001050137 001__ 1050137
001050137 005__ 20260106202636.0
001050137 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05841
001050137 037__ $$aFZJ-2025-05841
001050137 041__ $$aEnglish
001050137 1001_ $$0P:(DE-Juel1)132590$$aMohanty, Sandipan$$b0$$eCorresponding author$$ufzj
001050137 1112_ $$aIAS Retreat$$cJülich$$d2025-05-27 - 2025-05-27$$wGermany
001050137 245__ $$aProtein Folding and Design using Quantum Annealing
001050137 260__ $$c2025
001050137 3367_ $$033$$2EndNote$$aConference Paper
001050137 3367_ $$2BibTeX$$aINPROCEEDINGS
001050137 3367_ $$2DRIVER$$aconferenceObject
001050137 3367_ $$2ORCID$$aCONFERENCE_POSTER
001050137 3367_ $$2DataCite$$aOutput Types/Conference Poster
001050137 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1767696781_16804$$xAfter Call
001050137 502__ $$cForschungszentrum Jülich
001050137 520__ $$aUsing a simple lattice model with a 2 letter amino acid alphabet (H: hydrophobic and P: polar), we have explored the important biophysical problems of protein folding and protein design. Our formulation of these problems features a simple algebraic form for the Hamiltonian irrespective of the system size and composition. Since exact results are available from for lattice HP chains up to a size of 30, we were able to thoroughly validate our approach. The D-Wave advantage quantum annealer successfully identifies the ground state of the HP model protein chain in 100% of cases. For a few longer protein chains with up to 64 amino acids, where exact enumerations were not available but extensive Monte Carlo studies exist, the D-Wave hybrid annealer found the correct ground states within minutes, once again with a 100% success rate. Applying the same technique to the protein design problem, we found novel HP protein sequences with the same ground state as the largest systems we studied for folding. In contrast to the sequences used for folding, some of our newly found sequences had unique rather than degenerate ground states.
001050137 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001050137 8564_ $$uhttps://juser.fz-juelich.de/record/1050137/files/Mohanty_IAS2025_ProteinFolding.pdf$$yOpenAccess
001050137 909CO $$ooai:juser.fz-juelich.de:1050137$$popenaire$$popen_access$$pVDB$$pdriver
001050137 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132590$$aForschungszentrum Jülich$$b0$$kFZJ
001050137 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001050137 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001050137 920__ $$lyes
001050137 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001050137 9801_ $$aFullTexts
001050137 980__ $$aposter
001050137 980__ $$aVDB
001050137 980__ $$aUNRESTRICTED
001050137 980__ $$aI:(DE-Juel1)JSC-20090406