001     1050167
005     20260106202636.0
024 7 _ |a 10.1093/gigascience/giaf100
|2 doi
024 7 _ |a 10.34734/FZJ-2025-05863
|2 datacite_doi
037 _ _ |a FZJ-2025-05863
082 _ _ |a 610
100 1 _ |a Ürel, Harika
|0 0009-0004-3732-4858
|b 0
245 _ _ |a Nanopore- and AI-empowered microbial viability inference
260 _ _ |a Oxford
|c 2025
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767697009_15515
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Background
The ability to differentiate between viable and dead microorganisms in metagenomic data is crucial for various microbial inferences, ranging from assessing ecosystem functions of environmental microbiomes to inferring the virulence of potential pathogens from metagenomic analysis. Established viability-resolved genomic approaches are labor-intensive as well as biased and lacking in sensitivity.

Results
We here introduce a new fully computational framework that leverages nanopore sequencing technology to assess microbial viability directly from freely available nanopore signal data. Our approach utilizes deep neural networks to learn features from such raw nanopore signal data that can distinguish DNA from viable and dead microorganisms in a controlled experimental setting of UV-induced Escherichiacell death. The application of explainable artificial intelligence (AI) tools then allows us to pinpoint the signal patterns in the nanopore raw data that allow the model to make viability predictions at high accuracy. Using the model predictions as well as explainable AI, we show that our framework can be leveraged in a real-world application to estimate the viability of obligate intracellular Chlamydia, where traditional culture-based methods suffer from inherently high false-negative rates. This application shows that our viability model captures predictive patterns in the nanopore signal that can be utilized to predict viability across taxonomic boundaries. We finally show the limits of our model’s generalizability through antibiotic exposure of a simple mock microbial community, where a new model specific to the killing method had to be trained to obtain accurate viability predictions.

Conclusions
While the potential of our computational framework’s generalizability and applicability to metagenomic studies needs to be assessed in more detail, we here demonstrate for the first time the analysis of freely available nanopore signal data to infer the viability of microorganisms, with many potential applications in environmental, veterinary, and clinical settings.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Helmholtz AI Consultant Team FB Information (E54.303.11)
|0 G:(DE-Juel-1)E54.303.11
|c E54.303.11
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Benassou, Sabrina
|0 P:(DE-Juel1)192312
|b 1
|u fzj
700 1 _ |a Marti, Hanna
|0 0000-0002-8398-4708
|b 2
700 1 _ |a Reska, Tim
|0 0009-0001-9700-5128
|b 3
700 1 _ |a Sauerborn, Ela
|0 0000-0003-1347-0346
|b 4
700 1 _ |a Pinheiro Alves De Souza, Yuri
|0 0000-0001-9854-6383
|b 5
700 1 _ |a Perlas, Albert
|0 0000-0002-4035-2436
|b 6
700 1 _ |a Rayo, Enrique
|0 0000-0002-4497-4339
|b 7
700 1 _ |a Biggel, Michael
|0 0000-0002-1337-2132
|b 8
700 1 _ |a Kesselheim, Stefan
|0 P:(DE-Juel1)185654
|b 9
700 1 _ |a Borel, Nicole
|0 0000-0002-1556-9262
|b 10
700 1 _ |a Martin, Edward J
|0 0009-0000-4180-4900
|b 11
700 1 _ |a Venegas, Constanza B
|0 0000-0002-8359-8209
|b 12
700 1 _ |a Schloter, Michael
|0 0000-0003-1671-1125
|b 13
700 1 _ |a Schröder, Kathrin
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Mittelstrass, Jana
|0 0000-0001-5207-5520
|b 15
700 1 _ |a Prospero, Simone
|0 0000-0002-9129-8556
|b 16
700 1 _ |a Ferguson, James M
|0 0000-0002-6192-6937
|b 17
700 1 _ |a Urban, Lara
|0 0000-0002-5445-9314
|b 18
|e Corresponding author
773 _ _ |a 10.1093/gigascience/giaf100
|g Vol. 14, p. giaf100
|0 PERI:(DE-600)2708999-X
|p giaf100
|t GigaScience
|v 14
|y 2025
|x 2047-217X
856 4 _ |u https://juser.fz-juelich.de/record/1050167/files/giaf100.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1050167
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)192312
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)185654
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-09-19T15:54:45Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GIGASCIENCE : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-09-19T15:54:45Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-09-19T15:54:45Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2024-12-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b GIGASCIENCE : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21