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Predicting observable quantities from first principles calculations is the next frontier within the field of
machine learning (ML) for materials modelling. While ML models have shown success for the prediction
of scalar properties such as energetics or band gaps, models and performance metrics for the learning
of higher order tensor-based observables have not yet been formalized. ML models for experimental
observables, including tensorial quantities, are essential for exploiting the full potential of the paradigm
shift enabled by machine learned interatomic potentials by mapping the structure—property relationship
in an equally efficient way. In this work, we establish performance metrics for accurately predicting the
electric field gradient tensor (EFG) underlying nuclear magnetic resonance (NMR) spectroscopy. We
further demonstrate the superiority of a tensorial learning approach that fully encodes the corresponding
symmetries over a separate scalar learning of individual tensor-derived observables. To this end we
establish an extensive EFG dataset representative of real experimental applications and develop
performance metrics for model evaluation which directly focus on the targeted NMR observables. Finally,

by leveraging the computational efficiency of the ML method employed, we predict quadrupolar
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Accepted 12th September 2025 observables for 1512 atom models of LisTisO1,, a high performance Li-ion battery anode material, which

is capable of accurately distinguishing local atomic environments via their NMR observables. This
DOI: 10.1039/d5ta05090a workflow and dataset sets the standard for the next generation of tensorial based learning for

rsc.li/materials-a spectroscopic observables.

molecular dynamics simulations'*** to study the NMR observ-
ables of structural or temporal ensembles. However, while the
structural models become more complex and larger and the
dynamic trajectories longer in order to approach the complexity

1 Introduction

Experimental solid-state NMR provides powerful, yet non-
destructive methods to characterize atomic structures and

dynamics over several length and time scales.’” In quadrupolar
nuclei, such as “Li, >’Al, or 70, additional information is gained
by directly probing the electric field gradient (EFG) tensor at the
nucleus. However, in most state-of-the-art materials of interest,
such as high-performance battery materials, local defects,
disorder or amorphous regions are not only key to their func-
tion, but result at the same time in complex spectra, which are
impossible to interpret unambiguously from experiment alone.
This often renders a complementary predictive-quality
modeling of EFG tensors indispensable for a comprehensible
NMR crystallography approach.*” Corresponding first-
principles calculations, typically based on density-functional
theory (DFT), are well established.”"* Despite their intrinsic
high computational cost and unfavorable scaling with system
size, they are routinely combined with random structure
searches,”™® systematic sampling of structural disorder,** and
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of real samples and experiments, the limits of DFT become
more apparent in particular when studying the interplay of high
structural complexity and dynamics over various timescales."*"

A now common approach to reduce the computational
burden of quantum mechanical simulations while retaining
their first-principles accuracy is to train a machine learning
(ML) surrogate model from a suitably composed database of
calculated data. This is an established field for scalar properties,
primarily focused on predicting the potential energy surface in
order to create an ML inter-atomic potential for a given
system.'®* A limited set of studies also learn additional scalar
properties such as isotropic chemical shifts, dipole moments,
or band gaps.***® However, many physical properties are ten-
sorial in nature or are derived from tensorial quantities, just as
all NMR quadrupolar observables derive from the EFG tensor.
In principle, either the relevant experimental scalar
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observables®* or the individual scalar tensor elements can
also be learned with well-established, symmetry-invariant ML
approaches.”® Yet, as this neglects the inherent tensor symme-
tries one would intuitively expect this approach to be inferior to
a full tensorial learning that uses appropriate symmetry-
equivariant descriptors.*®

Validating and quantifying this notion requires both
a diverse and challenging database that is representative for the
complexity of a real-life application and a standardized method
for evaluating and optimizing tensorial ML approaches to the
respective tensor-derived observables. To this end, we use NMR
as a prominent showcase and introduce an extensive EFG
database for the commercial, high-performance Li-ion battery
material Li,TisO;, (LTO). LTO is particularly suitable for such
benchmark purposes as all three of its constituent species are
quadrupolar and because its ionic mobility has been repeatedly
studied by advanced ‘Li NMR experiments.**** We corre-
spondingly assemble a database of 68 880 EFG tensors calcu-
lated for all three atomic species and for a wide range of
interatomic distances that reflect those probed in the
measurements. We then derive a performance metric for key
NMR observables that is used in the optimization and assess-
ment of scalar and tensor EFG ML models. This indeed reveals
an order of magnitude superiority in predictive performance for
an explicit learning of the full EFG tensor. The failure of the
symmetry-agnostic scalar approach is instead traced back to its
inability of capturing especially the orientation of the EFG
tensor, which the experimental observables sensitively depend
on. We finally demonstrate the effectiveness of our approach by
predicting the EFG tensors for over 11 000 Li sites within 1512
atom models of LTO, and successfully distinguishing different
local Li environments in the material.

Our guiding principles for developing performance metrics
are directly geared to measurable observables and using them
in the ML optimization are readily transferable to multiple
other applications where tensor interactions matter, e.g
dielectric interactions, atomic forces, stress and strain, or
chemical shielding. By explicitly demonstrating its effectiveness
over scalar learning, and providing a database suitable for
benchmarking, we thus aim to present this work as a general
guideline for further tensorial learning methods.

2 Methods

2.1 Computational details

All DFT calculations of the EFG tensors carried out to generate
the LTO-EFG database were performed with the plane-wave
pseudopotential code CASTEP v22.1,** using the Gauge-
Including Projector Augmented Waves (GIPAW) implementa-
tion**** for calculating NMR properties. The PBE functional®
was used to describe electronic exchange and correlation, with
test calculations indicating essentially unaltered EFG tensors
when instead using the PBEsol*” or RSCAN®*® functionals. At
a plane wave cut-off of 1000 eV and a k-point spacing of 0.03 x
2 A™', the change in individual EFG tensor components AV
between energy cutoffs are converged to within 4 x 107> VA2,
We fix V,; to be positive, to ensure that the sign of the
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eigenvalues is consistent between the DFT and ML tensors. The
accuracy of DFT-derived EFG tensors was benchmarked
before.*

All ML tasks were carried out using the SA-GPR (Symmetry-
Adapted Gaussian Process Regression) implementation of A-
SOAP openly available at ref. 40. In particular, the scalar
learning was performed using this code, with a scalar A =
0 value, and the rank-2 tensorial learning was performed using
the tensor A = 2 value. Full details of the computational and
theoretical background for TENSOAP are given in Grisafi et al.**
We provide further details of the specific formulations of the
SOAP kernels used for the scalar GPR, and A-SOAP kernels for
the tensorial GPR in Sections 2.4 and 2.5.

3 Results

3.1 NMR as a showcase for tensorial learning

NMR quadrupolar observables all derive from the EFG tensor V
that characterizes the gradient of the electric field V experienced
by a nucleus due to the nearby charge distribution. The tensor is
calculated as a spatial second derivative

>V
ij = ’ 1
y aX,'an ( )

which at a fixed position can be written as a (3 x 3) matrix,

Vl 1 Vl 2 Vl 3
V = Vl 2 V22 V23 N (2)
Vis: Vs Vi

This matrix is not simply a combination of nine unrelated
values, but rather a set of components which must satisfy both
the properties that the matrix is symmetric (V; = V;;) and that
the trace is 0 (V31 + V,y + V33 = 0). Therefore, while every EFG
tensor can be written as a (3 x 3) matrix, not every (3 x 3)
matrix is a valid tensor. In other words, any (3 x 3) matrix that
we might predict from ML methods, which does not have these
properties, violates the basic underlying physical properties of
the system.

An EFG tensor can be transformed into its principal axis
system (PAS) Vpas, shown in Fig. la, by diagonalization at
a given nuclear position. This yields the eigenvalues Vxx, Vyy,
and V,, where by convention |V;| = |Vyy| = |Vxx|.** In the PAS,
V,z describes the magnitude of the tensor, while Vyy and Vyx
describe its width. Major standard NMR observables like the
quadrupolar coupling constant Cq and the quadrupolar asym-
metry parameter n directly derive from these eigenvalues. Cq
defines the coupling strength between the EFG and the applied
magnetic field By

e
Co = 7 OVzz, (3)

where e is the charge of the electron, Q is the nuclear quadru-
pole moment of the specified nucleus, and % is Planck’s
constant.

This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Electric field gradient tensor visualized on an atomic site. (a)
EFG tensor Vpas in the principal axis system (PAS), where the eigen-
values Vyx, Vyy, and Vz, describe its magnitude and width. (b) Rela-
tionship between the reference orientation of the magnetic field Bg
and Vpas using the polar and azimuthal angles 6 and ¢.

Ve = V
n= XX YY (4)

Vzz
describes the shape of the tensor, where 7 € [0, 1] ranges from
axial symmetry (n = 0, Vxx = Vyy) to a flat disk (n = 1, Vxx = 0).
Advanced NMR methods like Spin Alignment Echo (SAE) are
also sensitive to the explicit orientation of the EFG tensor. SAE
particularly tracks changes in the quadrupolar frequency

3

= mCQ% (3 cos?(0) — 1 — n sin*(f)cos(2¢)),  (5)

wQ
where I is the nuclear spin, and 4 € [0, t] and ¢ € [—7/2, Tt/2] are
the polar and azimuthal angles, respectively, between Vp,s and
the lab frame with z-axis parallel to the magnetic field B, as
shown in Fig. 1b.***** As ionic mobility can induce changes in
wq, SAE has e.g. been repeatedly applied to battery materials like
LTO.**%

3.2 Introducing suitable performance metrics

The previous relations motivate to directly learn the EFG tensor
as a whole, instead of separately or simultaneously learning
a multitude of derived scalar observables or the individual EFG
matrix elements. Consider, that even if each of the V;; compo-
nents are learned individually, for example, there is no guar-
antee that the final nine components when recombined to form
a (3 x 3) matrix will satisfy any of the properties of a rank-2
tensor. Furthermore, each of such trained models will have its
own separate uncertainties with unspecified error propagation
to the set of finally targeted NMR observables. Precisely, the
latter limitation applies equally to the way tensorial learning
models have thus far been evaluated and optimized. While in
recent years, several tensorial learning approaches have been
introduced, with neural networks,*® structure-property maps*®
and with regression-based approaches**' using a variety of
descriptors,*”*® they are typically only evaluated on the mean
absolute error (MAE) of predicting the individual elements, V;
of the non-diagonalized tensor. For a total number of N data
points for which reference values are available, MAE(V;) is given
by

This journal is © The Royal Society of Chemistry 2025

View Article Online

Journal of Materials Chemistry A

M=
gl

Z| Vi«;ata,l _ VI;-VILJ

i=lj=i
- . 6
n (6)

i

MAE(Vj) =

While this is indeed the direct error, i.e. loss function, of the
tensorial learning model, it again provides no information on
how well the actual observables of interest are predicted, and
neither has the latter objective ever entered the very optimiza-
tion process of the model.

To this end, we introduce suitable performance metrics on
which we then base the model evaluation and hyperparameter
optimization. These metrics are directly related to the targeted
observables, but are universally applicable across nuclear
species, less prone to noise, and rescaled to all lie within
a comparable range. Use of such metrics instead of the
observables themselves is particularly relevant for an efficient
learning of diverse databases that comprise different quantities
of different chemical species, like in the present showcase
where we target the simultaneous learning of several key NMR
observables for the three constituent LTO species “Li, *Ti, and
70. With the above introduced Cq and 7, we thereby specifically
define a metric related to these two standard NMR observables
sensitive to the magnitude and shape of the EFG tensor, while
with the quadrupolar frequency wq probed in advanced SAE-
NMR we choose an observable that is sensitive to the tensor
orientation.

For Cq and 7, we define such rescaled and normalized
metrics as

~ Vzz — M(sz)
Cop= ——— —= 7
Q U(VZZ) ( )
and
N Vyx — Vyy
== 8
K P«(sz) ( )

using the mean u(V,;) and standard deviation (V) for each
nucleus. C,, thus preserves the magnitude of the original tensor
while centering the values around zero. In turn, % reduces the
noise introduced in 7 by the division by Vz, c¢f eqn (4), and
reflects the fact that NMR measurements will only probe an
average property over the system, such as u(Vy), rather than an
individual V. At first glance, the polar and azimuthal angles ¢
and ¢ appear as useful additional metrics for wq, ¢f eqn (5), as
they have a fixed range, define the orientation of the EFG tensor
in space, and hence are independent of the studied nuclear
species. However, their discontinuity renders them a non-ideal
representation. In tensorial learning, where the tensor orien-
tation is explicitly available, this limitation can be overcome by
the unit quaternion (¢f. SI). This defines the orientation of any
rank-2 tensor in terms of a normalized vector (q = (¢o, 41, 92, 93))
and the dot product between two quaternions defines how
closely oriented the two respective tensors are.” When using
quaternions as metric, the performance would thus be evalu-
ated by the calculation of

data

g =q" g™, (9)
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which tells how well the learned ML tensors are aligned with the
reference tensors. In short, inspired by the physical observables
(Cqy 1, 8, ¢), we introduce a new set of adapted parameters (Cq,
7, q) as ensemble adapted performance metrics, which still
represents the magnitude, shape, and orientation of the EFG
tensor albeit in a way that allows for a continuous, homoge-
neously weighted, less noisy, more stable description at the
negligible cost of slightly softening some exact bound on the
individual tensors (e.g. n € [0, 1]).

3.3 The LTO-EFG database

Previous databases of tensorial NMR properties including both
chemical shielding and EFG tensors focused on providing
a breadth of structures across varying chemical composi-
tions.>?***! Yet, they used locally geometry-optimized struc-
tures throughout, such that only NMR data of stable and
metastable states (global and local minima) are included. By
construction, learning on such datasets will have only a limited
transferability to real (aka defected) or dynamic (aka finite
temperature) systems for which information away from the
minima would be required. Our aim in creating the LTO-EFG
tensor database is therefore to provide a large (68 880 tensors
in total) complementary database of DFT-calculated EFG
tensors representative of real experimental applications.

In order to provide EFG tensors for the three different nuclei,
’Li, *’Ti, and "0, in a standardized way, all DFT calculations are
based on the 42 atom R3m supercell of stoichiometric Li,Ti5015,
shown in Fig. 2a. The tetrahedral 8a sites are occupied by Li and
the octahedral 16d sites by either Li or Ti in a ratio of Li : Ti, 1: 5.
The occupational disorder on the 16d Wyckoff site allows for 6
symmetry-inequivalent crystal structures to be enumerated. By
‘rattling’ the atomic positions using a random displacement
procedure®> and by rescaling the crystalline lattice vectors,
a total of 1640 structures are generated that we describe in
further detail in the SI. The configurational sampling, rattling,
and scaling procedure effectively distributes the interatomic
distances across a wide range of 1-2 A around the mean
neighbor distance for every atom combination, as shown in
Fig. 2b. The resulting diverse quadrupolar coupling constants
Cq and quadrupolar asymmetries 7, as calculated from the
eigenvalues of the EFG tensors, are shown across the entire
database for each nucleus in Fig. 2c. Being only the second ever
EFG tensor database available in literature,* this heterogeneity
of the LTO-EFG database renders it a truly challenging bench-
mark for ML tensorial learning.

3.4 Scalar learning

Scalar learning focuses on the direct and separate learning of
individual scalar quantities. Since the three target NMR
observables Cq, 7 and wq as well as the quaternion vector q are
unsuitable for scalar machine learning purposes as described
above, we therefore employ the scalar quantities Cq, 7, 6 and ¢
as training objectives as well as as performance metrics for
hyperparameter optimization. Technically and without loss of
generality, we choose the established smooth overlap of atomic
densities (SOAP) descriptor to encode the local atomic

35392 | J Mater. Chem. A, 2025, 13, 35389-35399
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environments in a symmetry-invariant way.>* SOAP is an
appropriate special case of the atomic cluster expansion®**
which combines both radial and spherical harmonic basis
functions using a Gaussian smearing to approximate the local
atomic density p(r) in a sphere of radius r. around any atom of
a given structure as depicted in Fig. 3a. The corresponding
SOAP kernel (Ksoap)** between two atomic configurations X and
X' is then designed to enforce that the predicted scalar quan-
tities are invariant under symmetry operations such as rotation,
translation, and atomic permutation*"**

1

Ksoar (X-, X,) = ‘ JP(")P (r)dr (10)

For learning and testing the scalar models, the entire LTO-
EFG database for each nucleus is randomly divided into
a training and test set with a ratio of 4 : 1. The learning of each
scalar quantity, y [:éq, 7, 0, ¢), over all configurations X across
the entire training set of the LTO-EFG database is performed
using Gaussian Process Regression (GPR)*

N
(&) = ZWIKSOAP(X7 X)),
I=1

(11)

solving for weights w,. In practice, the SOAP representation is
used here in its kernel form rather than exclusively as
a descriptor vector. This choice is critical since the SOAP power
spectrum can easily reach thousands of dimensions, which
would make direct regression inefficient and prone to over-
fitting. For optimization of the SOAP hyperparameters, a global
MAE minimization is efficiently achieved for each separate
scalar quantity using a Box-Behnken design-of-experiment
approach® with five-fold cross-validation for each nucleus
across the training set. Full details of the specific hyper-
parameters used for each nucleus are provided in the SI. The
resulting kernel matrices were normalized and regularized
during GPR training to ensure numerical stability. All scalar
kernels were generated using the A = 0 implementation of SA-
GPR available at ref. 40, which is the generalized version of
the original SOAP kernel introduced in.>*

The achieved predictions of éQ, 7, 6, and ¢ for all “Li in the
test set are compiled in Fig. 3b, with comparable findings for
the other two nuclei, as well as results for the MAE (V) provided
in the SI. Cq and 7 show an acceptable correlation between DFT
and ML data. The Pearson correlation for C'Q and 7 is r = 0.96
and r = 0.84, and the MAE is 0.17 and 0.14, respectively. In
contrast, the predictions of § and ¢ are of a substantially lower
quality, with no visible linear trend in the correlation plots
shown in Fig. 3b. This is reflected in the corresponding poor
Pearson correlations of 7 = 0.46 and r = 0.28, and MAEs of 0.47
and 0.75 radians, for 6 and ¢, respectively. This corresponds to
a staggering MAE of 27° for 6 and 43° for ¢.

3.5 Tensorial learning

The tensorial learning targets the full EFG tensor V and trains
on the loss function defined in eqn (6). Correspondingly, we can
now employ Cq, 7 and the quaternion q as performance metrics

This journal is © The Royal Society of Chemistry 2025
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Fig.2 Distribution of bond lengths, Cq, and n for all nuclei in the LTO-EFG database. (a) LTO unit cell with labelled Wyckoff sites, Li 8a (green), Li/
Ti 16d (blue spheres and green polygons), and O 32e sublattice (orange). (b) Violin plot showing the distribution of inter-atomic distances in the
database, where Li is separated into the 16d and 8a sites. (c) Histograms showing the distribution of the DFT-calculated reference Cq (top) and n

(bottom) for each nucleus.

for hyperparameter optimization. The observable-targeted
performance metrics (Cq, 7, q) puts the final observables of
interest, namely wq, into focus and allows for an evaluation of the
accuracy of the ML model with respect to the observable to be
predicted. The extension to predicting tensors requires to addi-
tionally encode the rotational symmetry of tensorial properties,
i.e. how the individual tensor elements change under rotations,
¢f. Fig. 3a. A corresponding equivariant description is achieved by
the A-SOAP*' kernels, which are built on the definition of the
scalar SOAP descriptor. These kernels exploit that by trans-
forming the tensor of interest into its irreducible spherical tensor
(IST) representation,® the GPR procedure can be simplified from

This journal is © The Royal Society of Chemistry 2025

learning on a tensor of order A into a vector of length k = 24+ 1. In
this representation, all symmetry operations follow the same
transformations as the spherical harmonics, shown visually in
Fig. 3a, and thus all kernel transformations can be written as
Wigner matrices, D*. The corresponding k-component vector
kernel Kgoap” is then written as

KmMJGKXj:¢ﬁRD%ﬁMJp@M(ﬁadr

and the GPR learning for the k-component vector quantities y
arising in the IST representation of the target tensor generalizes
to

2, (12)

J. Mater. Chem. A, 2025, 13, 35389-35399 | 35393


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ta05090a

Open Access Article. Published on 15 September 2025. Downloaded on 1/5/2026 12:36:14 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Journal of Materials Chemistry A Paper

=1 Li DFT

a Invariant b LML

Scalar Learning — _ 500 400
== 600 g

| GAESE N PO TN o 1

3001 _ 3001 || _ 300 ~ ¢
;Ihmlﬂiﬁ;_, r=0.96 W =084 r=0.46 L q.zj;]

Equivariant
Tensorial Learning ~ C

-n/2 0
DFT

n2

600
300

[Wese %50

400

200 ¢

o 7 n2{=.
44 .uf'/ 2 ’g,e’ 3
e o
i / ! °
01
; MAE=0.06 MAE=0.04 122"
-2 : , 0 : P et
=2 0 2 4 0 1 2 -n/2 0 n/2
DFT DFT DFT DFT
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of the full EFG tensor V. Spherical harmonics illustrate the symmetries captured by each descriptor. (b) Results of the scalar learning approach on
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learning approach, where a single modelis trained on the complete EFG tensor and the four quantities are subsequently derived from the model's

predictions, see text.

N

Y(X) = wiKsoar (X, X)).
=1

(13)

For A = 0, one can show that eqn (12) is equivalent to the scalar
representation shown in eqn (10),** while for the present case of
the EFG rank-2 tensor, five-component vector quantities are
being learned that by construction preserve the full tensorial
symmetries and physical properties.

For comparability, training and hyperparameter optimiza-
tion follows the same 4 : 1 training-test set separation and five-
fold cross validation scheme as in the scalar learning approach.
As only one model is trained this time though, the global Box-
Behnken minimization instead uses the average MAE of @Q, ,
and the quaternion dot product, g as performance metrics. The
resulting hyperparameters used for the A = 2 kernels are given
in the SI, and all A = 2 kernels were constructed with the
equivalent SA-GPR framework as for the scalar kernels.** As in
the scalar learning framework, the models were trained using
the explicit A-SOAP kernels within the GPR framework, to
ensure preservation of symmetry throughout the learning
procedure. The full derivation of the A-SOAP hierarchy of ten-
sorial kernels is given in ref. 41.

Again, we obtain a comparable learning performance for all
three nuclei, with the results for *’Ti and '”O provided in the SI.
Fig. 3¢ summarizes the achieved predictions for all “Li in the
test set, where for a direct comparison with the scalar learning
results, the polar and azimuthal angles 6 and ¢ were extracted
from the learned quaternions. The correlation for Cg, and 7 is

35394 | J Mater. Chem. A, 2025, 13, 35389-35399

now excellent, with Pearson correlations of r = 1.00 and r =
0.98, respectively, far surpassing the already good correlation
achieved in the scalar learning case. The MAE for C,, and 7 is
0.06 and 0.04, respectively. Even more impressive is the
improvement in the case of the angles # and ¢. They now also
show a good agreement at only slightly lower Pearson correla-
tions of r = 0.82 and r = 0.78, respectively. The corresponding
MAE is 0.15 radians or an acceptable 8.6° for , and 0.22 radians
or 13° for ¢, which despite the marked improvement is still
significant. The parity plots for # and ¢ in Fig. 3c show
systematic outliers, which originate from EFG tensors, where
the definition |V, = |Vyy| = |Vxx| becomes more ambiguous
since the eigenvalues are close in absolute value. When cor-
recting the assignment of the eigenvalues and corresponding
eigenvectors as described in the SI, the correlation between DFT
reference values and ML predicted values improve considerably
with MAE of 0.06 radians (3.4°) and 0.05 radians (2.9°) for § and
¢, respectively (cf. SI Fig. S6).

4 Discussion

The presented results clearly demonstrate the superiority of
tensorial learning. At a closer look, they especially reveal that
scalar learning struggles with predicting the orientation of the
tensor as expressed by the two angles 6 and ¢. Admittedly, this
seems generally a harder task as compared to the tensor
magnitude and shape, as the tensorial learning also exhibits
a worse performance for the angles than for Cq and 7.

This journal is © The Royal Society of Chemistry 2025
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Nevertheless, the scalar learning is not even able to qualitatively
capture the bimodal value distribution of # and ¢ across the "Li
test set in the LTO-EFG database, ¢f. Fig. 3b. This bimodality in 6
and ¢ is even more pronounced for the *’Ti and '’O nuclei as
shown in the SI, and there, scalar learning fails completely. This
is particularly worrisome, as any NMR experiment will always
measure an ensemble average over the atomic sites in the
studied material. Now, the distribution of sites with their
respective different atomic environments in the highly diverse
LTO-EFG database is of course not truly representative of any
distribution of atomic environments encountered in even
a largely disordered real LTO material. Still, we consider the
capability of tensorial learning to reproduce the bimodal
angular distributions for all three nuclei across the wide site
variety in the challenging LTO-EFG database an important
feature that suggests that NMR simulations performed with this
surrogate model will indeed yield correct structure-property
relationships when applied to an ensemble of realistic struc-
tures derived from e.g. molecular dynamics simulations. Hence,
from an application point of view, the quantitative accuracy of
the ML model with respect to the individual data points (MAE)
is secondary to the reliability of reproducing the correct distri-
bution of observables. The tensor ML model outperforms the
scalar learning in either case, but in particular with regard to
the distribution especially of # and ¢, which indicates improved
transferability.

The limitations of scalar learning with respect to capturing
the tensor orientation imply that it will be particularly poor for
any NMR observable sensitive to this orientation. It thereby
does not matter if the tensor orientation is actually explicitly
learned as through the scalar performance metrics (of § and ¢)
introduced above or only implicitly contained in the observable
(such as wq) itself. We illustrate this in Fig. 4 for the tensor-
orientation sensitive quadrupolar frequency wq, ¢f. eqn (5).
Fig. 4a compiles the predictions across the “Li LTO-EFG test set

View Article Online
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when the observable wq, is scalar learned directly, and following
exactly the analog scalar training and optimization protocol as
before. The performance is largely comparable and equally poor
as the performance obtained when scalar learning the perfor-
mance metrics and then using eqn (5) to derive wq, cf. Fig. 4b.

A reliable description is instead only achieved through the
full tensorial learning and subsequent extraction of all quanti-
ties from the learned V to compute wq as shown in Fig. 4c.
When referring to reliable, we hereby acknowledge that SAE-
NMR experiments probe a dynamically averaged value of wq
and for e.g. Li in LTO are sensitive to within roughly 10 kHz.*
As indicated in Fig. 4, with an MAE of 4.7 kHz only the average
accuracy of the tensorial learning approach falls well within this
experimental uncertainty range and thus allows to make
meaningful predictions. In contrast, both scalar learning
approaches to wq exhibit MAEs above 10 kHz.

Intriguingly, the tensorial learning approach is not only
more accurate, but also more data efficient. This extends to
having to only train one versatile model to predict any tensor-
derived observables, as well as to the required amount of
training data. As shown in Fig. 5a, the scalar learning approach
for the four quantities @Q, 1, 0, and ¢ exhibits a low learning rate
across the number of "Li data used in the training. This learning
rate is much higher when predicting these quantities from the
learned tensor V, which in turn lowers the amount of training
data required to arrive at the same or even better model accu-
racy. The MAE for the individual tensor components V;, which
is additionally shown in Fig. 5b, has a percent error in the same
order of magnitude as the quantities CQ and 7, 6, and ¢ of the
performance metrics. Yet, only assessing the performance of
the model with respect to V;; does not give any information
about the accuracy for the quantities relevant to experimental
applications.

Having ensured that our tensorial learning approach for EFG
tensors is both accurate and efficient, we now extend its use to

Scalar Learning

a Scalar Learning Performance Metrics c Tensorial Learning
500 1 Wo Wo
| r=0.71 r=0.93
0 - — 2z
200 &

+~MAE=17.7 kHz

.~ MAE=4.7 kHz

100 200

DFT

100 200

DFT

0

DFT

Fig.4 Predictions for the tensor-orientation sensitive quadrupolar frequency wq. Results for the NMR observable wq across the “Li LTO-EFG test
set withheld from the training for three learning models: (a) direct scalar learning of wq, (b) wq derived from scalar learning the performance
metrics Cq, 7. 0, ¢ as in Fig. 3b, (c) wq derived from tensorial learning of V as in Fig. 3c (lower panels correlation plots, upper panels value
distributions with DFT values in grey and ML predicted values in the color). The red stripe in the correlation plots roughly denotes the error range

of SAE-NMR experiments, see text.
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Fig. 5 Learning curves of the ’Li EF(;; performance metrics for scalar and tensorial learning approaches. (a) Learning curves for the four inde-
pendent scalar learning models for Cq, 7, 8, ¢ shown in Fig. 3b. (b) Corresponding curves when extracting these quantities from the tensorial
learning model in Fig. 3c. The line color corresponds to the model colors introduced in Fig. 3(b and c).

larger, realistic 1512 atom structures of LTO, in order to
establish whether the model is also size extensive and effective
at distinguishing local Li environments at scale. We chose to
select a set of 20 low-energy structures of LTO from the database
created by Heenen et al. in ref. 59. These structures were
generated using a combination of Metropolis Monte Carlo and
Wang Landau sampling®*® over the disordered Li/Ti sites

within the Fd3m bulk unit cells. Given the computational effi-
ciency of the EFG tensorial model, we are able to successfully
predict full EFG tensors for the 11 000 Li sites within these 20
structures in under 24 hours on a single CPU.

As shown in Fig. 6, we distinguish different Li local envi-
ronments based on similar predicted wq values. The colored
regions in Fig. 6a are selected by first identifying the 5 most

a 0- 11 kHz
10001
12-29
KHz
n 750
et
c
S 124 - 133
o
8 500, iz
71-97
KkHz  107-123
250 kHz

0 50
"Li wo / kHz

100

AVA A A AAAAAA

Fig. 6 Histogram of predicted wq for 1512-atom structures of Li4TisO1,. (@) The histogram shows the predictions for all 11 808 Li sites in the 20
lowest energy structures of LTO extracted from (ref. 59). The colored regions distinguish 5 different regions of wq which are separated based on
the 5 most prominent peaks in the histogram. Any regions in grey were not classified into a distinct region. (b) Two sample structures of LTO,
where the O and Ti atoms are not shown, and the Li local environments are colored based on their corresponding region in the histogram in (a).
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prominent peaks in the histogram, and selecting the
surrounding regions down to a minimum threshold of 10
counts per bin, and enforced that no two regions could overlap.
This allows us to visualize the large LTO structures as shown in
Fig. 6b, where we can see that local regions with similar Li wq
have similar local environments.

Validating the simulated EFG tensors and the derived
structure-property relationship with experimental measure-
ments is unfortunately not possible, since NMR measures
ensemble and temporal averages of all the ’Li nuclei present.
Experimental results from SAE experiments on LTO yield an
averaged, residual wq in the range of 10 kHz to 40 kHz,** while
the computed values range up to 130 kHz (¢f: Fig. 6) and the full
dataset ranges up to 500 kHz. In order to derive the experi-
mentally accessible observables, the tensor ML-model has to be
combined with dynamics simulations such as molecular
dynamics or kinetic Monte Carlo to reproduce the correct
physical averaging observed in experiments."’

Because each of the identified local environments are
distinguishable by their quadrupolar frequencies, it is further-
more possible to study Li diffusion between the sites in LTO
using SAE NMR, and extract different Li ion mobilities between
each of these 5 sites. There is strong evidence to suggest that the
local configurational disorder within LTO is the main driver for
Li ion mobility within the fast-ion conductor.” Therefore by
studying LTO experimentally with SAE NMR, we suggest that it
would be possible to experimentally confirm the modes of Li
diffusion within the material between each of the local, distinct
wq environments. This ability to predict experimental observ-
ables on realistic structures by combining complex structural
models with extended dynamical trajectories is only made
possible using our tensorial learning approach.

5 Conclusion

From the nature of all our results, it is clear that analogous
conclusions would be obtained when using both invariant and
equivariant equivalents to SOAP.**-*® The decisive factor for the
performance of the ML model is in whether it preserves the
symmetry of the tensor or not, rather than in the style of
learning or exact formulation of the descriptor employed. With
an appropriate encoding of physical symmetries and the use of
observable-targeting performance metrics for hyperparameter
optimization and model evaluation, accurate predictions of
experimental tensor-derived observables are reachable. We have
exemplified this for the important case of NMR observables,
achieving results within experimental precision over an exten-
sive DFT-computed EFG database for the LTO battery material
that is representative of the diversity of atomic environments
encountered in real experiments. The tensorial learning excels
particularly in the prediction of angular-dependent observables
such as the quadrupolar frequency. This is especially impactful
for the simulation and interpretation of advanced solid-state
NMR experiments, which measure correlations between
tensors on long length and time scales and are therefore highly
sensitive to tensor orientation. Tensorial ML approaches are
indispensable in order to keep pace with machine learned

This journal is © The Royal Society of Chemistry 2025
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interatomic potentials (MLIP), which are currently revolution-
izing the capabilities of structural ensemble simulations and
molecular dynamics approaching spectroscopically relevant
time and length scales.” To bridge the gap between theoretical
simulation models and experimental results, the MLIP derived
structural and temporal ensembles have to be mapped to
experimental observables with an approach of comparable
computational efficiency to MLIPs so as not to nullify the
computational advantage gained by MLIPs.

By predicting on a 1512 atom model of LTO, we have shown
that this method is scalable and efficient for realistic systems.
Beyond NMR quadrupolar observables, this method is general
and applies to any tensorial property. Chemical shielding
tensors, stress and strain tensors, and polarizability tensors are
some of many, commonly used experimental properties which
would now be readily predicable using this ML workflow. We
expect that our positive results and guiding principles for
context-aware performance metrics encourage the adoption of
tensor-based ML approaches for all tensorial spectroscopy.
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