levels, leading to an increased subthreshold swing and decreased mobility values. In addition, threshold voltages are enlarged. Thus, classical CMOS technology fails to meet the low power requirements when cooled close to zero Kelvin. In this Perspective, we show that steep slope cryogenic devices can be realized by screening the band tails with the use of high-k dielectrics and wrap-gate architectures and/or reducing them through the optimization of the surfaces and interfaces within the transistors. Cryogenic device functionality also strongly benefits from appropriate source/drain engineering employing dopant segregation from silicides. Furthermore, the threshold voltage control can be realized with back-gating, work-function engineering and dipole formation. As a major implication, future research and development towards cryogenic CMOS technology requires a combination of these approaches to enable universal cryogenic computing at the necessary ultra-low power levels.
001050093 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001050093 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001050093 7001_ $$0P:(DE-HGF)0$$aHan, Yi$$b1
001050093 7001_ $$0P:(DE-HGF)0$$aHan, Hung-Chi$$b2
001050093 7001_ $$0P:(DE-Juel1)172641$$aSchreiber, Lars R.$$b3
001050093 7001_ $$0P:(DE-HGF)0$$aLee, Tsung-En$$b4
001050093 7001_ $$0P:(DE-HGF)0$$aChiang, Hung-Li$$b5
001050093 7001_ $$0P:(DE-HGF)0$$aRadu, Iuliana$$b6
001050093 7001_ $$0P:(DE-HGF)0$$aEnz, Christian$$b7
001050093 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b8
001050093 7001_ $$0P:(DE-Juel1)180322$$aStampfer, Christoph$$b9$$ufzj
001050093 7001_ $$0P:(DE-HGF)0$$aTakagi, Shinichi$$b10
001050093 7001_ $$0P:(DE-HGF)0$$aKnoch, Joachim$$b11
001050093 773__ $$0PERI:(DE-600)3177793-4$$a10.1038/s44287-025-00157-7$$gVol. 2, no. 4, p. 277 - 290$$n4$$p277 - 290$$tNature reviews / Electrical engineering$$v2$$x2948-1201$$y2025
001050093 909CO $$ooai:juser.fz-juelich.de:1050093$$pVDB
001050093 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b0$$kFZJ
001050093 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
001050093 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172641$$aForschungszentrum Jülich$$b3$$kFZJ
001050093 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b8$$kFZJ
001050093 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180322$$aForschungszentrum Jülich$$b9$$kFZJ
001050093 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180322$$aRWTH Aachen$$b9$$kRWTH
001050093 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b11$$kRWTH
001050093 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001050093 9141_ $$y2025
001050093 920__ $$lyes
001050093 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
001050093 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x1
001050093 980__ $$ajournal
001050093 980__ $$aVDB
001050093 980__ $$aI:(DE-Juel1)PGI-11-20170113
001050093 980__ $$aI:(DE-Juel1)PGI-9-20110106
001050093 980__ $$aUNRESTRICTED