| Home > Publications database > High yield, low disorder Si/SiGe heterostructures for spin qubit devices manufactured in a BiCMOS pilot line > print |
| 001 | 1050095 | ||
| 005 | 20251223202203.0 | ||
| 024 | 7 | _ | |a 10.48550/ARXIV.2506.14660 |2 doi |
| 037 | _ | _ | |a FZJ-2025-05803 |
| 100 | 1 | _ | |a Mistroni, Alberto |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a High yield, low disorder Si/SiGe heterostructures for spin qubit devices manufactured in a BiCMOS pilot line |
| 260 | _ | _ | |c 2025 |b arXiv |
| 336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1766493666_3772 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
| 336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
| 336 | 7 | _ | |a preprint |2 DRIVER |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
| 520 | _ | _ | |a The prospect of achieving fault-tolerant quantum computing with semiconductor spin qubits in Si/SiGe heterostructures relies on the integration of a large number of identical devices, a feat achievable through a scalable (Bi)CMOS manufacturing approach. To this end, both the gate stack and the Si/SiGe heterostructure must be of high quality, exhibiting uniformity across the wafer and consistent performance across multiple fabrication runs. Here, we report a comprehensive investigation of Si/SiGe heterostructures and gate stacks, fabricated in an industry-standard 200 mm BiCMOS pilot line. We evaluate the homogeneity and reproducibility by probing the properties of the two-dimensional electron gas (2DEG) in the shallow silicon quantum well through magnetotransport characterization of Hall bar-shaped field-effect transistors at 1.5 K. Across all the probed wafers, we observe minimal variation of the 2DEG properties, with an average maximum mobility of $(4.25\pm0.17)\times 10^{5}$ cm$^{2}$/Vs and low percolation carrier density of $(5.9\pm0.18)\times 10^{10}$ cm$^{-2}$ evidencing low disorder potential in the quantum well. The observed narrow statistical distribution of the transport properties highlights the reproducibility and the stability of the fabrication process. Furthermore, wafer-scale characterization of a selected individual wafer evidenced the homogeneity of the device performances across the wafer area. Based on these findings, we conclude that our material and processes provide a suitable platform for the development of scalable, Si/SiGe-based quantum devices. |
| 536 | _ | _ | |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) |0 G:(DE-HGF)POF4-5221 |c POF4-522 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to DataCite |
| 650 | _ | 7 | |a Mesoscale and Nanoscale Physics (cond-mat.mes-hall) |2 Other |
| 650 | _ | 7 | |a Applied Physics (physics.app-ph) |2 Other |
| 650 | _ | 7 | |a FOS: Physical sciences |2 Other |
| 700 | 1 | _ | |a Lisker, Marco |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Yamamoto, Yuji |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Wen, Wei-Chen |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Fidorra, Fabian |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Tetzner, Henriette |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Diebel, Laura K. |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Visser, Lino |0 P:(DE-Juel1)196090 |b 7 |u fzj |
| 700 | 1 | _ | |a Anupam, Spandan |0 P:(DE-Juel1)184501 |b 8 |u fzj |
| 700 | 1 | _ | |a Mourik, Vincent |0 P:(DE-Juel1)190990 |b 9 |u fzj |
| 700 | 1 | _ | |a Schreiber, Lars R. |0 P:(DE-Juel1)172641 |b 10 |u fzj |
| 700 | 1 | _ | |a Bluhm, Hendrik |0 P:(DE-Juel1)172019 |b 11 |u fzj |
| 700 | 1 | _ | |a Bougeard, Dominique |0 P:(DE-HGF)0 |b 12 |
| 700 | 1 | _ | |a Zoellner, Marvin H. |0 P:(DE-HGF)0 |b 13 |
| 700 | 1 | _ | |a Capellini, Giovanni |0 P:(DE-HGF)0 |b 14 |
| 700 | 1 | _ | |a Reichmann, Felix |0 P:(DE-HGF)0 |b 15 |
| 773 | _ | _ | |a 10.48550/ARXIV.2506.14660 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1050095 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)196090 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)184501 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)190990 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)172641 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)172019 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5221 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-11-20170113 |k PGI-11 |l JARA Institut Quanteninformation |x 0 |
| 980 | _ | _ | |a preprint |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-11-20170113 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|