001050095 001__ 1050095
001050095 005__ 20251223202203.0
001050095 0247_ $$2doi$$a10.48550/ARXIV.2506.14660
001050095 037__ $$aFZJ-2025-05803
001050095 1001_ $$0P:(DE-HGF)0$$aMistroni, Alberto$$b0
001050095 245__ $$aHigh yield, low disorder Si/SiGe heterostructures for spin qubit devices manufactured in a BiCMOS pilot line
001050095 260__ $$barXiv$$c2025
001050095 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1766493666_3772
001050095 3367_ $$2ORCID$$aWORKING_PAPER
001050095 3367_ $$028$$2EndNote$$aElectronic Article
001050095 3367_ $$2DRIVER$$apreprint
001050095 3367_ $$2BibTeX$$aARTICLE
001050095 3367_ $$2DataCite$$aOutput Types/Working Paper
001050095 520__ $$aThe prospect of achieving fault-tolerant quantum computing with semiconductor spin qubits in Si/SiGe heterostructures relies on the integration of a large number of identical devices, a feat achievable through a scalable (Bi)CMOS manufacturing approach. To this end, both the gate stack and the Si/SiGe heterostructure must be of high quality, exhibiting uniformity across the wafer and consistent performance across multiple fabrication runs. Here, we report a comprehensive investigation of Si/SiGe heterostructures and gate stacks, fabricated in an industry-standard 200 mm BiCMOS pilot line. We evaluate the homogeneity and reproducibility by probing the properties of the two-dimensional electron gas (2DEG) in the shallow silicon quantum well through magnetotransport characterization of Hall bar-shaped field-effect transistors at 1.5 K. Across all the probed wafers, we observe minimal variation of the 2DEG properties, with an average maximum mobility of $(4.25\pm0.17)\times 10^{5}$ cm$^{2}$/Vs and low percolation carrier density of $(5.9\pm0.18)\times 10^{10}$ cm$^{-2}$ evidencing low disorder potential in the quantum well. The observed narrow statistical distribution of the transport properties highlights the reproducibility and the stability of the fabrication process. Furthermore, wafer-scale characterization of a selected individual wafer evidenced the homogeneity of the device performances across the wafer area. Based on these findings, we conclude that our material and processes provide a suitable platform for the development of scalable, Si/SiGe-based quantum devices.
001050095 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001050095 588__ $$aDataset connected to DataCite
001050095 650_7 $$2Other$$aMesoscale and Nanoscale Physics (cond-mat.mes-hall)
001050095 650_7 $$2Other$$aApplied Physics (physics.app-ph)
001050095 650_7 $$2Other$$aFOS: Physical sciences
001050095 7001_ $$0P:(DE-HGF)0$$aLisker, Marco$$b1
001050095 7001_ $$0P:(DE-HGF)0$$aYamamoto, Yuji$$b2
001050095 7001_ $$0P:(DE-HGF)0$$aWen, Wei-Chen$$b3
001050095 7001_ $$0P:(DE-HGF)0$$aFidorra, Fabian$$b4
001050095 7001_ $$0P:(DE-HGF)0$$aTetzner, Henriette$$b5
001050095 7001_ $$0P:(DE-HGF)0$$aDiebel, Laura K.$$b6
001050095 7001_ $$0P:(DE-Juel1)196090$$aVisser, Lino$$b7$$ufzj
001050095 7001_ $$0P:(DE-Juel1)184501$$aAnupam, Spandan$$b8$$ufzj
001050095 7001_ $$0P:(DE-Juel1)190990$$aMourik, Vincent$$b9$$ufzj
001050095 7001_ $$0P:(DE-Juel1)172641$$aSchreiber, Lars R.$$b10$$ufzj
001050095 7001_ $$0P:(DE-Juel1)172019$$aBluhm, Hendrik$$b11$$ufzj
001050095 7001_ $$0P:(DE-HGF)0$$aBougeard, Dominique$$b12
001050095 7001_ $$0P:(DE-HGF)0$$aZoellner, Marvin H.$$b13
001050095 7001_ $$0P:(DE-HGF)0$$aCapellini, Giovanni$$b14
001050095 7001_ $$0P:(DE-HGF)0$$aReichmann, Felix$$b15
001050095 773__ $$a10.48550/ARXIV.2506.14660
001050095 909CO $$ooai:juser.fz-juelich.de:1050095$$pVDB
001050095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196090$$aForschungszentrum Jülich$$b7$$kFZJ
001050095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184501$$aForschungszentrum Jülich$$b8$$kFZJ
001050095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190990$$aForschungszentrum Jülich$$b9$$kFZJ
001050095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172641$$aForschungszentrum Jülich$$b10$$kFZJ
001050095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172019$$aForschungszentrum Jülich$$b11$$kFZJ
001050095 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001050095 9141_ $$y2025
001050095 920__ $$lyes
001050095 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
001050095 980__ $$apreprint
001050095 980__ $$aVDB
001050095 980__ $$aI:(DE-Juel1)PGI-11-20170113
001050095 980__ $$aUNRESTRICTED