001     1050134
005     20260107202519.0
024 7 _ |a 10.1109/MGRS.2025.3592035
|2 doi
024 7 _ |a 2473-2397
|2 ISSN
024 7 _ |a 2373-7468
|2 ISSN
024 7 _ |a 2168-6831
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-05839
|2 datacite_doi
037 _ _ |a FZJ-2025-05839
082 _ _ |a 550
100 1 _ |a Longépé, Nicolas
|0 0000-0002-6832-3274
|b 0
245 _ _ |a Earth Action in Transition: Highlights From the 2025 ESA–NASA International Workshop on AI Foundation Models for EO [Space-Agencies]
260 _ _ |a New York, NY
|c 2025
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767810098_17004
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Over 850 people joined the first International Workshop on AI Foundation Model (FM) for Earth Observation (EO) co-organized by ESA and NASA 5-7 May 2025. Hosted at ESRIN (ESA’s Earth Observation Center, Italy), the event welcomed around 300 people on site, and an additional 550 online, with the promise that FMs can revolutionize EO and Earth sciences. The workshop marked a pivotal moment in aligning the EO and FM communities, fostering a shared commitment to developing open and trustworthy tools that support science discovery, operational applications, and prescriptive analytics. EO data is massive, complex and high dimensional requiring specific yet scalable AI architectures. The workshop emphasized the need for training and architecture enabling interpretability, explainability, and physical consistency. Coordination should be strengthened to minimize redundant development and to better leverage collective expertise. The focus has shifted from prototyping to real-world deployment, with FMs needing further design for integration into digital twins, dashboards, and edge platforms. Transparent benchmarking and user-driven evaluation are key to guiding model development and decision-making. In addition, parameter-efficient adaptation, neural compression, and embedding-based workflows offer promising paths for scaling EO analytics. While FMs show promise, their effectiveness remains context-dependent. The community debated whether to pursue universal models, specialized solutions, or mixtures of experts. The workshop envisioned the future of agentic AI in EO, with multi-agent system powered by EO FMs and vision-language models, that can dynamically reason and act on EO data. This shift from static pipelines to adaptive, smarter systems could redefine the future of EO. This paper summarizes key discussions and concludes with thought-provoking remarks.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Alemohammad, Hamed
|0 0000-0001-5662-3643
|b 1
700 1 _ |a Anghelea, Anca
|0 0000-0002-8503-7608
|b 2
700 1 _ |a Brunschwiler, Thomas
|0 0000-0002-7254-3405
|b 3
700 1 _ |a Camps-Valls, Gustau
|0 0000-0003-1683-2138
|b 4
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 5
700 1 _ |a Chanussot, Jocelyn
|0 0000-0003-4817-2875
|b 6
700 1 _ |a Delgado, Jose Manuel
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Demir, Begüm
|0 0000-0003-2175-7072
|b 8
700 1 _ |a Dionelis, Nikolaos
|0 0000-0001-9662-8537
|b 9
700 1 _ |a Fraccaro, Paolo
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Jungbluth, Anna
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Kennedy, Robert E.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Marsocci, Valerio
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Ramasubramanian, Muthukumaran
|0 0000-0001-5293-8349
|b 14
700 1 _ |a Ramos-Pollan, Raul
|0 0000-0001-6195-3612
|b 15
700 1 _ |a Roy, Sujit
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Sümbül, Gencer
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Tuia, Devis
|0 0000-0003-0374-2459
|b 18
700 1 _ |a Zhu, Xiao Xiang
|0 0000-0001-8107-9096
|b 19
700 1 _ |a Ramachandran, Rahul
|0 0000-0002-0647-1941
|b 20
773 _ _ |a 10.1109/MGRS.2025.3592035
|g Vol. 13, no. 4, p. 457 - 462
|0 PERI:(DE-600)2703053-2
|n 4
|p 457 - 462
|t IEEE geoscience and remote sensing magazine
|v 13
|y 2025
|x 2473-2397
856 4 _ |u https://juser.fz-juelich.de/record/1050134/files/pre-print.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1050134
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)171343
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE GEOSC REM SEN M : 2022
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b IEEE GEOSC REM SEN M : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21