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Abstract

Background: The ability to differentiate between viable and dead microorganisms in metagenomic data is crucial for various micro-
bial inferences, ranging from assessing ecosystem functions of environmental microbiomes to inferring the virulence of potential
pathogens from metagenomic analysis. Established viability-resolved genomic approaches are labor-intensive as well as biased and
lacking in sensitivity.

Results: We here introduce a new fully computational framework that leverages nanopore sequencing technology to assess microbial
viability directly from freely available nanopore signal data. Our approach utilizes deep neural networks to learn features from such
raw nanopore signal data that can distinguish DNA from viable and dead microorganisms in a controlled experimental setting of
UV-induced Escherichia cell death. The application of explainable artificial intelligence (AI) tools then allows us to pinpoint the signal
patterns in the nanopore raw data that allow the model to make viability predictions at high accuracy. Using the model predictions as
well as explainable AI, we show that our framework can be leveraged in a real-world application to estimate the viability of obligate
intracellular Chlamydia, where traditional culture-based methods suffer from inherently high false-negative rates. This application
shows that our viability model captures predictive patterns in the nanopore signal that can be utilized to predict viability across tax-
onomic boundaries. We finally show the limits of our model’s generalizability through antibiotic exposure of a simple mock microbial
community, where a new model specific to the killing method had to be trained to obtain accurate viability predictions.

Conclusions: While the potential of our computational framework’s generalizability and applicability to metagenomic studies needs
to be assessed in more detail, we here demonstrate for the first time the analysis of freely available nanopore signal data to infer the
viability of microorganisms, with many potential applications in environmental, veterinary, and clinical settings.

Introduction

While microbial cultivation remains a foundational technique in
microbiology to assess the taxonomic composition of microbial
communities and to understand their physiology and ecosystem
functions [1], only a small fraction of microbial diversity has been
isolated in pure culture [2]. This limitation has led to undiscovered
functions and biased representations of the phylogenetic diversity
of microbial communities in nearly all of Earth’s environments [2].
While medically relevant microorganisms of the human micro-
biome often constitute an exemption since they have been dis-
proportionately well studied through microbial cultures [3], the
clinical application of microbial cultivation for pathogen profiling
is further limited by its time-consuming and labor-intensive na-
ture [4].

The first studies of the so-called “microbial dark matter” have
been enabled by advances in culture-independent molecular
methodology [S] and have been based on amplifications of con-
served marker regions such as ribosomal RNA genes [6]. Such
targeted metabarcoding approaches, however, suffer from several
limitations: they can often not provide strain- or even species-
level taxonomic resolution, are highly dependent on genomic
database completeness, do not allow for any functional infer-
ences or virulence annotations, and often introduce amplification
bias due to differential amplification efficiency and primer mis-
matches, which can significantly distort the representation of mi-
crobial community compositions [7].

Metagenomics, on the other hand, is a shotgun sequencing-
based molecular methodology that can assess the entirety of DNA
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isolated from an environment or a sample and de novo assem-
blies of potentially complete microbial genomes of all present mi-
croorganisms; such genome-based approaches provide a variety
of phylogenetically informative sequences for taxonomic classifi-
cation, information about the metabolic and virulence potential
of microorganisms, and the potential to identify completely novel
genes [8, 9].

Especially long-read metagenomic approaches have shown
great promise in achieving highly contiguous de novo assemblies
through the recovery of high-quality metagenome-assembled
genomes (MAGs) from complex environments; specifically, the lat-
est advances in nanopore sequencing technologies have resulted
in high sequencing accuracies of very long sequencing reads of
up to millions of bases, which have allowed for the generation of
hundreds of MAGs from metagenomic data, including the genera-
tion of closed circularized genomes [10, 11]. Nanopore sequencing
technology is based on the interpretation of the disruption of an
ionic current due to a motor protein guiding individual nucleotide
strands through nanopores embedded in an electrically resis-
tant polymer membrane at a consistent translocation speed [12].
This raw nanopore signal, or “squiggle” data, can then be trans-
lated into nucleotide sequence using bespoke neural network-
based basecalling algorithms [13], which—when efficiently em-
bedded on powerful GPUs—can generate genomic data in real
time. The portable character and straightforward implementation
of nanopore sequencing at low upfront investment costs further
make this technology accessible for fast microbial and pathogen
assessments at the point of interest all around the world, includ-
ing in low- and middle-income countries [14].

In contrast to cultivation-based approaches, molecular meth-
ods suffer from their inherent deficiency of not being able to dif-
ferentiate between viable and dead microorganisms [2, 15]. While
cultivation-based approaches only detect viable microorganisms,
DNA might remain intact and therefore accessible by molecular
methods despite the respective microorganisms being dead [15,
16]. This would be relevant in the context of clinical infection pre-
vention and control and pathogen monitoring, where certain dis-
infection methods or the use of systemic antibiotics often kill the
bacteria before the DNA is destroyed [15, 17], but also for under-
standing the ecosystem functions of thus far understudied mi-
crobiomes [2]. For example, the air microbiome has been shown
to be remarkably diverse and variable when assessed through
nanopore metagenomics [18], but given the low biomass of this
environment, it is expected that many microorganisms might be
dead and stem from adjacent environments such as soil or water.
The persistence of the DNA of dead microorganisms in the en-
vironment might hereby depend on many factors, including ex-
ternal conditions, such as temperature, pH, and microbial activ-
ity, and internal, taxon-specific parameters, such as microbial cell
wall composition. Viability-resolved metagenomics would, how-
ever, be crucial for the interpretation of metagenomic data, rang-
ing from outbreak source detection [19], food safety [20], and pub-
lic health investigations [21] to ecosystem function inferences
[22].

To assess microbial viability from genomic data, several ap-
proaches have been developed: culture-dependent viability meth-
ods combine the advantages of cultivation-based and molec-
ular approaches by growing certain microorganisms of inter-
est on selective media; this approach, however, remains time-
consuming and labor-intensive and suffers from the same selec-
tivity of growth media and culturable microorganisms as purely
cultivation-based approaches [23], especially for fastidious or obli-
gate intracellular microorganisms [24]. Microbial viability has fur-

ther been described by metabolic activity, where microbial cells
are incubated with specific substrates, leading to ATP production,
tetrazolium salt reduction, or radiolabeled substrate incorpora-
tion [25]. Further, ribosomal RNA may be assessed as a read-out
of microbial activity [26]. To what extent such metabolic activity
can be used as a proxy for microbial viability, however, remains
to be explored [26]. While messenger RNA has been used as a
viable/dead marker due to its intrinsic instability outside of the
microbial cell [27, 28], the metatranscriptome still has to be sta-
ble enough in the environment to be detectable at all, potentially
leading to many false-negative detections; if only 1 gene is tar-
geted, the analyzed gene further has to be expressed shortly be-
fore cell death. Additional potential problems stem from the rela-
tively challenging extraction protocols due to the RNA's instability
and from the evolutionary conservation of gene sequences, which
can hamper taxonomic resolution [15].

Finally, an aspect that can be used for viability-resolved
metagenomics is the physical difference between viable and dead
cells: viability PCR (VPCR) uses DNA-intercalating dyes such as
ethidium monoazide (EMA) or propidium monoazide (PMA) to dif-
ferentiate between viable and dead cells. These dyes penetrate
only dead cells with compromised membranes and bind to their
DNA via covalent bonds upon photoactivation, preventing them
from being amplified during subsequent PCR [15, 17]; this ap-
proach has been applied to a diverse array of Gram-negative and
Gram-positive bacteria, as well as to assess the effectiveness of
disinfection and heat treatment [25]. It, however, relies on the as-
sumption that membrane integrity is a reliable indicator of viabil-
ity, which can lead to overestimation of viability if cells lose viabil-
ity without immediate membrane compromise [29] and can be bi-
ased by the dye’s variable permeability across different microbial
cell wall structures [30, 31]. The dependence of the approach on
photoactivation further means that turbid material might ham-
per the efficiency of the dye [32].

All these established viability-resolved metagenomic ap-
proaches are laborintensive, require additional reagents and
sample processing, and are often biased and lack sensitivity. We
here hypothesized that the raw, freely available nanopore signal
from metagenomic datasets might be leveraged to infer microbial
viability, assuming that the native DNA from dead microorgan-
isms accumulates detectable squiggle signatures due to, for ex-
ample, external damage through UV, heat, or drought exposure;
the lack of DNA repair mechanisms; or enzymatic degradation ac-
tivity [33-35]. Such an analysis framework could be fully compu-
tational and utilize squiggle data that are automatically obtained
with nanopore sequencing. While raw nanopore data are known
to contain information about epigenetic modifications [36-38] and
oxidative stress at specific human telomere sites [39], the applica-
bility to assess microbial viability has not yet been tested.

In this study, we produced experimental nanopore sequencing
data from viable and UV-killed Escherichia coli cultures to optimize
deep neural networks to predict viability just from the nanopore
squiggle signal. We then applied explainable artificial intelligence
(XAI) tools, which allow us to identify the specific nanopore sig-
nal patterns in the input data that allow the model to deliver
high-accuracy predictions as an output. We show that our com-
putational framework can be leveraged in a real-world applica-
tion to estimate the viability of obligate intracellular Chlamydia
suis, pointing toward the applicability of our model across taxo-
nomic boundaries, including to species with highly complex life
cycles. We finally explore the limits of our model’s generalizability
through antibiotic exposure of a simple mock microbial commu-
nity, where we had to train a new killing method-specific model
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Figure 1: Training and viability inference on UV-killed E. coli of ResNet1. (A) Model loss for training and validation datasets across 1,000 epochs; the
minimum validation loss of ResNetl was reached at epoch 677. (B) Prediction probability threshold optimization on the validation dataset resulted in a
probability threshold of 0.5 for obtaining maximum accuracy. Inset: Performance of ResNet1 on the test dataset (Materials and Methods). (C) Test
dataset performance of ResNet1 in terms of precision-recall (PR; magenta) and receiver operating characteristic (ROC; green) curves and their

respective areas under the curve (AUPR, AUROC).

to obtain accurate viability predictions. While the extent of our
computational framework’s generalizability needs to be assessed
in more detail, we here demonstrate for the first time the poten-
tial of analyzing freely available nanopore signal data to infer the
viability of microorganisms, with many applications in environ-
mental, veterinary, and clinical settings.

Results and Discussion

Viability model training and inference

We generated controlled training data by nanopore sequencing
native DNA of viable and dead E. coli (Materials and Methods). We
killed E. coli cultures using different stressors to then isolate the
extracellular DNA and expose it to natural degradation. We ob-
tained only enough DNA for subsequent shotgun sequencing from
the viable culture and from the culture killed through rapid UV ex-
posure (viable: 212 ng/uL; UV: 5.46 ng/uL; heat shock: 0.03 ng/uL;
bead beating: 0.67 ng/pL; Materials and Methods). We repeated
this experiment and confirmed that rapid heat shock, as well as
bead beating exposure, again resulted in very low DNA concen-
trations, suggesting quick and complete DNA degradation. We hy-
pothesize that UV exposure is the only stressor in our study that
simultaneously destroys bacterial cell walls and inactivates DNA-
degrading enzymes. In contrast, heat shock at 120°C and bead
beating might not uniformly degrade all enzymatic activity [40,
41], potentially allowing residual DNA-degrading enzymes to per-
sist and contribute to the degradation of genomic material dur-
ing subsequent natural exposure. We therefore created nanopore
shotgun sequencing of the viable and the UV-exposed culture,
which resulted in 2.92 Gbases (Gb; median read length of 2,476 b)
and 2.69 Gb (median read length of 1,606 b) of sequencing output,
respectively (Materials and Methods).

We then tested the implementation of different neural network
architectures to predict the binary viability state from the raw
nanopore data (0 = viable; 1 = dead after UV exposure; Materials
and Methods). We processed the E. coli nanopore signal, or “squig-
gle,” data, cut it into altogether 3,181,600 signal chunks of 10k sig-
nals, and separated the chunks into balanced training (60%), val-
idation (20%), and test (20%) sets along each original sequencing
read to avoid that signal chunks from the same read would end up
in the same dataset (Materials and Methods). These signal chunks

were then treated as 1-dimensional time-series signal data of con-
sistent length. We trained the different model architectures us-
ing different learning rates (LRs) up to 1,000 epochs, assessing
the models’ performance based on training and validation loss af-
ter each epoch (Materials and Methods; Supplementary Table S1;
Supplementary Fig. S1). The loss plot of our best-performing
model, a residual neural network with convolutional input lay-
ers (configuration Residual Neural Network [ResNet] 1; LR = le-
4; Supplementary Table S1; Supplementary Fig. S1; Materials and
Methods), shows minimal overfitting when the minimum valida-
tion loss is reached at epoch 667 (Fig. 1A). The other residual neu-
ral network architectures (ResNet2, ResNet3), on the other hand,
resulted in overfitting to the training data at any LR, and the
transformer architecture did not reach the minimum validation
loss of ResNet1 (Supplementary Fig. S1). We next only focused on
ResNet1 and optimized its probability threshold using the valida-
tion set; in order to obtain a high accuracy, we maintained the
probability threshold at the default value of 0.5 (Fig. 1B), which
resulted in a good final performance on the test data with an
accuracy of 0.83 and a F1 score of 0.81 (Fig. 1B, inset) as well as
area under the curve (AUC) values of 0.90 (area under the receiver
operating characteristic curve [AUROC]) and 0.92 (area under the
precision-recall curve [AUPR]; Fig. 1C).

We also trained the same residual neural network architecture
ResNet1 on the basecalled nanopore data of viable and dead E. coli
at a standardized chunk size of 800 b, which roughly corresponds
to the signal chunk size of 10k signals (Materials and Methods).
Independent of whether we only basecalled the canonical bases
or used a N6-methyladenine (6 mA) modification-aware basecall-
ingmodel (Materials and Methods), the model could not be trained
to distinguish viable from dead data just from basecalled DNA se-
quence data (Supplementary Table S1). This shows that our model
captures patterns in the squiggle data that go beyond the en-
coding of nucleotides and their known epigenetic modifications.
While this was expected since we used the same E. coli culture
with the same reference genome to create the viable and dead
datasets, we can rule out that our squiggle-based model captured
any random differences in DNA sequence context between the 2
datasets that might have occurred by chance.

We additionally obtained the performance of ResNetl
for different signal chunk sizes (Supplementary Fig. S2;
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Supplementary Table S1), and we found that viability pre-
diction performance was possible from a minimum chunk size of
approximately 5k but that performance further improved with in-
creasing chunk size. This shows that larger signal chunks contain
more information that can be used by our model to make more
accurate per-chunk predictions despite a consequently reduced
size of the training dataset. We here stick to our original model
with a chunk size of 10k signals, which resulted in relatively good
performance (Fig. 1; Supplementary Table S1).

We finally trained 2 logistic regression models using only the
read length and translocation speed per sequencing read as
the input feature, respectively, to compare the performance of
our squiggle-based deep neural network with simple baseline
models. Both models substantially underperformed in compar-
ison to our model (Supplementary Table S1). The read length
model performed similarly to a random classifier (accuracy of 0.5;
Supplementary Table S1), showing that the read length distribu-
tion difference between the viable and dead sequencing datasets
cannot be leveraged to infer viability in this dataset. We also argue
that while a difference in read length distribution between viable
and dead microbes might be expected in other settings, for exam-
ple, after stronger or longer degradation exposure, such a differ-
ence would have to be substantial to allow for accurate viability
classifications of each individual sequencing read. In mixed mi-
crobial communities, the read length distribution would further
be confounded by the microbial composition and the respective
genome sizes. The translocation speed model reached a slightly
higher accuracy of 0.59 (Supplementary Table S1), which might
be explained by UV-induced twists or kinks in the DNA backbone
having a slight impact on the translocation of the sequencing
read.

Explainable Al application

We implemented Class Activation Maps (CAMs) as an XAl method
[42] to identify the most important regions in the nanopore sig-
nal data that inform the model’s viability classifications (Materi-
als and Methods; Fig. 2A). We found that “dead” signal chunks ex-
hibited discrete regions of increased CAM values (“CAM regions”
defined at CAM values >0.8; Fig. 2B for several true-positive clas-
sifications of the test dataset). To confirm the importance of these
CAM regions for the model’s final predictions, we applied consec-
utive masking of the regions with the highest CAM values within
each nanopore signal chunk (Supplementary Fig. S3 for several
examples); we observed that the prediction probability for being
classified as “dead” decreased with increased masking of CAM-
relevant regions, either by consecutively masking regions using a
consistent mask size or by increasing the mask size (from 100 to
2k signals; Fig. 2C). This shows that the CAM application reliably
pinpoints patterns in the nanopore signal that are predictive for
our viability model.

We used the CAM regions to manually investigate the squiggle
signals and found that many CAM regions of “dead” signal chunks
included a sudden substantial drop in the nanopore signal. We
therefore developed a simple algorithm that identifies such sud-
den drops and applied this XAI rule to our test dataset (Materials
and Methods; Fig. 2D). We here classified any signal chunk with at
least one sudden drop as “dead” and all others as “viable.” While
this simplified algorithm led to a drop in overall performance, we
could still reach a relatively good overall accuracy of 0.68 (in com-
parison to 0.83 of the full model; Fig. 2E). While the XAI rule main-
tained performance in terms of specificity and precision, we ob-
served a substantial drop in recall in comparison to the full model

(now 0.39 instead of 0.74). This shows that while the absence of a
sudden drop in the nanopore signal data seems to reliably predict
viability, not all “dead” signal chunks contain such a sudden drop.
While this sudden-drop detection still seems to be at the core of
our model’s interpretability (when focusing on high-confidence
true positive chunks at P > 0.99, the recall increased to 0.68), the
model seems to additionally detect more subtle patterns in the
nanopore signal data, which allow it to increase recall while main-
taining specificity and precision.

Based on our previous experience with squiggle data analy-
sis [43, 44], we hypothesize that the substantial sudden drops
in nanopore signal might be caused by a twist or kink in the
DNA backbone, for example, from 6 to 4 photoproduct pyrimidine
dimers. The drop would then mark the event of a pore getting
blocked due to such damage. Such a twist could also lead to a
stalling signal if it impairs the motor protein from processing the
DNA strand, which we indeed partially observed in our data (e.g.,
top signal chunk of Fig. 2B, D). While we here hypothesize that UV
exposure might have caused such twists in the DNA backbone, we
intend to explore the biological, chemical, and physical features
detected by squiggle-based viability models in more detail in fu-
ture nanopore-based microbial studies.

Sequencing read-level viability predictions

We finally assessed the performance of our viability model on the
sequencing read level instead of on the chunk level by leveraging
the capability of ResNets to handle variable input lengths. When
shifting the test dataset analysis from the chunk to the read level
(Materials and Methods), the prediction performances increased
substantially, from an accuracy of 0.83 (chunk) to 0.96 (read), and
with an improved AUPR of 0.99 (instead of 0.92 on the chunk level)
and AUROC of 0.99 (instead of 0.90 on the chunk level) (Fig. 3A;
Supplementary Table S2). These improvements indicate that the
model might be able to use cumulative information per sequenc-
ing read to increase overall prediction performance. Addition-
ally, such read-level viability predictions enable inferences from
short sequencing reads that had to be excluded from chunk-level
analyses; our model achieved good prediction performance on all
such previously excluded short reads (in our case, reads shorter
than <11.5k signals; n = 166,628 reads; accuracy: 0.80, AUPR:
0.89, AUROC: 0.87). Given this improved performance, including
on previously excluded short sequencingreads, and given that any
genomic analysis including taxonomic assignment is usually ap-
plied to the unit of the read, we will report all prediction perfor-
mances in the remaining article on the level of sequencing reads.

Application to obligate intracellular Chlamydia

We next applied our computational viability framework to distin-
guish viable from dead C. suis cells, an obligate intracellular bacte-
rial species found endemically in the gastrointestinal tract of pigs
with high infection rates in pig farms [45, 46]. Like other members
of the Chlamydiacea family, these bacteria are defined by a com-
plex biphasic life cycle comprising infectious elementary bodies
and dividing reticulate bodies [47]. These unique properties ren-
der both cultivation- and vPCR-based approaches for viability es-
timations complicated [48]. We here took 2 samples from a viable
C. suis culture as biological replicates (BRs 1 and 2) and subjected
them to UV treatment (Materials and Methods). We obtained first
insights into their viability using cultivation- and vPCR-based ap-
proaches (Materials and Methods). In the case of cultivation, UV-
treated C. suis cells were unable to form viable inclusions in cell
culture, whereas the untreated samples showed high infectivity
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layer’s feature maps through a weighted sum, highlighting nanopore signal regions that allow the neural network to make accurate predictions. (B)
Exemplary nanopore signal chunks that were classified as “dead” at a prediction probability of P > 0.99 and their CAM values. Higher CAM values
indicate stronger feature map activations. (C) Impact of consecutive masking (n = 5 masking events) of the signal region with the highest CAM value
per signal chunk (x-axis) on the model’s prediction probability (y-axis); 5 different mask sizes (from 100 to 2k signals) were used. (D) Application of a
simplified XAI rule that classifies signal chunks according to the presence of a “sudden drop” (Materials and Methods; green: mean signal per chunk;
red: threshold for sudden drop definition; yellow: identification of sudden drops in the exemplary signal chunks). (E) Comparison of the performance
of the full model (ResNet1) with the simplified XAl rule.
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Figure 3: Application of the E. coli-trained ResNet1 to obligate intracellular Chlamydia suis. (A) ResNet1 performance on the E. coli test dataset on the
chunk level (dashed) and on the sequencing read level (solid) in terms of precision-recall (PR; magenta) and receiver operating characteristic (ROC; green)
curves and their respective areas under the curve (AUPR, AUROC). (B) ResNet1 performance on the C. suis sequencing reads across 2 biological
replicates (BR1 and BR2; light and dark lines, respectively) in terms of PR (magenta) and ROC (green) curves and their respective AUPR and AUROC. (C)
Sequencing read-level comparison of ResNet1 classifications of the E. coli test and the C. suis datasets. Top row: Binary model predictions for viable and
dead E. coli and C. suis, respectively, at the optimized prediction probability threshold of 0.5; bottom row: respective normalized distributions of model
prediction probabilities across all sequencing reads. For E. coli, all 59,171 “viable” and 72,207 “dead” sequencing reads from the test dataset are shown;
for C. suis, all 54,853 “viable” and 23,073 “dead” sequencing reads from both biological replicates are shown. (D) Squiggle signal of exemplary C. suis
sequencing reads that were correctly classified as “dead” and their CAM values; higher CAM values indicate stronger feature map activations
(Materials and Methods).
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with 8.48e7 (BR1) and 6.23e7 (BR2) inclusion-forming units per
milliliter (IFU/mL; Supplementary Table S3). In the case of VPCR,
all samples were processed with and without PMA [48] to quan-
tify the respective amounts of chlamydial DNA with a sensitive
C. suis-specific quantitative PCR [49, 50] (Materials and Methods).
We assessed the difference in copy number per milliliter between
PMA-treated and untreated DNA as Alog10, resulting in 0.82 and
0.81 for the viable samples, as well as 1.51 and 2.02 for the killed
samples (BR1 and BR2, respectively; Supplementary Table S3).
These results are comparable to a previous study in which fresh
Chlamydia trachomatis culture was heat-killed, and an absence of
viable Chlamydia resulted in a Alogl0 Chlamydia of 3.01, whereas
a viability ratio of 100% resulted in a Alogl0 Chlamydia of 0.37
[48]. Cultivation and vPCR therefore confirmed that UV treatment
had completely inactivated previously viable C. suis cells and had
strongly reduced the amount of “viable” DNA in both biological
replicates. Nanopore sequencing of the viable and dead C. suis
cells identified 28,210 viable and 8,771 dead (BR1) and 26,643 vi-
able and 14,302 dead (BR2) Chlamydia-classified sequencing reads
(Materials and Methods; Supplementary Table S3).

Our E. coli data-trained ResNetl model achieved strong se-
quencing read-level viability prediction performances across both
C. suis biological replicates (Materials and Methods). At the previ-
ously optimized probability threshold of 0.5, the model achieved
an accuracy of 0.93 (both BRs), F1 score of 0.87 and 0.90 (BR1 and
BR2), precision of 0.80 and 0.85, recall of 0.95 and 0.96, and speci-
ficity of 0.92 and 0.91, respectively (Supplementary Table S2). Us-
ing threshold-independent metrics, the model achieved an AU-
ROC of 0.97 (both BRs) and an AUPR of 0.94 and 0.96, respectively
(Fig. 3B). The slightly lower precision obtained by the model’s ap-
plication to BR1 might stem from a slightly higher ratio of viable
reads in this biological replicate (76.3% in BR2 vs. 65.1% in BR2).
When pooling the model’s viability predictions across the 2 biolog-
ical replicates, the percentage of correctly classified sequencing
reads (Fig. 3C, top row) and the prediction probability distributions
across reads (Fig. 3C, bottom row) are comparable with sequencing
read-level performances in the original E. coli test dataset (Fig. 3C,
left). This shows a certain degree of generalizability of our viabil-
ity model beyond taxonomic boundaries despite the model being
trained only on E. coli data. While both bacterial species are Gram-
negative, they substantially differ in their ecology and life cycles,
suggesting a potential applicability of deep models to nanopore
squiggle data for taxonomy-agnostic viability predictions. The ap-
plication of XAI to the C. suis sequencing reads further shows that
the CAMs also highlight sudden drops in the C. suis squiggle data
(Fig. 3D), suggesting that UV exposure led to similar damage in
both bacterial species. The killing method or, more generally, the
source of degradation might therefore be the main determinant
of viability-predictive features in nanopore squiggle data.

Viability inference after antibiotic exposure of a
mock community

To test whether our ResNetl model that was trained on UV-
killed E. coli could be used for viability predictions using a dif-
ferent killing method, we generated 2 biological replicates (BR1
and BR2) of a mock community of carbenicillin-susceptible E. coli
and carbenicillin-resistant Klebsiella oxytoca. Nanopore sequenc-
ing of the mock community after carbenicillin exposure resulted
in 239,316 and 240,178 E. coli sequencing reads (number of reads
mapping to the Escherichia genus in BR1 and BR2) and in 991,019
and 954,602 K. oxytoca sequencing reads for the experiment (num-
ber of reads mapping to the Klebsiella genus in BR1 and BR2; Mate-
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rials and Methods). Across both species and biological replicates,
most of the sequencing reads were classified as viable (E. coli:
82.2% and 76.4%; K. oxytoca: 80.8% and 87.4%, for BR1 and BR2,
respectively), showing that ResNet1 could not distinguish suscep-
tible from resistant bacteria after antibiotic exposure. This finding
supports our hypothesis that the killing method or, more gener-
ally, the source of degradation might be the main determinant of
viability-predictive features in nanopore squiggle data.

We therefore explored if we could train a new model using
the same previously optimized ResNet1 architecture to accurately
predict viability after antibiotic exposure. We first generated a
clean antibiotic exposure training dataset of a single bacterial
species by nanopore-sequencing the susceptible E. coli strain be-
fore and after exposure; similar to the UV-treated E. coli, we addi-
tionally made sure to (i) only sequence cell-free DNA for the dead
viability class by stringent centrifugation and filtering of the su-
pernatant and to (ii) mainly sequence DNA from intact cells for
the viable class by only processing the pellet after centrifugation
(Materials and Methods). The newly trained antibiotic ResNet1l
model achieved a test dataset accuracy of 0.73 on the sequenc-
ing read level, with an AUPR of 0.98 and an AUROC of 0.87, and
a performance on a held-out biological replicate of 0.68 accuracy,
with an AUPR of 0.95 and an AUROC of 0.80 (based on 16,810 vi-
able and 103,120 dead sequencing reads that were classified as
Escherichia; Supplementary Table S4; Materials and Methods).

We then applied this antibiotic ResNet1 model to the antibiotic
exposure mock community; this time, most of sequencing reads
from the susceptible E. coli were classified as dead (75.7% and
75.9%, for BR1 and BR2), while the majority of K. oxytoca was still
correctly classified as viable (70.1% and 71.7%). The application
of our XAI framework showed that this new antibiotic ResNet1
did not detect any sudden drops in the squiggle data that were
previously identified by the UV ResNetl's CAMs in dead sequenc-
ing reads (Supplementary Fig. S4 for a few examples), showing
that this new model seemed to have identified different squiggle
signatures indicative of degradation through antibiotic exposure.
These preliminary results suggest that our viability model can be
tuned to classify viability in different degradation contexts and
that such models can potentially be applied to separate resistant
from susceptible bacteria in mixed microbial communities.

Al- and nanopore-empowered viability-resolved
metagenomics

While metagenomic approaches provide the unique opportunity
of generating de novo assemblies and potentially complete micro-
bial genomes to explore the “microbial dark matter” as well as
to infer potential functions such as metabolic and virulence po-
tential [8, 9], they have suffered from their inability to differenti-
ate between viable and dead microorganisms [2, 15]. Such viabil-
ity inferences can, however, distort any microbial inference, rang-
ing from assessing ecosystem functions of environmental micro-
biomes to inferring the virulence of potential pathogens. As es-
tablished viability-resolved metagenomic approaches are labor-
intensive as well as biased and lack sensitivity (e.g., [23]), we
here show first evidence that a fully computational framework
based on residual neural networks with convolutional data pro-
cessing layers can leverage raw nanopore signal data, also known
as squiggle data, to make accurate inferences about microbial via-
bility. Using experimentally killed bacterial cultures and a simple
mock microbial community, we show that such models can in-
fer viability from sequencing reads at high accuracy, potentially
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allowing for simultaneous taxonomic and viability classifications
in metagenomic datasets.

We first leverage microbial degradation through UV exposure to
show that such viability models can make accurate predictions in
a taxonomy-agnostic manner; a model that has only ever seen E.
coli squiggle data can predict viability in UV-exposed Chlamydia at
high recall and specificity (>0.9). The application to estimate the
viability of pathogenic Chlamydia is hereby of potentially immedi-
ate interest to veterinary scientists since traditional methods for
assessing the pathogen’s viability have been labor-intensive and
suffered from inherently high false-negative rates; more research
is, however, needed to assess to what extent this model can cap-
ture natural degradation in Chlamydia.

Our subsequent XAI analyses point to the potential role of
UV-induced DNA backbone damage for achieving accurate model
predictions in both species; the simplified XAI rule is, however,
not sufficient to correctly classify the majority of “dead” signal
chunks (recall of 0.39), which means that the residual neural net-
work has apparently identified additional more subtle signal pat-
terns that allow the full model to make more sensitive predictions
(recall of 0.74) while maintaining specificity and precision. More
research is therefore needed to fully understand the biological,
physical, or chemical underpinnings of our viability model predic-
tions; we, however, anticipate that future experiments for squig-
gle data generation, including on different taxonomic groups and
killing methods, will help us tease apart the origins of our current
XAl results.

Besides exploring the underlying rules of squiggle signal pat-
terns, the generalizability of such squiggle-based viability mod-
els also needs to be assessed in more detail, including for a wider
breadth of microbial taxa such as spore-forming bacteria or fungi,
and for a variety of degradation sources and intensities. Our pre-
liminary results indicate that our deep model that can accurately
predict UV-induced degradation cannot distinguish susceptible
and resistant bacteria in an antibiotic exposure experiment of
a simple mock community. We, however, show that training the
same residual neural network architecture on newly generated
killing method-specific squiggle data can achieve good accuracy
in the respective mock community (>0.7). While this application
shows the limits of our current models’ generalizability, we also
argue that clinical metagenomics might already profit from such
antibiotic-specific viability inferences: as previously discussed,
certain disinfection methods or systemic antibiotics in the clin-
ical setting often kill the bacteria before the DNA is destroyed [15,
17], leading to potential false-positive pathogen detections using
metagenomics; our viability model could give additional informa-
tion on the antibiotic exposure’s impact, and confidence could be
increased by accumulating viability evidence across sequencing
reads per pathogen of interest. In addition, we hypothesize that
models could be trained to detect damage induced by suboptimal
antibiotic usage, which has been implicated in the emergence of
new antibiotic resistances [51].

In order to achieve true metagenomic applications in the fu-
ture, the training data of a single model could be diversified in
terms of taxonomy and degradation, potentially increasing the
generalizability of its viability inferences. We also anticipate that
quantitative AI modeling has the potential to inform more dif-
ferentiated viability assessments, which might help quantify or
time degradation events and even decipher the relevance of dor-
mancy and metabolic inactivity in metagenomic studies [52, 53].
We envision many potential benefits of such a widely applica-
ble computational framework for microbial viability inference, in-
cluding for applications in environmental, veterinary, and clinical

settings. As is the case for epigenetic inferences [36-38], the via-
bility inference-enabling squiggle data are a complementary out-
put of any nanopore sequencing experiment of native DNA (and
RNA), which is then usually basecalled and archived for future
re-basecalling after potential basecalling model improvements.
This means that any future nanopore-based metagenomic study
could make viability predictions for free without additional costs
and laboratory work, and any existing archived nanopore data
could be assessed in terms of its microorganisms’ viability—which
would allow us to quantify the impact of dead microorganisms
on metagenomic analyses in a diversity of datasets and ecologi-
cal settings, as well as further explore factors such as species and
environment specificity.

Materials and Methods

Viability inference explorations in UV-exposed
E. coli

Training data generation

We cultured E. coli K12 in 200 mL Luria-Bertani (LB) medium for
24 hours at 37°C to reach the log phase of the growth curve. The
culture was then used to inoculate four 200 mL LB media in 1-L Er-
lenmeyer flasks, which were again incubated for 24 hours to reach
the growth log phase. One of the media was used as viable control,
that is, DNA was extracted from 750 uL of the living culture using
the spin column-based QIAGEN PowerSoil Pro Kit, following the
manufacturers’ instructions. The remaining 3 cultures were killed
by one of the following stressors: UV irradiation at 254 nm for
15 minutes, heat shock at 120°C for 5 minutes, or bead beating for
30 minutes. To then separate extracellular DNA from cell debris
and intact bacterial cells, we centrifuged the media for 10 minutes
at 4,000 x g and filtered the supernatant through 0.2-pm filters.
The resulting extracellular DNA was subsequently kept at room
temperature for 5 days to simulate the natural accumulation of
DNA degradation. DNA from dead bacteria was extracted from
these samples using the same extraction approach following the
QIAGEN PowerSoil Pro Kit protocol, but the first lysis buffer step
was omitted since cell lysis had already happened.

We then used Oxford Nanopore Technologies’ Rapid Barcod-
ing library preparation kit (RBK114-24 V14), R10.4.1 MinION flow
cells, and MinKNOW software v23.04.5 for shotgun nanopore se-
quencing of the “viable” and “dead” DNA. We used 4 barcodes for
each sample, resulting in DNA input of 800 ng and 218 ng for
the preparation of the “viable” and “dead” library, respectively. We
ran each library for 24 hours, using 2 different flow cells to avoid
any cross-contamination, and filtered the resulting nanopore data
at a minimum read length of 20 b. Raw nanopore data were
created using the standard translocation speed of 400 b/s and
a sampling frequency of 5 kHz. We applied Dorado [54] SUP-
basecalling model v4.2.0 (dna_r10.4.1_e8.2_400bps_sup@v4.2.0)
and 6mA-aware SUP-basecalling (6mA@v1) to all nanopore reads
that had passed internal data quality thresholds to obtain E.
coli DNA sequence data. We subsequently removed sequencing
adapters and barcodes using Porechop v0.2.3 [55].

Model training

We tested the implementation of different residual neural net-
works and transformer architectures to predict the binary via-
bility state from the raw nanopore data (0 = viable; 1 = dead).
The first residual neural network, ResNet1, consists of 4 layers,
each containing 2 bottleneck blocks. Each bottleneck block con-
sists of convolutional layers, batch normalization, and a rectified
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linear unit (ReLu) activation function. Each of the 4 layers con-
sists of an increasing number of convolutional channels: 20, 30,
45, and 65, respectively, followed by global average pooling and a
fully connected layer, resulting in 66,916 parameters. The model
then uses a softmax function to convert logits, the raw outputs
from the fully connected layer, into predicted probabilities rang-
ing from 0 to 1. We evaluated the training of the model using the
Adam optimizer for mini-batch gradient descent at 3 different LRs
(le-3, le-4, and 1le-5), training the model up to 1,000 epochs and
at a batch size of 1,000 signal chunks. We initialized the model
using Kaiming initialization. For ResNet2, we increased the num-
ber of convolutional channels to 40, 60, 90, and 135, respectively,
resulting in 1,828,777 parameters. For ResNet3, we increased the
number of convolutional channels to 512, 30, 45, and 67, respec-
tively, resulting in 2,479,140 parameters. The transformer model
was based on a positional encoding, a convolutional layer with a
channel number of 24, and 1 block of 1 attention head, resulting
in 219,586 parameters.

We processed the E. coli squiggle data by excluding the first
1,500 signal points (potential noise, adapter sequences, or bar-
codes), then cutting them into signal chunks of 10k signals, and
separated the chunks into balanced training (60%), validation
(20%), and test (20%) sets along each original sequencing read to
avoid that signal chunks from the same read would end up in the
same dataset. We pooled the viable and dead signal chunks to ob-
tain exactly balanced training, validation, and test sets. For nor-
malizing each chunk, we subtracted the median per chunk and
divided it by the median absolute deviation (MAD) to make the sig-
nal data robust to outliers. We then scaled the signal by the MAD
scaling factor 1.4826 and replaced outliers exceeding 3.5 times the
scaled MAD by the mean of their 2 neighboring values.

We also trained ResNet1 on the basecalled nanopore data (with
or without 6 mA basecalling) of viable and dead E. coli at a stan-
dardized chunk size of 800 b, which roughly corresponds to a sig-
nal chunk size of 10k signals. For encoding, we used a one-hot
encoding method to turn DNA sequences into unique binary vec-
tors. We then concatenated and saved these encoded sequences
as tensors for training and testing. We finally trained ResNet1 on
signal chunks of different signal lengths, ranging from 1k to 20k
signals.

For logistic regression training, we used the LogisticRegression
class from scikit-learn v1.2.2 with default parameters.

Explainable AI

We utilized CAMs to identify and visualize signals regions that in-
fluenced the model’s decision-making. As feature maps from the
final convolutional layer undergo a global average pooling layer
where each map is averaged and concatenated, we can calculate
the weighted sum of these feature maps using the weights of the
fully connected layer and project it back onto the preprocessed
signal [42]. To do so, we implemented CAM in Python/PyTorch.
During the forward pass, we ensure that the feature maps from
the last convolutional layer are captured. To compute the CAM,
we use the weights of the model’s output layer for the class of in-
terest, multiplying these weights with the corresponding feature
maps and then summing them up. We convert the resulting CAM
to an array and normalize its values to a range of 0 to 1. We then
overlay the CAM on the original input signal to identify the regions
most influential in the model’s decision-making process. We addi-
tionally used the Remora API to match raw nanopore data to the
corresponding Dorado-basecalled bases, to then manually inves-
tigate any obvious sequence abnormalities in the CAM regions.
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For consecutive masking of the CAM regions with the highest
CAM values, we used Python to first obtain and normalize the CAM
values of all true-positive signal chunks at P > 0.5 (n = 286,179),
identify the maximum value, mask the signal region (i.e., setting
to zero after MAD normalization) at a specified mask size (be-
tween 100 and 2k signals) centered on the maximum-CAM sig-
nal, and obtain updated prediction probabilities. We repeated this
masking step 5 times and calculated the confidence interval at
each masking step: We obtained the mean and standard error of
the mean (SEM) of the newly calculated prediction probabilities
across all signal chunks to calculate the 95% confidence interval
at mean =+ 1.96 x SEM. We plotted the results using matplotlib.

We next used Python to develop an algorithm to obtain a sim-
plified XAI rule to distinguish “dead” from “viable” signals chunks
based on our CAM results by identifying the presence of at least 1
sudden drop in the chunk. To identify those sudden drops, we first
calculated the mean and standard deviation (SD) of each signal
chunk and found that a scaling factor of 3 identified most man-
ually detected sudden drops at a vertical threshold of mean -3 x
SD.

Sequencing read-level inferences

To evaluate read-level performance, we leveraged the inherent
flexibility of ResNet architectures to handle variable-length input.
Prior to all read-level analyses, we removed chimeric reads us-
ing information from Dorado basecalling. Dorado splits chimeric
reads and tags the resulting child reads with a “pi” tag (par-
ent_read_id) in the BAM file, indicating their origin from an un-
split read. Using the pysam Python package, we extracted the read
IDs of the reads carrying the “pi” tag to exclude chimeric reads
from our downstream inference analysis. The nonchimeric reads
were subsequently filtered according to Kraken?2 v2.1.4-based tax-
onomic assignment to the Escherichia genus [56]. All sequencing
read-level inferences were made only on nonchimeric, correctly
taxonomically classified (on the genus level) reads.

Application to obligate intracellular Chlamydia

The C. suis strain S45 (kindly provided by J. Storz) was cultured as
described by Leonard et al. [57]. Briefly, chlamydiae were grown
in the epithelial rhesus monkey kidney cell line LLM-MK2 (pro-
vided by IZSLER) and prepared as semi-purified stock by scraping
infected cells into the supernatant and removing cellular debris
by centrifugation at 500 g for 10 min. Chlamydiae were then pel-
leted (10,000 x g, 45 minutes) and resuspended in sucrose phos-
phate glutamate (SPG) buffer. To determine the viability of this
stock, 1 aliquot was thawed on ice and separated into 2 tubes, of
which 1 was UV-inactivated using a Hoefer UVC 500 Ultraviolet
Crosslinker: briefly, samples were kept on ice and exposed to 8
watts of UV light at 12.5 cm for 30 minutes, similar to previously
described protocols [58]. All samples were prepared in biological
duplicates. UV-inactivated chlamydiae were then further incu-
bated at room temperature for 48 hours prior to further process-
ing, while viable chlamydiae were immediately processed. The re-
sulting 4 samples were divided into subsamples and used for cul-
tivation, vPCR, and nanopore sequencing.

For viability determination by culture, subsamples (approxi-
mately 1e7 IFU) were used to infect 4 glass coverslips (13 mm in
diameter; ThermoScientific) in 24-well plates (TPP Techno Plas-
tic Product AG) seeded to confluence with LLC-MK2 cells [59]. For
the “viable” subsamples, a 1:1,000 dilution was performed prior
to inoculation. The infection was then enhanced by centrifuga-
tion for 1 hour at 25°C (1,000 x g). After 48 hours of incubation
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at 37°C (5% CO»), cultures were fixed for 10 minutes in ice-cold
methanol. If cultures were free of chlamydiae, 1 well was scraped
and transferred to fresh monolayers up to 3 times to confirm neg-
ativity as described [60]. Coverslips were then processed using
a well-established immunofluorescence assay [61]. Briefly, DNA
was stained with 1 pg/mlL 4/,6-diamidino-2’-phenylindole dihy-
drochloride (DAPI; Molecular Probes). In parallel, inclusions were
labeled with a Chlamydiaceae-specific primary antibody (Chlamy-
diaceae LPS, Clone ACI-P; Progen), which was diluted 1:200 in
blocking solution consisting of 1% bovine serum albumin (BSA)
in phosphate-buffered saline (PBS; GIBCO, Invitrogen). Inclusions
were visualized with Alexa Fluor 488 goat anti-mouse (Molecular
Probes) diluted 1:500 in blocking solution. As a final step, cover-
slips were washed with PBS, mounted with FluoreGuard (Hard Set;
ScyTek Laboratories) on glass slides, and inclusions determined
using a Leica DMLB fluorescence microscope (Leica Microsystems)
and a 10x ocular objective (Leica L-Plan 10x/25 M; Leica Microsys-
tems). In parallel, a 3-fold dilution series of the sample was per-
formed in 96-well plates (TPP) and processed as above. The num-
ber of IFU/mL for the whole samples was then calculated based
on the number of inclusions detected using the Nikon Ti Eclipse
epifluorescence microscope at a 20x magnification [59].

For vPCR, subsamples (approximately 2e7 IFU) were taken and
mixed with 200 ul. SPG and 100 ulL PMA enhancer for Gram-
Negative Bacteria (5x; Biotium). PMAxx (Biotium) at a final con-
centration of 50 uM was added (“PMA-treated”) or not (“un-
treated”) to the subsamples. Samples were then exposed to a 650-
W light source using a PMA-Lite LED Photolysis Device (Biotium)
for 5 minutes, followed by 2 minutes on ice and additional light
exposure for 5 minutes [48]. For vPCR as well as nanopore se-
quencing (subsamples with approximately 5e8 IFU), DNA was ex-
tracted using the DNeasy Blood and Tissue Kit (QIAGEN) accord-
ing to the manufacturer’s instructions. The amount of chlamy-
dial DNA was quantified with a sensitive C. suis quantitative PCR
[62], based on a standard curve with recombinant plasmid con-
taining the amplicon target and calculated for the whole sample.
For subsequent nanopore sequencing of the DNA extracts (viable:
13-16 ng/pL; dead: 1.9-2.8 ng/uL), we followed the same approach
as described for E. coli above. Each viable sample was sequenced
using 1 barcode (input volume of 10 pL) and each dead sample
using 3 barcodes (input volume of 30 pL). Sequencing reads were
processed following the same steps used for the E. coli dataset.
Chimeric reads were identified using the “pi” tag added by Do-
rado and removed with the pysam Python package. Adapter and
barcode trimming was performed using Porechop, and taxonomic
classification was conducted with Kraken2 v2.1.4, retaining only
reads classified as Chlamydia.

Antibiotic exposure experiment

To generate data from a simple mock community, a carbenicillin-
susceptible E. coli strain and an ESBL-producing K. oxytoca strain
(ATCC 700324) were cultured on Muller-Hinton (MH) agar at 37°C
for 20 hours in 2 biological replicates. Susceptibility to penicillin
as an approximation of carbenicillin resistance was confirmed
by VITEK2 and growth curve analysis at 100 and 200 ng/uL.
Species identity was confirmed by Matrix-Assisted Laser Desorp-
tion/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF
MS) and Multi-Locus Sequence Typing (MLST). Cultures were in-
oculated at OD600 = 0.01 in 10 mL MH broth and incubated for
5 hours. Carbenicillin (200 ng/uL) was added during logarithmic
growth, followed by 20 hours of further incubation. DNA was ex-

tracted directly from 250 pL of uncentrifuged culture using the
same DNA extraction approach as described for UV-exposed E. coli.

To generate clean training data for an antibiotic exposure-
specific model, 2 biological replicates of the same E. coli strain were
used. For the viable samples, DNA was extracted from centrifuged
pellets (4,000 x g, 10 minutes) before antibiotic treatment, respec-
tively. For the dead samples, DNA was extracted from the filtered
supernatant (0.2 pm) 20 hours after carbenicillin exposure using
the same DNA extraction approach as described for UV-exposed
E. coli.

Nanopore sequencing and data processing were done as de-
scribed for E. coli above. All inferences were done on the sequenc-
ing read level and restricted to nonchimeric reads classified as Es-
cherichia or Klebsiella, respectively. Model training was also done as
described above, using the optimized ResNetl architecture, but
chunk size was set to 5k instead of 10k signals to increase the
size of the training dataset. The final dataset consisted of 330,000
chunks for training, 110,000 for validation, and 110,000 for testing.
The model was trained for up to 600 epochs using the Adam op-
timizer with a learning rate of le-5. The best validation accuracy
was achieved at epoch 550.

Availability of Supporting Source Code and
Requirements

Project name: Squiggle4Viability

Project homepage: https://github.com/Genomics4OneHealth/
Squiggle4Viability.git

Operating system(s): Platform independent

Programming language: Python

License: MIT

An archival version of the code is available via Software Her-
itage [63].

Additional Files

Supplementary Table S1. UV-killed E. coli viability inferences of
deep neural network and logistic regression models. Test dataset
performance metrics of residual neural networks (“ResNet”),
transformer architectures, and logistic regression models, trained
on various data modalities (nanopore squiggle “Signal” or base-
called DNA “Nucleotide” sequence) at various signal chunk sizes
(“Length”) and on sequencing read length or translocation speed
(“Trans speed”).

Supplementary Table S2. Sequencing read-level viability infer-
ences of UV ResNetl. Performance metrics across sequencing
reads of the ResNetl model trained on UV-killed E. coli for the E.
coli test dataset and 2 biological replicates (BR1 and BR2) of UV-
killed and viable Chlamydia suis. The number of total reads is the
number of sequencing reads after processing of the nanopore se-
quencing data by Porechop; the number of genus-classified reads
is the number of sequencing reads that map to the Escherichia
or Chlamydia genus, respectively, using Kraken2 (Materials and
Methods).

Supplementary Table S3. Cultivation, viability PCR (vPCR), and
nanopore sequencing metrics of UV-killed Chlamydia suis. Cul-
tivation titer in number of inclusion forming units (IFUs) per
milliliter, PMA-untreated vPCR reflecting total Chlamydia con-
tent, PMA-treated vPCR reflecting viable Chlamydia content and
Alogl0 of the PMA-treated copy number divided by the PMA-
untreated copy number reflecting overall viability, total number
of nanopore sequencing reads after Porechop processing, and
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number of Chlamydia-classified reads using Kraken2 (Materials
and Methods), of 2 biological replicates (BR1 and BR2) of viable
and dead C. suis.

Supplementary Table S4. Sequencing read-level viability infer-
ences of antibiotic exposure ResNet1. Performance metrics across
sequencing reads of the ResNetl model trained on antibiotic-
exposed E. coli for the E. coli test dataset and held-out biological
replicates (BRs). The number of E. coli reads is the number of se-
quencing reads after processing of the nanopore sequencing data
by Porechop and mapping to the Escherichia genus using Kraken?2
(Materials and Methods).

Supplementary Fig. S1. Training and validation loss across deep
neural network architectures tested for nanopore squiggle signal-
based viability inference. (A-C) Model loss of ResNet1 at learning
rates (LRs) of 1le-3, 1le-4, and le-5. (D-F) Model loss of ResNet2 at
LRs of 1e-3, 1le-4, and 1e-5. (G-I) Model loss of ResNet3 at LRs of
le-3, le-4, and le-5. (J-L) Model loss of the transformer models
at LRs of le-3, le-4, and 1le-5. The solid blue line indicates the
training loss, the solid red line indicates the validation loss, and
the dashed line indicates the minimum validation loss from the
final ResNet1, LR = le-4, model.

Supplementary Fig. S2. Training and validation loss of ResNet1 at
various signal chunk sizes. The signal chunk size varies: (A) 1k, (B)
Sk, (C) 7k, (D) 10k, (E) 12k, and (F) 20k. The solid blue line indicates
the training loss, the solid red line indicates the validation loss,
and the dashed line indicates the minimum validation loss from
the final ResNet1 model using a signal chunk size of 10k.
Supplementary Fig. S3. Exemplary drops in ResNetl prediction
probabilities in nanopore signal chunks after consecutive mask-
ing of the signal region with the respectively highest CAM value.
Figure headers: signal chunk ID/total number of masked signal val-
ues/prediction probability per signal chunk “prob.” Left to right:
Five exemplary nanopore signal chunks (length of 10k signals). Top
to bottom: Consecutive masking of 200 signal values per masking
event (Materials and Methods). Legends: Red-colored CAM value
visualizations; higher CAM values indicate stronger feature map
activations.

Supplementary Fig. S4. Exemplary nanopore signal patterns of
antibiotic-killed E. coli sequencing reads and XAI Class Activation
Mapping (CAM). Legend: Red-colored CAM value visualizations;
higher CAM values indicate stronger feature map activations.

Abbreviations

AUC: area under the curve; AUPR: area under the precision-recall
curve; AUROC: area under the receiver operating characteristic
curve; BSA: bovine serum albumin; CAM: Class Activation Map;
EMA: ethidium monoazide; FC: fully connected; GAP: global av-
erage pooling; LB: Luria-Bertani; LR: learning rate; MAD: median
absolute deviation; MAG: metagenome-assembled genome; MH:
Miller-Hinton; PBS: phosphate-buffered saline; PMA: propidium
monoazide; ResNet: Residual Neural Network; ROC: receiver op-
erating characteristic; SEM: standard error of the mean; SPG: su-
crose phosphate glutamate; vPCR: viability PCR; XAI: explainable
artificial intelligence.
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