001     1050093
005     20260107202518.0
024 7 _ |a 10.1038/s44287-025-00157-7
|2 doi
037 _ _ |a FZJ-2025-05801
100 1 _ |a Zhao, Qing-Tai
|0 P:(DE-Juel1)128649
|b 0
|e Corresponding author
245 _ _ |a Ultra-low-power cryogenic complementary metal oxide semiconductor technology
260 _ _ |a [London]
|c 2025
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767809705_17300
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Universal cryogenic computing, encompassing von Neumann, neuromorphic and quantum computing, paves the way for future big-data processing with high energy efficiency. Complementary metal oxide semiconductor (CMOS) technology operating at cryogenic temperatures with ultra-low power consumption is a key component of this advancement. However, classical CMOS technology, designed for room temperature applications, suffers from band-tail effects at cryogenic levels, leading to an increased subthreshold swing and decreased mobility values. In addition, threshold voltages are enlarged. Thus, classical CMOS technology fails to meet the low power requirements when cooled close to zero Kelvin. In this Perspective, we show that steep slope cryogenic devices can be realized by screening the band tails with the use of high-k dielectrics and wrap-gate architectures and/or reducing them through the optimization of the surfaces and interfaces within the transistors. Cryogenic device functionality also strongly benefits from appropriate source/drain engineering employing dopant segregation from silicides. Furthermore, the threshold voltage control can be realized with back-gating, work-function engineering and dipole formation. As a major implication, future research and development towards cryogenic CMOS technology requires a combination of these approaches to enable universal cryogenic computing at the necessary ultra-low power levels.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Han, Yi
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Han, Hung-Chi
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schreiber, Lars R.
|0 P:(DE-Juel1)172641
|b 3
700 1 _ |a Lee, Tsung-En
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Chiang, Hung-Li
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Radu, Iuliana
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Enz, Christian
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 8
700 1 _ |a Stampfer, Christoph
|0 P:(DE-Juel1)180322
|b 9
|u fzj
700 1 _ |a Takagi, Shinichi
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Knoch, Joachim
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1038/s44287-025-00157-7
|g Vol. 2, no. 4, p. 277 - 290
|0 PERI:(DE-600)3177793-4
|n 4
|p 277 - 290
|t Nature reviews / Electrical engineering
|v 2
|y 2025
|x 2948-1201
909 C O |o oai:juser.fz-juelich.de:1050093
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)128649
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172641
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)180322
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 9
|6 P:(DE-Juel1)180322
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 11
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21