001050134 001__ 1050134
001050134 005__ 20260107202519.0
001050134 0247_ $$2doi$$a10.1109/MGRS.2025.3592035
001050134 0247_ $$2ISSN$$a2473-2397
001050134 0247_ $$2ISSN$$a2373-7468
001050134 0247_ $$2ISSN$$a2168-6831
001050134 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05839
001050134 037__ $$aFZJ-2025-05839
001050134 082__ $$a550
001050134 1001_ $$00000-0002-6832-3274$$aLongépé, Nicolas$$b0
001050134 245__ $$aEarth Action in Transition: Highlights From the 2025 ESA–NASA International Workshop on AI Foundation Models for EO [Space-Agencies]
001050134 260__ $$aNew York, NY$$bIEEE$$c2025
001050134 3367_ $$2DRIVER$$aarticle
001050134 3367_ $$2DataCite$$aOutput Types/Journal article
001050134 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767810098_17004
001050134 3367_ $$2BibTeX$$aARTICLE
001050134 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001050134 3367_ $$00$$2EndNote$$aJournal Article
001050134 520__ $$aOver 850 people joined the first International Workshop on AI Foundation Model (FM) for Earth Observation (EO) co-organized by ESA and NASA 5-7 May 2025. Hosted at ESRIN (ESA’s Earth Observation Center, Italy), the event welcomed around 300 people on site, and an additional 550 online, with the promise that FMs can revolutionize EO and Earth sciences. The workshop marked a pivotal moment in aligning the EO and FM communities, fostering a shared commitment to developing open and trustworthy tools that support science discovery, operational applications, and prescriptive analytics. EO data is massive, complex and high dimensional requiring specific yet scalable AI architectures. The workshop emphasized the need for training and architecture enabling interpretability, explainability, and physical consistency. Coordination should be strengthened to minimize redundant development and to better leverage collective expertise. The focus has shifted from prototyping to real-world deployment, with FMs needing further design for integration into digital twins, dashboards, and edge platforms. Transparent benchmarking and user-driven evaluation are key to guiding model development and decision-making. In addition, parameter-efficient adaptation, neural compression, and embedding-based workflows offer promising paths for scaling EO analytics. While FMs show promise, their effectiveness remains context-dependent. The community debated whether to pursue universal models, specialized solutions, or mixtures of experts. The workshop envisioned the future of agentic AI in EO, with multi-agent system powered by EO FMs and vision-language models, that can dynamically reason and act on EO data. This shift from static pipelines to adaptive, smarter systems could redefine the future of EO. This paper summarizes key discussions and concludes with thought-provoking remarks.
001050134 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001050134 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001050134 7001_ $$00000-0001-5662-3643$$aAlemohammad, Hamed$$b1
001050134 7001_ $$00000-0002-8503-7608$$aAnghelea, Anca$$b2
001050134 7001_ $$00000-0002-7254-3405$$aBrunschwiler, Thomas$$b3
001050134 7001_ $$00000-0003-1683-2138$$aCamps-Valls, Gustau$$b4
001050134 7001_ $$0P:(DE-Juel1)171343$$aCavallaro, Gabriele$$b5
001050134 7001_ $$00000-0003-4817-2875$$aChanussot, Jocelyn$$b6
001050134 7001_ $$0P:(DE-HGF)0$$aDelgado, Jose Manuel$$b7
001050134 7001_ $$00000-0003-2175-7072$$aDemir, Begüm$$b8
001050134 7001_ $$00000-0001-9662-8537$$aDionelis, Nikolaos$$b9
001050134 7001_ $$0P:(DE-HGF)0$$aFraccaro, Paolo$$b10
001050134 7001_ $$0P:(DE-HGF)0$$aJungbluth, Anna$$b11
001050134 7001_ $$0P:(DE-HGF)0$$aKennedy, Robert E.$$b12
001050134 7001_ $$0P:(DE-HGF)0$$aMarsocci, Valerio$$b13
001050134 7001_ $$00000-0001-5293-8349$$aRamasubramanian, Muthukumaran$$b14
001050134 7001_ $$00000-0001-6195-3612$$aRamos-Pollan, Raul$$b15
001050134 7001_ $$0P:(DE-HGF)0$$aRoy, Sujit$$b16
001050134 7001_ $$0P:(DE-HGF)0$$aSümbül, Gencer$$b17
001050134 7001_ $$00000-0003-0374-2459$$aTuia, Devis$$b18
001050134 7001_ $$00000-0001-8107-9096$$aZhu, Xiao Xiang$$b19
001050134 7001_ $$00000-0002-0647-1941$$aRamachandran, Rahul$$b20
001050134 773__ $$0PERI:(DE-600)2703053-2$$a10.1109/MGRS.2025.3592035$$gVol. 13, no. 4, p. 457 - 462$$n4$$p457 - 462$$tIEEE geoscience and remote sensing magazine$$v13$$x2473-2397$$y2025
001050134 8564_ $$uhttps://juser.fz-juelich.de/record/1050134/files/pre-print.pdf$$yOpenAccess
001050134 909CO $$ooai:juser.fz-juelich.de:1050134$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001050134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171343$$aForschungszentrum Jülich$$b5$$kFZJ
001050134 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001050134 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001050134 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
001050134 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-10
001050134 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE GEOSC REM SEN M : 2022$$d2024-12-10
001050134 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
001050134 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bIEEE GEOSC REM SEN M : 2022$$d2024-12-10
001050134 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001050134 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001050134 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-10
001050134 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001050134 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001050134 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001050134 9801_ $$aFullTexts
001050134 980__ $$ajournal
001050134 980__ $$aVDB
001050134 980__ $$aUNRESTRICTED
001050134 980__ $$aI:(DE-Juel1)JSC-20090406