TY  - EJOUR
AU  - Mistroni, Alberto
AU  - Lisker, Marco
AU  - Yamamoto, Yuji
AU  - Wen, Wei-Chen
AU  - Fidorra, Fabian
AU  - Tetzner, Henriette
AU  - Diebel, Laura K.
AU  - Visser, Lino
AU  - Anupam, Spandan
AU  - Mourik, Vincent
AU  - Schreiber, Lars R.
AU  - Bluhm, Hendrik
AU  - Bougeard, Dominique
AU  - Zoellner, Marvin H.
AU  - Capellini, Giovanni
AU  - Reichmann, Felix
TI  - High yield, low disorder Si/SiGe heterostructures for spin qubit devices manufactured in a BiCMOS pilot line
PB  - arXiv
M1  - FZJ-2025-05803
PY  - 2025
AB  - The prospect of achieving fault-tolerant quantum computing with semiconductor spin qubits in Si/SiGe heterostructures relies on the integration of a large number of identical devices, a feat achievable through a scalable (Bi)CMOS manufacturing approach. To this end, both the gate stack and the Si/SiGe heterostructure must be of high quality, exhibiting uniformity across the wafer and consistent performance across multiple fabrication runs. Here, we report a comprehensive investigation of Si/SiGe heterostructures and gate stacks, fabricated in an industry-standard 200 mm BiCMOS pilot line. We evaluate the homogeneity and reproducibility by probing the properties of the two-dimensional electron gas (2DEG) in the shallow silicon quantum well through magnetotransport characterization of Hall bar-shaped field-effect transistors at 1.5 K. Across all the probed wafers, we observe minimal variation of the 2DEG properties, with an average maximum mobility of $(4.25\pm0.17)\times 10^{5}$ cm$^{2}$/Vs and low percolation carrier density of $(5.9\pm0.18)\times 10^{10}$ cm$^{-2}$ evidencing low disorder potential in the quantum well. The observed narrow statistical distribution of the transport properties highlights the reproducibility and the stability of the fabrication process. Furthermore, wafer-scale characterization of a selected individual wafer evidenced the homogeneity of the device performances across the wafer area. Based on these findings, we conclude that our material and processes provide a suitable platform for the development of scalable, Si/SiGe-based quantum devices.
KW  - Mesoscale and Nanoscale Physics (cond-mat.mes-hall) (Other)
KW  - Applied Physics (physics.app-ph) (Other)
KW  - FOS: Physical sciences (Other)
LB  - PUB:(DE-HGF)25
DO  - DOI:10.48550/ARXIV.2506.14660
UR  - https://juser.fz-juelich.de/record/1050095
ER  -