001050167 001__ 1050167
001050167 005__ 20260106202636.0
001050167 0247_ $$2doi$$a10.1093/gigascience/giaf100
001050167 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-05863
001050167 037__ $$aFZJ-2025-05863
001050167 082__ $$a610
001050167 1001_ $$00009-0004-3732-4858$$aÜrel, Harika$$b0
001050167 245__ $$aNanopore- and AI-empowered microbial viability inference
001050167 260__ $$aOxford$$bOxford University Press$$c2025
001050167 3367_ $$2DRIVER$$aarticle
001050167 3367_ $$2DataCite$$aOutput Types/Journal article
001050167 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767697009_15515
001050167 3367_ $$2BibTeX$$aARTICLE
001050167 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001050167 3367_ $$00$$2EndNote$$aJournal Article
001050167 520__ $$a<b>Background</b><br>The ability to differentiate between viable and dead microorganisms in metagenomic data is crucial for various microbial inferences, ranging from assessing ecosystem functions of environmental microbiomes to inferring the virulence of potential pathogens from metagenomic analysis. Established viability-resolved genomic approaches are labor-intensive as well as biased and lacking in sensitivity.<br><br><b>Results</b><br>We here introduce a new fully computational framework that leverages nanopore sequencing technology to assess microbial viability directly from freely available nanopore signal data. Our approach utilizes deep neural networks to learn features from such raw nanopore signal data that can distinguish DNA from viable and dead microorganisms in a controlled experimental setting of UV-induced <i>Escherichia</i>cell death. The application of explainable artificial intelligence (AI) tools then allows us to pinpoint the signal patterns in the nanopore raw data that allow the model to make viability predictions at high accuracy. Using the model predictions as well as explainable AI, we show that our framework can be leveraged in a real-world application to estimate the viability of obligate intracellular <i>Chlamydia</i>, where traditional culture-based methods suffer from inherently high false-negative rates. This application shows that our viability model captures predictive patterns in the nanopore signal that can be utilized to predict viability across taxonomic boundaries. We finally show the limits of our model’s generalizability through antibiotic exposure of a simple mock microbial community, where a new model specific to the killing method had to be trained to obtain accurate viability predictions.<br><br><b>Conclusions</b><br>While the potential of our computational framework’s generalizability and applicability to metagenomic studies needs to be assessed in more detail, we here demonstrate for the first time the analysis of freely available nanopore signal data to infer the viability of microorganisms, with many potential applications in environmental, veterinary, and clinical settings.
001050167 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001050167 536__ $$0G:(DE-Juel-1)E54.303.11$$aHelmholtz AI Consultant Team FB Information (E54.303.11)$$cE54.303.11$$x1
001050167 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001050167 7001_ $$0P:(DE-Juel1)192312$$aBenassou, Sabrina$$b1$$ufzj
001050167 7001_ $$00000-0002-8398-4708$$aMarti, Hanna$$b2
001050167 7001_ $$00009-0001-9700-5128$$aReska, Tim$$b3
001050167 7001_ $$00000-0003-1347-0346$$aSauerborn, Ela$$b4
001050167 7001_ $$00000-0001-9854-6383$$aPinheiro Alves De Souza, Yuri$$b5
001050167 7001_ $$00000-0002-4035-2436$$aPerlas, Albert$$b6
001050167 7001_ $$00000-0002-4497-4339$$aRayo, Enrique$$b7
001050167 7001_ $$00000-0002-1337-2132$$aBiggel, Michael$$b8
001050167 7001_ $$0P:(DE-Juel1)185654$$aKesselheim, Stefan$$b9
001050167 7001_ $$00000-0002-1556-9262$$aBorel, Nicole$$b10
001050167 7001_ $$00009-0000-4180-4900$$aMartin, Edward J$$b11
001050167 7001_ $$00000-0002-8359-8209$$aVenegas, Constanza B$$b12
001050167 7001_ $$00000-0003-1671-1125$$aSchloter, Michael$$b13
001050167 7001_ $$0P:(DE-HGF)0$$aSchröder, Kathrin$$b14
001050167 7001_ $$00000-0001-5207-5520$$aMittelstrass, Jana$$b15
001050167 7001_ $$00000-0002-9129-8556$$aProspero, Simone$$b16
001050167 7001_ $$00000-0002-6192-6937$$aFerguson, James M$$b17
001050167 7001_ $$00000-0002-5445-9314$$aUrban, Lara$$b18$$eCorresponding author
001050167 773__ $$0PERI:(DE-600)2708999-X$$a10.1093/gigascience/giaf100$$gVol. 14, p. giaf100$$pgiaf100$$tGigaScience$$v14$$x2047-217X$$y2025
001050167 8564_ $$uhttps://juser.fz-juelich.de/record/1050167/files/giaf100.pdf$$yOpenAccess
001050167 909CO $$ooai:juser.fz-juelich.de:1050167$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001050167 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192312$$aForschungszentrum Jülich$$b1$$kFZJ
001050167 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185654$$aForschungszentrum Jülich$$b9$$kFZJ
001050167 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001050167 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27
001050167 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2024-09-19T15:54:45Z
001050167 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-27
001050167 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-27
001050167 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-27
001050167 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-27
001050167 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGIGASCIENCE : 2022$$d2024-12-27
001050167 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-27
001050167 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-09-19T15:54:45Z
001050167 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-09-19T15:54:45Z
001050167 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-27
001050167 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-27
001050167 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27
001050167 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-27
001050167 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-27
001050167 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-27
001050167 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-27
001050167 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001050167 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27
001050167 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGIGASCIENCE : 2022$$d2024-12-27
001050167 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27
001050167 920__ $$lyes
001050167 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001050167 980__ $$ajournal
001050167 980__ $$aVDB
001050167 980__ $$aUNRESTRICTED
001050167 980__ $$aI:(DE-Juel1)JSC-20090406
001050167 9801_ $$aFullTexts