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Abstract 

Background: The ability to differentiate between viable and dead microorganisms in metagenomic data is crucial for various micro- 
bial inferences, ranging from assessing ecosystem functions of environmental microbiomes to inferring the virulence of potential 
pathogens from metagenomic analysis. Established viability-resolved genomic approaches are labor-intensive as well as biased and 

lacking in sensitivity. 

Results: We here introduce a new fully computational framework that leverages nanopore sequencing technology to assess microbial 
viability directly from freely available nanopore signal data. Our approach utilizes deep neural networks to learn features from such 

raw nanopore signal data that can distinguish DNA from viable and dead microorganisms in a controlled experimental setting of 
UV-induced Escherichia cell death. The application of explainable artificial intelligence (AI) tools then allows us to pinpoint the signal 
patterns in the nanopore raw data that allow the model to make viability predictions at high accuracy. Using the model predictions as 
well as explainable AI, we show that our framework can be leveraged in a real-world application to estimate the viability of obligate 
intracellular Chlamydia , where traditional culture-based methods suffer from inherently high false-negative rates. This application 

shows that our viability model captures predictive patterns in the nanopore signal that can be utilized to predict viability across tax- 
onomic boundaries. We finally show the limits of our model’s generalizability through antibiotic exposure of a simple mock microbial 
community, where a new model specific to the killing method had to be trained to obtain accurate viability predictions. 

Conclusions: While the potential of our computational framework’s generalizability and applicability to metagenomic studies needs 
to be assessed in more detail, we here demonstrate for the first time the analysis of freely available nanopore signal data to infer the 
viability of microorganisms, with many potential applications in environmental, veterinary, and clinical settings. 
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Introduction 

While microbial cultivation remains a foundational technique in 

microbiology to assess the taxonomic composition of microbial 
communities and to understand their physiology and ecosystem 

functions [ 1 ], only a small fraction of microbial diversity has been 

isolated in pure culture [ 2 ]. This limitation has led to undiscovered 

functions and biased representations of the phylogenetic diversity 
of microbial communities in nearly all of Earth’s environments [ 2 ].
While medically relevant microorganisms of the human micro- 
biome often constitute an exemption since they have been dis- 
proportionately well studied through microbial cultures [ 3 ], the 
clinical application of microbial cultivation for pathogen profiling 
is further limited by its time-consuming and labor-intensive na- 
ture [ 4 ]. 
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The first studies of the so-called “microbial dark matter” have 
een enabled by advances in culture-independent molecular 
ethodology [ 5 ] and have been based on amplifications of con-

erved marker regions such as ribosomal RNA genes [ 6 ]. Such
argeted metabarcoding approaches, however, suffer from several 
imitations: they can often not provide strain- or even species-
evel taxonomic resolution, are highly dependent on genomic 
atabase completeness, do not allow for any functional infer- 
nces or virulence annotations, and often introduce amplification 

ias due to differential amplification efficiency and primer mis- 
atches, which can significantly distort the representation of mi- 

robial community compositions [ 7 ]. 
Metagenomics, on the other hand, is a shotgun sequencing–

ased molecular methodology that can assess the entirety of DNA
e. This is an Open Access article distributed under the terms of the Creative
h permits unrestricted reuse, distribution, and reproduction in any
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solated from an environment or a sample and de novo assem-
lies of potentially complete microbial genomes of all present mi-
roorganisms; such genome-based approaches provide a variety
f phylogenetically informative sequences for taxonomic classifi-
ation, information about the metabolic and virulence potential
f microorganisms, and the potential to identify completely novel
enes [ 8 , 9 ]. 

Especially long-read metagenomic approaches have shown
reat promise in achieving highly contiguous de novo assemblies
hrough the recovery of high-quality metagenome-assembled
enomes (MAGs) from complex environments; specifically, the lat-
st advances in nanopore sequencing technologies have resulted
n high sequencing accuracies of very long sequencing reads of
p to millions of bases, which have allowed for the generation of
undreds of MAGs from metagenomic data, including the genera-
ion of closed circularized genomes [ 10 , 11 ]. Nanopore sequencing
echnology is based on the interpretation of the disruption of an
onic current due to a motor protein guiding individual nucleotide
trands through nanopores embedded in an electrically resis-
ant polymer membrane at a consistent translocation speed [ 12 ].
his raw nanopore signal, or “squiggle” data, can then be trans-

ated into nucleotide sequence using bespoke neural network–
ased basecalling algorithms [ 13 ], which—when efficiently em-
edded on powerful GPUs—can generate genomic data in real
ime. The portable character and straightforward implementation
f nanopore sequencing at low upfront investment costs further
ake this technology accessible for fast microbial and pathogen

ssessments at the point of interest all around the world, includ-
ng in low- and middle-income countries [ 14 ]. 

In contrast to cultivation-based approaches, molecular meth-
ds suffer from their inherent deficiency of not being able to dif-
erentiate between viable and dead microorganisms [ 2 , 15 ]. While
ultivation-based approaches only detect viable microorganisms,
NA might remain intact and therefore accessible by molecular
ethods despite the respective microorganisms being dead [ 15 ,

6 ]. This would be relevant in the context of clinical infection pre-
ention and control and pathogen monitoring, where certain dis-
nfection methods or the use of systemic antibiotics often kill the
acteria before the DNA is destroyed [ 15 , 17 ], but also for under-
tanding the ecosystem functions of thus far understudied mi-
robiomes [ 2 ]. For example, the air microbiome has been shown
o be remarkably diverse and variable when assessed through
anopore metagenomics [ 18 ], but given the low biomass of this
nvironment, it is expected that many microorganisms might be
ead and stem from adjacent environments such as soil or water.
he persistence of the DNA of dead microorganisms in the en-
ironment might hereby depend on many factors, including ex-
ernal conditions, such as temperature, pH, and microbial activ-
ty, and internal, taxon-specific parameters, such as microbial cell
all composition. Viability-resolved metagenomics would, how-

ver, be crucial for the interpretation of metagenomic data, rang-
ng from outbreak source detection [ 19 ], food safety [ 20 ], and pub-
ic health investigations [ 21 ] to ecosystem function inferences
 22 ]. 

To assess microbial viability from genomic data, several ap-
roaches have been developed: culture-dependent viability meth-
ds combine the advantages of cultivation-based and molec-
lar approaches by growing certain microorganisms of inter-
st on selective media; this approach, however, remains time-
onsuming and labor-intensive and suffers from the same selec-
ivity of growth media and culturable microorganisms as purely
ultivation-based approaches [ 23 ], especially for fastidious or obli-
ate intracellular microorganisms [ 24 ]. Microbial viability has fur-
her been described by metabolic activity, where microbial cells
re incubated with specific substrates, leading to ATP production,
etrazolium salt reduction, or radiolabeled substrate incorpora-
ion [ 25 ]. Further, ribosomal RNA may be assessed as a read-out
f microbial activity [ 26 ]. To what extent such metabolic activity
an be used as a proxy for microbial viability, however, remains
o be explored [ 26 ]. While messenger RNA has been used as a
iable/dead marker due to its intrinsic instability outside of the
icrobial cell [ 27 , 28 ], the metatranscriptome still has to be sta-

le enough in the environment to be detectable at all, potentially
eading to many false-negative detections; if only 1 gene is tar-
eted, the analyzed gene further has to be expressed shortly be-
ore cell death. Additional potential problems stem from the rela-
ively challenging extraction protocols due to the RNA’s instability
nd from the evolutionary conservation of gene sequences, which
an hamper taxonomic resolution [ 15 ]. 

Finally, an aspect that can be used for viability-resolved
etagenomics is the physical difference between viable and dead

ells: viability PCR (vPCR) uses DNA-intercalating dyes such as
thidium monoazide (EMA) or propidium monoazide (PMA) to dif-
erentiate between viable and dead cells. These dyes penetrate
nly dead cells with compromised membranes and bind to their
NA via covalent bonds upon photoactivation, preventing them

rom being amplified during subsequent PCR [ 15 , 17 ]; this ap-
roach has been applied to a diverse array of Gram-negative and
ram-positive bacteria, as well as to assess the effectiveness of
isinfection and heat treatment [ 25 ]. It, however, relies on the as-
umption that membrane integrity is a reliable indicator of viabil-
ty, which can lead to overestimation of viability if cells lose viabil-
ty without immediate membrane compromise [ 29 ] and can be bi-
sed by the dye’s variable permeability across different microbial
ell wall structures [ 30 , 31 ]. The dependence of the approach on
hotoactivation further means that turbid material might ham-
er the efficiency of the dye [ 32 ]. 

All these established viability-resolved metagenomic ap-
roaches are labor-intensive, require additional reagents and
ample processing, and are often biased and lack sensitivity. We
ere hypothesized that the raw, freely available nanopore signal

rom metagenomic datasets might be leveraged to infer microbial
iability, assuming that the native DNA from dead microorgan-
sms accumulates detectable squiggle signatures due to, for ex-
mple, external damage through UV, heat, or drought exposure;
he lack of DNA repair mechanisms; or enzymatic degradation ac-
ivity [ 33–35 ]. Such an analysis framework could be fully compu-
ational and utilize squiggle data that are automatically obtained
ith nanopore sequencing. While raw nanopore data are known

o contain information about epigenetic modifications [ 36–38 ] and
xidative stress at specific human telomere sites [ 39 ], the applica-
ility to assess microbial viability has not yet been tested. 

In this study, we produced experimental nanopore sequencing
ata from viable and UV-killed Escherichia coli cultures to optimize
eep neural networks to predict viability just from the nanopore
quiggle signal. We then applied explainable artificial intelligence
XAI) tools, which allow us to identify the specific nanopore sig-
al patterns in the input data that allow the model to deliver
igh-accuracy predictions as an output. We show that our com-
utational framework can be leveraged in a real-world applica-
ion to estimate the viability of obligate intracellular Chlamydia
uis , pointing toward the applicability of our model across taxo-
omic boundaries, including to species with highly complex life
ycles. We finally explore the limits of our model’s generalizability
hrough antibiotic exposure of a simple mock microbial commu-
ity, where we had to train a new killing method–specific model
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Figure 1: Training and viability inference on UV-killed E. coli of ResNet1. (A) Model loss for training and validation datasets across 1,000 epochs; the 
minimum validation loss of ResNet1 was reached at epoch 677. (B) Prediction probability threshold optimization on the validation dataset resulted in a 
probability threshold of 0.5 for obtaining maximum accuracy. Inset: Performance of ResNet1 on the test dataset (Materials and Methods). (C) Test 
dataset performance of ResNet1 in terms of precision–recall (PR; magenta ) and receiver operating characteristic (ROC; green ) curves and their 
respective areas under the curve (AUPR, AUROC). 
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to obtain accurate viability predictions. While the extent of our 
computational framework’s generalizability needs to be assessed 

in more detail, we here demonstrate for the first time the poten- 
tial of analyzing freely available nanopore signal data to infer the 
viability of microorganisms, with many applications in environ- 
mental, veterinary, and clinical settings. 

Results and Discussion 

Viability model training and inference 

We generated controlled training data by nanopore sequencing 
native DNA of viable and dead E. coli (Materials and Methods). We 
killed E. coli cultures using different stressors to then isolate the 
extracellular DNA and expose it to natural degradation. We ob- 
tained only enough DNA for subsequent shotgun sequencing from 

the viable culture and from the culture killed through rapid UV ex- 
posure (viable: 212 ng/μL; UV: 5.46 ng/μL; heat shock: 0.03 ng/μL; 
bead beating: 0.67 ng/μL; Materials and Methods). We repeated 

this experiment and confirmed that rapid heat shock, as well as 
bead beating exposure, again resulted in very low DNA concen- 
trations, suggesting quick and complete DNA degradation. We hy- 
pothesize that UV exposure is the only stressor in our study that 
simultaneously destroys bacterial cell walls and inactivates DNA- 
degrading enzymes. In contrast, heat shock at 120◦C and bead 

beating might not uniformly degrade all enzymatic activity [ 40 ,
41 ], potentially allowing residual DNA-degrading enzymes to per- 
sist and contribute to the degradation of genomic material dur- 
ing subsequent natural exposure. We therefore created nanopore 
shotgun sequencing of the viable and the UV-exposed culture,
which resulted in 2.92 Gbases (Gb; median read length of 2,476 b) 
and 2.69 Gb (median read length of 1,606 b) of sequencing output,
respectively (Materials and Methods). 

We then tested the implementation of different neural network 
architectures to predict the binary viability state from the raw 

nanopore data (0 = viable; 1 = dead after UV exposure; Materials 
and Methods). We processed the E. coli nanopore signal, or “squig- 
gle,” data, cut it into altogether 3,181,600 signal chunks of 10k sig- 
nals, and separated the chunks into balanced training (60%), val- 
idation (20%), and test (20%) sets along each original sequencing 
read to avoid that signal chunks from the same read would end up 

in the same dataset (Materials and Methods). These signal chunks 
ere then treated as 1-dimensional time-series signal data of con-
istent length. We trained the different model architectures us- 
ng different learning rates (LRs) up to 1,000 epochs, assessing
he models’ performance based on training and validation loss af-
er each epoch (Materials and Methods; Supplementary Table S1 ;
upplementary Fig. S1 ). The loss plot of our best-performing
odel, a residual neural network with convolutional input lay- 

rs (configuration Residual Neural Network [ResNet] 1; LR = 1e-
; Supplementary Table S1 ; Supplementary Fig. S1 ; Materials and
ethods), shows minimal overfitting when the minimum valida- 

ion loss is reached at epoch 667 (Fig. 1 A). The other residual neu-
al network architectures (ResNet2, ResNet3), on the other hand,
esulted in overfitting to the training data at any LR, and the
ransformer architecture did not reach the minimum validation 

oss of ResNet1 ( Supplementary Fig. S1 ). We next only focused on
esNet1 and optimized its probability threshold using the valida- 
ion set; in order to obtain a high accuracy, we maintained the
robability threshold at the default value of 0.5 (Fig. 1 B), which
esulted in a good final performance on the test data with an
ccuracy of 0.83 and a F1 score of 0.81 (Fig. 1 B, inset ) as well as
rea under the curve (AUC) values of 0.90 (area under the receiver
perating characteristic curve [AUROC]) and 0.92 (area under the 
recision–recall curve [AUPR]; Fig. 1 C). 

We also trained the same residual neural network architecture 
esNet1 on the basecalled nanopore data of viable and dead E. coli
t a standardized chunk size of 800 b, which roughly corresponds
o the signal chunk size of 10k signals (Materials and Methods).
ndependent of whether we only basecalled the canonical bases 
r used a N6-methyladenine (6 mA) modification-aware basecall- 
ng model (Materials and Methods), the model could not be trained
o distinguish viable from dead data just from basecalled DNA se-
uence data ( Supplementary Table S1 ). This shows that our model
aptures patterns in the squiggle data that go beyond the en-
oding of nucleotides and their known epigenetic modifications.
hile this was expected since we used the same E. coli culture
ith the same reference genome to create the viable and dead
atasets, we can rule out that our squiggle-based model captured
ny random differences in DNA sequence context between the 2
atasets that might have occurred by chance. 

We additionally obtained the performance of ResNet1 
or different signal chunk sizes ( Supplementary Fig. S2 ;

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf100#supplementary-data
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https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf100#supplementary-data
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upplementary Table S1 ), and we found that viability pre-
iction performance was possible from a minimum chunk size of
pproximately 5k but that performance further improved with in-
reasing chunk size. This shows that larger signal chunks contain
ore information that can be used by our model to make more

ccurate per-chunk predictions despite a consequently reduced
ize of the training dataset. We here stick to our original model
ith a chunk size of 10k signals, which resulted in relatively good
erformance (Fig. 1 ; Supplementary Table S1 ). 

We finally trained 2 logistic regression models using only the
ead length and translocation speed per sequencing read as
he input feature, respectively, to compare the performance of
ur squiggle-based deep neural network with simple baseline
odels. Both models substantially underperformed in compar-

son to our model ( Supplementary Table S1 ). The read length
odel performed similarly to a random classifier (accuracy of 0.5;

upplementary Table S1 ), showing that the read length distribu-
ion difference between the viable and dead sequencing datasets
annot be leveraged to infer viability in this dataset. We also argue
hat while a difference in read length distribution between viable
nd dead microbes might be expected in other settings, for exam-
le, after stronger or longer degradation exposure, such a differ-
nce would have to be substantial to allow for accurate viability
lassifications of each individual sequencing read. In mixed mi-
robial communities, the read length distribution would further
e confounded by the microbial composition and the respective
enome sizes. The translocation speed model reached a slightly
igher accuracy of 0.59 ( Supplementary Table S1 ), which might
e explained by UV-induced twists or kinks in the DNA backbone
aving a slight impact on the translocation of the sequencing
ead. 

xplainable AI application 

e implemented Class Activation Maps (CAMs) as an XAI method
 42 ] to identify the most important regions in the nanopore sig-
al data that inform the model’s viability classifications (Materi-
ls and Methods; Fig. 2 A). We found that “dead” signal chunks ex-
ibited discrete regions of increased CAM values (“CAM regions”
efined at CAM values > 0.8; Fig. 2 B for several true-positive clas-
ifications of the test dataset). To confirm the importance of these
AM regions for the model’s final predictions, we applied consec-
tive masking of the regions with the highest CAM values within
ach nanopore signal chunk ( Supplementary Fig. S3 for several
xamples); we observed that the prediction probability for being
lassified as “dead” decreased with increased masking of CAM-
elevant regions, either by consecutively masking regions using a
onsistent mask size or by increasing the mask size (from 100 to
k signals; Fig. 2 C). This shows that the CAM application reliably
inpoints patterns in the nanopore signal that are predictive for
ur viability model. 

We used the CAM regions to manually investigate the squiggle
ignals and found that many CAM regions of “dead” signal chunks
ncluded a sudden substantial drop in the nanopore signal. We
herefore developed a simple algorithm that identifies such sud-
en drops and applied this XAI rule to our test dataset (Materials
nd Methods; Fig. 2 D). We here classified any signal chunk with at
east one sudden drop as “dead” and all others as “viable.” While
his simplified algorithm led to a drop in overall performance, we
ould still reach a relatively good overall accuracy of 0.68 (in com-
arison to 0.83 of the full model; Fig. 2 E). While the XAI rule main-
ained performance in terms of specificity and precision, we ob-
erved a substantial drop in recall in comparison to the full model
now 0.39 instead of 0.74). This shows that while the absence of a
udden drop in the nanopore signal data seems to reliably predict
iability, not all “dead” signal chunks contain such a sudden drop.
hile this sudden-drop detection still seems to be at the core of

ur model’s interpretability (when focusing on high-confidence
rue positive chunks at P > 0.99, the recall increased to 0.68), the

odel seems to additionally detect more subtle patterns in the
anopore signal data, which allow it to increase recall while main-
aining specificity and precision. 

Based on our previous experience with squiggle data analy-
is [ 43 , 44 ], we hypothesize that the substantial sudden drops
n nanopore signal might be caused by a twist or kink in the
NA backbone, for example, from 6 to 4 photoproduct pyrimidine
imers. The drop would then mark the event of a pore getting
locked due to such damage. Such a twist could also lead to a
talling signal if it impairs the motor protein from processing the
NA strand, which we indeed partially observed in our data (e.g.,

op signal chunk of Fig. 2 B, D). While we here hypothesize that UV
xposure might have caused such twists in the DNA backbone, we
ntend to explore the biological, chemical, and physical features
etected by squiggle-based viability models in more detail in fu-
ure nanopore-based microbial studies. 

equencing read-level viability predictions 

e finally assessed the performance of our viability model on the
equencing read level instead of on the chunk level by leveraging
he capability of ResNets to handle variable input lengths. When
hifting the test dataset analysis from the chunk to the read level
Materials and Methods), the prediction performances increased
ubstantially, from an accuracy of 0.83 (chunk) to 0.96 (read), and
ith an improved AUPR of 0.99 (instead of 0.92 on the chunk level)
nd AUROC of 0.99 (instead of 0.90 on the chunk level) (Fig. 3 A;
upplementary Table S2 ). These improvements indicate that the
odel might be able to use cumulative information per sequenc-

ng read to increase overall prediction performance. Addition-
lly, such read-level viability predictions enable inferences from
hort sequencing reads that had to be excluded from chunk-level
nalyses; our model achieved good prediction performance on all
uch previously excluded short reads (in our case, reads shorter
han < 11.5k signals; n = 166,628 reads; accuracy: 0.80, AUPR:
.89, AUROC: 0.87). Given this improved performance, including
n previously excluded short sequencing reads, and given that any
enomic analysis including taxonomic assignment is usually ap-
lied to the unit of the read, we will report all prediction perfor-
ances in the remaining article on the level of sequencing reads.

pplication to obligate intracellular Chlamydia 

e next applied our computational viability framework to distin-
uish viable from dead C. suis cells, an obligate intracellular bacte-
ial species found endemically in the gastrointestinal tract of pigs
ith high infection rates in pig farms [ 45 , 46 ]. Like other members
f the Chlamydiacea family, these bacteria are defined by a com-
lex biphasic life cycle comprising infectious elementary bodies
nd dividing reticulate bodies [ 47 ]. These unique properties ren-
er both cultivation- and vPCR-based approaches for viability es-
imations complicated [ 48 ]. We here took 2 samples from a viable
. suis culture as biological replicates (BRs 1 and 2) and subjected
hem to UV treatment (Materials and Methods). We obtained first
nsights into their viability using cultivation- and vPCR-based ap-
roaches (Materials and Methods). In the case of cultivation, UV-
reated C. suis cells were unable to form viable inclusions in cell
ulture, whereas the untreated samples showed high infectivity

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf100#supplementary-data
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Figure 2: Explainable AI for interpretability of ResNet1. (A) CAMs leverage the global average pooling (GAP) layer right before the fully connected (FC) 
layers of the residual neural network to map model interpretability onto the input features; they are generated by aggregating the final convolutional 
layer’s feature maps through a weighted sum, highlighting nanopore signal regions that allow the neural network to make accurate predictions. (B) 
Exemplary nanopore signal chunks that were classified as “dead” at a prediction probability of P > 0.99 and their CAM values. Higher CAM values 
indicate stronger feature map activations. (C) Impact of consecutive masking ( n = 5 masking events) of the signal region with the highest CAM value 
per signal chunk (x-axis) on the model’s prediction probability (y-axis); 5 different mask sizes (from 100 to 2k signals) were used. (D) Application of a 
simplified XAI rule that classifies signal chunks according to the presence of a “sudden drop” (Materials and Methods; green: mean signal per chunk; 
red: threshold for sudden drop definition; yellow: identification of sudden drops in the exemplary signal chunks). (E) Comparison of the performance 
of the full model (ResNet1) with the simplified XAI rule. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giaf100/8246397 by guest on 06 January 2026



6 | GigaScience, 2025, Vol. 14

A

C

D

B

Figure 3: Application of the E. coli –trained ResNet1 to obligate intracellular Chlamydia suis . (A) ResNet1 performance on the E. coli test dataset on the 
chunk level ( dashed ) and on the sequencing read level ( solid ) in terms of precision–recall (PR; magenta ) and receiver operating characteristic (ROC; green ) 
curves and their respective areas under the curve (AUPR, AUROC). (B) ResNet1 performance on the C. suis sequencing reads across 2 biological 
replicates (BR1 and BR2; light and dark lines, respectively) in terms of PR ( magenta ) and ROC ( green ) curves and their respective AUPR and AUROC. (C) 
Sequencing read-level comparison of ResNet1 classifications of the E. coli test and the C. suis datasets. Top row : Binary model predictions for viable and 
dead E. coli and C. suis , respectively, at the optimized prediction probability threshold of 0.5; bottom row : respective normalized distributions of model 
prediction probabilities across all sequencing reads. For E. coli , all 59,171 “viable” and 72,207 “dead” sequencing reads from the test dataset are shown; 
for C. suis , all 54,853 “viable” and 23,073 “dead” sequencing reads from both biological replicates are shown. (D) Squiggle signal of exemplary C. suis 
sequencing reads that were correctly classified as “dead” and their CAM values; higher CAM values indicate stronger feature map activations 
(Materials and Methods). 
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with 8.48e7 (BR1) and 6.23e7 (BR2) inclusion-forming units per 
milliliter (IFU/mL; Supplementary Table S3 ). In the case of vPCR,
all samples were processed with and without PMA [ 48 ] to quan- 
tify the respective amounts of chlamydial DNA with a sensitive 
C. suis –specific quantitative PCR [ 49 , 50 ] (Materials and Methods).
We assessed the difference in copy number per milliliter between 

PMA-treated and untreated DNA as �log10, resulting in 0.82 and 

0.81 for the viable samples, as well as 1.51 and 2.02 for the killed 

samples (BR1 and BR2, respectively; Supplementary Table S3 ).
These results are comparable to a previous study in which fresh 

Chlamydia trachomatis culture was heat-killed, and an absence of 
viable Chlamydia resulted in a �log10 Chlamydia of 3.01, whereas 
a viability ratio of 100% resulted in a �log10 Chlamydia of 0.37 
[ 48 ]. Cultivation and vPCR therefore confirmed that UV treatment 
had completely inactivated previously viable C. suis cells and had 

strongly reduced the amount of “viable” DNA in both biological 
replicates. Nanopore sequencing of the viable and dead C. suis 
cells identified 28,210 viable and 8,771 dead (BR1) and 26,643 vi- 
able and 14,302 dead (BR2) Chlamydia -classified sequencing reads 
(Materials and Methods; Supplementary Table S3 ). 

Our E. coli data-trained ResNet1 model achieved strong se- 
quencing read-level viability prediction performances across both 

C. suis biological replicates (Materials and Methods). At the previ- 
ously optimized probability threshold of 0.5, the model achieved 

an accuracy of 0.93 (both BRs), F1 score of 0.87 and 0.90 (BR1 and 

BR2), precision of 0.80 and 0.85, recall of 0.95 and 0.96, and speci- 
ficity of 0.92 and 0.91, respectively ( Supplementary Table S2 ). Us- 
ing threshold-independent metrics, the model achieved an AU- 
ROC of 0.97 (both BRs) and an AUPR of 0.94 and 0.96, respectively 
(Fig. 3 B). The slightly lower precision obtained by the model’s ap- 
plication to BR1 might stem from a slightly higher ratio of viable 
reads in this biological replicate (76.3% in BR2 vs. 65.1% in BR2).
When pooling the model’s viability predictions across the 2 biolog- 
ical replicates, the percentage of correctly classified sequencing 
reads (Fig. 3 C, top row ) and the prediction probability distributions 
across reads (Fig. 3 C, bottom row ) are comparable with sequencing 
read-level performances in the original E. coli test dataset (Fig. 3 C,
left ). This shows a certain degree of generalizability of our viabil- 
ity model beyond taxonomic boundaries despite the model being 
trained only on E. coli data. While both bacterial species are Gram- 
negative, they substantially differ in their ecology and life cycles,
suggesting a potential applicability of deep models to nanopore 
squiggle data for taxonomy-agnostic viability predictions. The ap- 
plication of XAI to the C. suis sequencing reads further shows that 
the CAMs also highlight sudden drops in the C. suis squiggle data 
(Fig. 3 D), suggesting that UV exposure led to similar damage in 

both bacterial species. The killing method or, more generally, the 
source of degradation might therefore be the main determinant 
of viability-predictive features in nanopore squiggle data. 

Viability inference after antibiotic exposure of a 

mock community 

To test whether our ResNet1 model that was trained on UV- 
killed E. coli could be used for viability predictions using a dif- 
ferent killing method, we generated 2 biological replicates (BR1 
and BR2) of a mock community of carbenicillin-susceptible E. coli 
and carbenicillin-resistant Klebsiella oxytoca . Nanopore sequenc- 
ing of the mock community after carbenicillin exposure resulted 

in 239,316 and 240,178 E. coli sequencing reads (number of reads 
mapping to the Escherichia genus in BR1 and BR2) and in 991,019 
and 954,602 K. oxytoca sequencing reads for the experiment (num- 
ber of reads mapping to the Klebsiella genus in BR1 and BR2; Mate- 
ials and Methods). Across both species and biological replicates,
ost of the sequencing reads were classified as viable ( E. coli :

2.2% and 76.4%; K. oxytoca : 80.8% and 87.4%, for BR1 and BR2,
espectively), showing that ResNet1 could not distinguish suscep- 
ible from resistant bacteria after antibiotic exposure. This finding 
upports our hypothesis that the killing method or, more gener- 
lly, the source of degradation might be the main determinant of
iability-predictive features in nanopore squiggle data. 

We therefore explored if we could train a new model using
he same previously optimized ResNet1 architecture to accurately 
redict viability after antibiotic exposure. We first generated a 
lean antibiotic exposure training dataset of a single bacterial 
pecies by nanopore-sequencing the susceptible E. coli strain be- 
ore and after exposure; similar to the UV-treated E. coli , we addi-
ionally made sure to (i) only sequence cell-free DNA for the dead
iability class by stringent centrifugation and filtering of the su-
ernatant and to (ii) mainly sequence DNA from intact cells for
he viable class by only processing the pellet after centrifugation
Materials and Methods). The newly trained antibiotic ResNet1 

odel achieved a test dataset accuracy of 0.73 on the sequenc-
ng read level, with an AUPR of 0.98 and an AUROC of 0.87, and
 performance on a held-out biological replicate of 0.68 accuracy,
ith an AUPR of 0.95 and an AUROC of 0.80 (based on 16,810 vi-
ble and 103,120 dead sequencing reads that were classified as
scherichia ; Supplementary Table S4 ; Materials and Methods). 

We then applied this antibiotic ResNet1 model to the antibiotic
xposure mock community; this time, most of sequencing reads 
rom the susceptible E. coli were classified as dead (75.7% and
5.9%, for BR1 and BR2), while the majority of K. oxytoca was still
orrectly classified as viable (70.1% and 71.7%). The application 

f our XAI framework showed that this new antibiotic ResNet1
id not detect any sudden drops in the squiggle data that were
reviously identified by the UV ResNet1’s CAMs in dead sequenc-

ng reads ( Supplementary Fig. S4 for a few examples), showing
hat this new model seemed to have identified different squiggle
ignatures indicative of degradation through antibiotic exposure.
hese preliminary results suggest that our viability model can be
uned to classify viability in different degradation contexts and 

hat such models can potentially be applied to separate resistant
rom susceptible bacteria in mixed microbial communities. 

I- and nanopore-empowered viability-resolved 

etagenomics 

hile metagenomic approaches provide the unique opportunity 
f generating de novo assemblies and potentially complete micro- 
ial genomes to explore the “microbial dark matter” as well as
o infer potential functions such as metabolic and virulence po-
ential [ 8 , 9 ], they have suffered from their inability to differenti-
te between viable and dead microorganisms [ 2 , 15 ]. Such viabil-
ty inferences can, however, distort any microbial inference, rang- 
ng from assessing ecosystem functions of environmental micro- 
iomes to inferring the virulence of potential pathogens. As es-
ablished viability-resolved metagenomic approaches are labor- 
ntensive as well as biased and lack sensitivity (e.g., [23] ), we
ere show first evidence that a fully computational framework 
ased on residual neural networks with convolutional data pro- 
essing layers can leverage raw nanopore signal data, also known
s squiggle data, to make accurate inferences about microbial via-
ility. Using experimentally killed bacterial cultures and a simple 
ock microbial community, we show that such models can in-

er viability from sequencing reads at high accuracy, potentially 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf100#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf100#supplementary-data
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llowing for simultaneous taxonomic and viability classifications
n metagenomic datasets. 

We first leverage microbial degradation through UV exposure to
how that such viability models can make accurate predictions in
 taxonomy-agnostic manner; a model that has only ever seen E.
oli squiggle data can predict viability in UV-exposed Chlamydia at
igh recall and specificity ( > 0.9). The application to estimate the
iability of pathogenic Chlamydia is hereby of potentially immedi-
te interest to veterinary scientists since traditional methods for
ssessing the pathogen’s viability have been labor-intensive and
uffered from inherently high false-negative rates; more research
s, however, needed to assess to what extent this model can cap-
ure natural degradation in Chlamydia . 

Our subsequent XAI analyses point to the potential role of
V-induced DNA backbone damage for achieving accurate model
redictions in both species; the simplified XAI rule is, however,
ot sufficient to correctly classify the majority of “dead” signal
hunks (recall of 0.39), which means that the residual neural net-
ork has apparently identified additional more subtle signal pat-

erns that allow the full model to make more sensitive predictions
recall of 0.74) while maintaining specificity and precision. More
esearch is therefore needed to fully understand the biological,
hysical, or chemical underpinnings of our viability model predic-
ions; we, however, anticipate that future experiments for squig-
le data generation, including on different taxonomic groups and
illing methods, will help us tease apart the origins of our current
AI results. 

Besides exploring the underlying rules of squiggle signal pat-
erns, the generalizability of such squiggle-based viability mod-
ls also needs to be assessed in more detail, including for a wider
readth of microbial taxa such as spore-forming bacteria or fungi,
nd for a variety of degradation sources and intensities. Our pre-
iminary results indicate that our deep model that can accurately
redict UV-induced degradation cannot distinguish susceptible
nd resistant bacteria in an antibiotic exposure experiment of
 simple mock community. We, however, show that training the
ame residual neural network architecture on newly generated
illing method–specific squiggle data can achieve good accuracy
n the respective mock community ( > 0.7). While this application
hows the limits of our current models’ generalizability, we also
rgue that clinical metagenomics might already profit from such
ntibiotic-specific viability inferences: as previously discussed,
ertain disinfection methods or systemic antibiotics in the clin-
cal setting often kill the bacteria before the DNA is destroyed [ 15 ,
7 ], leading to potential false-positive pathogen detections using
etagenomics; our viability model could give additional informa-

ion on the antibiotic exposure’s impact, and confidence could be
ncreased by accumulating viability evidence across sequencing
eads per pathogen of interest. In addition, we hypothesize that

odels could be trained to detect damage induced by suboptimal
ntibiotic usage, which has been implicated in the emergence of
ew antibiotic resistances [ 51 ]. 

In order to achieve true metagenomic applications in the fu-
ure, the training data of a single model could be diversified in
erms of taxonomy and degradation, potentially increasing the
eneralizability of its viability inferences. We also anticipate that
uantitative AI modeling has the potential to inform more dif-
erentiated viability assessments, which might help quantify or
ime degradation events and even decipher the relevance of dor-

ancy and metabolic inactivity in metagenomic studies [ 52 , 53 ].
e envision many potential benefits of such a widely applica-

le computational framework for microbial viability inference, in-
luding for applications in environmental, veterinary, and clinical
ettings. As is the case for epigenetic inferences [ 36–38 ], the via-
ility inference-enabling squiggle data are a complementary out-
ut of any nanopore sequencing experiment of native DNA (and
NA), which is then usually basecalled and archived for future
e-basecalling after potential basecalling model improvements.
his means that any future nanopore-based metagenomic study
ould make viability predictions for free without additional costs
nd laboratory work, and any existing archived nanopore data
ould be assessed in terms of its microorganisms’ viability—which
ould allow us to quantify the impact of dead microorganisms
n metagenomic analyses in a diversity of datasets and ecologi-
al settings, as well as further explore factors such as species and
nvironment specificity. 

aterials and Methods 

iability inference explorations in UV-exposed 

. coli 
raining data generation 

e cultured E. coli K12 in 200 mL Luria–Bertani (LB) medium for
4 hours at 37◦C to reach the log phase of the growth curve. The
ulture was then used to inoculate four 200 mL LB media in 1-L Er-
enmeyer flasks, which were again incubated for 24 hours to reach
he growth log phase. One of the media was used as viable control,
hat is, DNA was extracted from 750 μL of the living culture using
he spin column–based QIAGEN PowerSoil Pro Kit, following the

anufacturers’ instructions. The remaining 3 cultures were killed
y one of the following stressors: UV irradiation at 254 nm for
5 minutes, heat shock at 120◦C for 5 minutes, or bead beating for
0 minutes. To then separate extracellular DNA from cell debris
nd intact bacterial cells, we centrifuged the media for 10 minutes
t 4,000 × g and filtered the supernatant through 0.2-μm filters.
he resulting extracellular DNA was subsequently kept at room
emperature for 5 days to simulate the natural accumulation of
NA degradation. DNA from dead bacteria was extracted from

hese samples using the same extraction approach following the
IAGEN PowerSoil Pro Kit protocol, but the first lysis buffer step
as omitted since cell lysis had already happened. 
We then used Oxford Nanopore Technologies’ Rapid Barcod-

ng library preparation kit (RBK114-24 V14), R10.4.1 MinION flow
ells, and MinKNOW software v23.04.5 for shotgun nanopore se-
uencing of the “viable” and “dead” DNA. We used 4 barcodes for
ach sample, resulting in DNA input of 800 ng and 218 ng for
he preparation of the “viable” and “dead” library, respectively. We
an each library for 24 hours, using 2 different flow cells to avoid
ny cross-contamination, and filtered the resulting nanopore data
t a minimum read length of 20 b. Raw nanopore data were
reated using the standard translocation speed of 400 b/s and
 sampling frequency of 5 kHz. We applied Dorado [ 54 ] SUP-
asecalling model v4.2.0 ( dna_r10.4.1_e8.2_400bps_sup@v4.2.0 )
nd 6mA-aware SUP-basecalling (6mA@v1) to all nanopore reads
hat had passed internal data quality thresholds to obtain E.
oli DNA sequence data. We subsequently removed sequencing
dapters and barcodes using Porechop v0.2.3 [ 55 ]. 

odel training 

e tested the implementation of different residual neural net-
orks and transformer architectures to predict the binary via-
ility state from the raw nanopore data (0 = viable; 1 = dead).
he first residual neural network, ResNet1, consists of 4 layers,
ach containing 2 bottleneck blocks. Each bottleneck block con-
ists of convolutional layers, batch normalization, and a rectified

mailto:dna_r10.4.1_e8.2_400bps_sup@v4.2.0
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linear unit (ReLu) activation function. Each of the 4 layers con- 
sists of an increasing number of convolutional channels: 20, 30,
45, and 65, respectively, followed by global average pooling and a 
fully connected layer, resulting in 66,916 parameters. The model 
then uses a softmax function to convert logits, the raw outputs 
from the fully connected layer, into predicted probabilities rang- 
ing from 0 to 1. We evaluated the training of the model using the 
Adam optimizer for mini-batch gradient descent at 3 different LRs 
(1e-3, 1e-4, and 1e-5), training the model up to 1,000 epochs and 

at a batch size of 1,000 signal chunks. We initialized the model 
using Kaiming initialization. For ResNet2, we increased the num- 
ber of convolutional channels to 40, 60, 90, and 135, respectively,
resulting in 1,828,777 parameters. For ResNet3, we increased the 
number of convolutional channels to 512, 30, 45, and 67, respec- 
tively, resulting in 2,479,140 parameters. The transformer model 
was based on a positional encoding, a convolutional layer with a 
channel number of 24, and 1 block of 1 attention head, resulting 
in 219,586 parameters. 

We processed the E. coli squiggle data by excluding the first 
1,500 signal points (potential noise, adapter sequences, or bar- 
codes), then cutting them into signal chunks of 10k signals, and 

separated the chunks into balanced training (60%), validation 

(20%), and test (20%) sets along each original sequencing read to 
avoid that signal chunks from the same read would end up in the 
same dataset. We pooled the viable and dead signal chunks to ob- 
tain exactly balanced training, validation, and test sets. For nor- 
malizing each chunk, we subtracted the median per chunk and 

divided it by the median absolute deviation (MAD) to make the sig- 
nal data robust to outliers. We then scaled the signal by the MAD 

scaling factor 1.4826 and replaced outliers exceeding 3.5 times the 
scaled MAD by the mean of their 2 neighboring values. 

We also trained ResNet1 on the basecalled nanopore data (with 

or without 6 mA basecalling) of viable and dead E. coli at a stan- 
dardized chunk size of 800 b, which roughly corresponds to a sig- 
nal chunk size of 10k signals. For encoding, we used a one-hot 
encoding method to turn DNA sequences into unique binary vec- 
tors. We then concatenated and saved these encoded sequences 
as tensors for training and testing. We finally trained ResNet1 on 

signal chunks of different signal lengths, ranging from 1k to 20k 
signals. 

For logistic regression training, we used the LogisticRegression 

class from scikit-learn v1.2.2 with default parameters. 

Explainable AI 
We utilized CAMs to identify and visualize signals regions that in- 
fluenced the model’s decision-making. As feature maps from the 
final convolutional layer undergo a global average pooling layer 
where each map is averaged and concatenated, we can calculate 
the weighted sum of these feature maps using the weights of the 
fully connected layer and project it back onto the preprocessed 

signal [ 42 ]. To do so, we implemented CAM in Python/PyTorch.
During the forward pass, we ensure that the feature maps from 

the last convolutional layer are captured. To compute the CAM,
we use the weights of the model’s output layer for the class of in- 
terest, multiplying these weights with the corresponding feature 
maps and then summing them up. We convert the resulting CAM 

to an array and normalize its values to a range of 0 to 1. We then 

overlay the CAM on the original input signal to identify the regions 
most influential in the model’s decision-making process. We addi- 
tionally used the Remora API to match raw nanopore data to the 
corresponding Dorado-basecalled bases, to then manually inves- 
tigate any obvious sequence abnormalities in the CAM regions. 
For consecutive masking of the CAM regions with the highest
AM values, we used Python to first obtain and normalize the CAM
alues of all true-positive signal chunks at P > 0.5 ( n = 286,179),
dentify the maximum value, mask the signal region (i.e., setting
o zero after MAD normalization) at a specified mask size (be-
ween 100 and 2k signals) centered on the maximum-CAM sig-
al, and obtain updated prediction probabilities. We repeated this 
asking step 5 times and calculated the confidence interval at

ach masking step: We obtained the mean and standard error of
he mean (SEM) of the newly calculated prediction probabilities 
cross all signal chunks to calculate the 95% confidence interval
t mean ± 1.96 ∗ SEM. We plotted the results using matplotlib. 

We next used Python to develop an algorithm to obtain a sim-
lified XAI rule to distinguish “dead” from “viable” signals chunks 
ased on our CAM results by identifying the presence of at least 1
udden drop in the chunk. To identify those sudden drops, we first
alculated the mean and standard deviation (SD) of each signal
hunk and found that a scaling factor of 3 identified most man-
ally detected sudden drops at a vertical threshold of mean – 3 ∗
D. 

equencing read-level inferences 
o evaluate read-level performance, we leveraged the inherent 
exibility of ResNet architectures to handle variable-length input.
rior to all read-level analyses, we removed chimeric reads us-
ng information from Dorado basecalling. Dorado splits chimeric 
eads and tags the resulting child reads with a “pi” tag (par-
nt_read_id) in the BAM file, indicating their origin from an un-
plit read. Using the pysam Python package, we extracted the read
Ds of the reads carrying the “pi” tag to exclude chimeric reads
rom our downstream inference analysis. The nonchimeric reads 
ere subsequently filtered according to Kraken2 v2.1.4–based tax- 
nomic assignment to the Escherichia genus [ 56 ]. All sequencing
ead-level inferences were made only on nonchimeric, correctly 
axonomically classified (on the genus level) reads. 

pplication to obligate intracellular Chlamydia 

he C. suis strain S45 (kindly provided by J. Storz) was cultured as
escribed by Leonard et al. [ 57 ]. Briefly, chlamydiae were grown

n the epithelial rhesus monkey kidney cell line LLM-MK2 (pro-
ided by IZSLER) and prepared as semi-purified stock by scraping
nfected cells into the supernatant and removing cellular debris 
y centrifugation at 500 g for 10 min. Chlamydiae were then pel-
eted (10,000 × g, 45 minutes) and resuspended in sucrose phos-
hate glutamate (SPG) buffer. To determine the viability of this
tock, 1 aliquot was thawed on ice and separated into 2 tubes, of
hich 1 was UV-inactivated using a Hoefer UVC 500 Ultraviolet
rosslinker: briefly, samples were kept on ice and exposed to 8
atts of UV light at 12.5 cm for 30 minutes, similar to previously
escribed protocols [ 58 ]. All samples were prepared in biological
uplicates. UV-inactivated chlamydiae were then further incu- 
ated at room temperature for 48 hours prior to further process-

ng, while viable chlamydiae were immediately processed. The re- 
ulting 4 samples were divided into subsamples and used for cul-
ivation, vPCR, and nanopore sequencing. 

For viability determination by culture, subsamples (approxi- 
ately 1e7 IFU) were used to infect 4 glass coverslips (13 mm in

iameter; ThermoScientific) in 24-well plates (TPP Techno Plas- 
ic Product AG) seeded to confluence with LLC-MK2 cells [ 59 ]. For
he “viable” subsamples, a 1:1,000 dilution was performed prior 
o inoculation. The infection was then enhanced by centrifuga- 
ion for 1 hour at 25◦C (1,000 × g ). After 48 hours of incubation
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t 37◦C (5% CO2 ), cultures were fixed for 10 minutes in ice-cold
ethanol. If cultures were free of chlamydiae, 1 well was scraped

nd transferred to fresh monolayers up to 3 times to confirm neg-
tivity as described [ 60 ]. Coverslips were then processed using
 well-established immunofluorescence assay [ 61 ]. Briefly, DNA
as stained with 1 μg/mL 4′ ,6-diamidino-2′ -phenylindole dihy-
rochloride (DAPI; Molecular Probes). In parallel, inclusions were

abeled with a Chlamydiaceae -specific primary antibody ( Chlamy-
iaceae LPS, Clone ACI-P; Progen), which was diluted 1:200 in
locking solution consisting of 1% bovine serum albumin (BSA)

n phosphate-buffered saline (PBS; GIBCO, Invitrogen). Inclusions
ere visualized with Alexa Fluor 488 goat anti-mouse (Molecular
robes) diluted 1:500 in blocking solution. As a final step, cover-
lips were washed with PBS, mounted with FluoreGuard (Hard Set;
cyTek Laboratories) on glass slides, and inclusions determined
sing a Leica DMLB fluorescence microscope (Leica Microsystems)
nd a 10 × ocular objective (Leica L-Plan 10 ×/25 M; Leica Microsys-
ems). In parallel, a 3-fold dilution series of the sample was per-
ormed in 96-well plates (TPP) and processed as above. The num-
er of IFU/mL for the whole samples was then calculated based
n the number of inclusions detected using the Nikon Ti Eclipse
pifluorescence microscope at a 20 × magnification [ 59 ]. 

For vPCR, subsamples (approximately 2e7 IFU) were taken and
ixed with 200 μL SPG and 100 μL PMA enhancer for Gram-
egative Bacteria (5 ×; Biotium). PMAxx (Biotium) at a final con-
entration of 50 μM was added (“PMA-treated”) or not (“un-
reated”) to the subsamples. Samples were then exposed to a 650-
 light source using a PMA-Lite LED Photolysis Device (Biotium)

or 5 minutes, followed by 2 minutes on ice and additional light
xposure for 5 minutes [ 48 ]. For vPCR as well as nanopore se-
uencing (subsamples with approximately 5e8 IFU), DNA was ex-
racted using the DNeasy Blood and Tissue Kit (QIAGEN) accord-
ng to the manufacturer’s instructions. The amount of chlamy-
ial DNA was quantified with a sensitive C. suis quantitative PCR
 62 ], based on a standard curve with recombinant plasmid con-
aining the amplicon target and calculated for the whole sample.
or subsequent nanopore sequencing of the DNA extracts (viable:
3–16 ng/μL; dead: 1.9–2.8 ng/μL), we followed the same approach
s described for E. coli above. Each viable sample was sequenced
sing 1 barcode (input volume of 10 μL) and each dead sample
sing 3 barcodes (input volume of 30 μL). Sequencing reads were
rocessed following the same steps used for the E. coli dataset.
himeric reads were identified using the “pi” tag added by Do-
ado and removed with the pysam Python package. Adapter and
arcode trimming was performed using Porechop, and taxonomic
lassification was conducted with Kraken2 v2.1.4, retaining only
eads classified as Chlamydia . 

ntibiotic exposure experiment 
o generate data from a simple mock community, a carbenicillin-
usceptible E. coli strain and an ESBL-producing K. oxytoca strain
ATCC 700324) were cultured on Müller–Hinton (MH) agar at 37◦C
or 20 hours in 2 biological replicates. Susceptibility to penicillin
s an approximation of carbenicillin resistance was confirmed
y VITEK2 and growth curve analysis at 100 and 200 ng/μL.
pecies identity was confirmed by Matrix-Assisted Laser Desorp-
ion/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF
S) and Multi-Locus Sequence Typing (MLST). Cultures were in-

culated at OD600 = 0.01 in 10 mL MH broth and incubated for
 hours. Carbenicillin (200 ng/μL) was added during logarithmic
rowth, followed by 20 hours of further incubation. DNA was ex-
racted directly from 250 μL of uncentrifuged culture using the
ame DNA extraction approach as described for UV-exposed E. coli .

To generate clean training data for an antibiotic exposure-
pecific model, 2 biological replicates of the same E. coli strain were
sed. For the viable samples, DNA was extracted from centrifuged
ellets (4,000 × g , 10 minutes) before antibiotic treatment, respec-
ively. For the dead samples, DNA was extracted from the filtered
upernatant (0.2 μm) 20 hours after carbenicillin exposure using
he same DNA extraction approach as described for UV-exposed
. coli . 

Nanopore sequencing and data processing were done as de-
cribed for E. coli above. All inferences were done on the sequenc-
ng read level and restricted to nonchimeric reads classified as Es-
herichia or Klebsiella , respectively. Model training was also done as
escribed above, using the optimized ResNet1 architecture, but
hunk size was set to 5k instead of 10k signals to increase the
ize of the training dataset. The final dataset consisted of 330,000
hunks for training, 110,000 for validation, and 110,000 for testing.
he model was trained for up to 600 epochs using the Adam op-
imizer with a learning rate of 1e-5. The best validation accuracy
as achieved at epoch 550. 

vailability of Supporting Source Code and 

equirements 

roject name: Squiggle4Viability 
Project homepage: https://github.com/Genomics4OneHealth/

quiggle4Viability.git 
Operating system(s): Platform independent 
Programming language: Python 

License: MIT 

An archival version of the code is available via Software Her-
tage [ 63 ]. 

dditional Files 

upplementary Table S1. UV-killed E. coli viability inferences of
eep neural network and logistic regression models. Test dataset
erformance metrics of residual neural networks (“ResNet”),
ransformer architectures, and logistic regression models, trained
n various data modalities (nanopore squiggle “Signal” or base-
alled DNA “Nucleotide” sequence) at various signal chunk sizes
“Length”) and on sequencing read length or translocation speed
“Trans speed”). 
upplementary Table S2. Sequencing read-level viability infer-
nces of UV ResNet1. Performance metrics across sequencing
eads of the ResNet1 model trained on UV-killed E. coli for the E.
oli test dataset and 2 biological replicates (BR1 and BR2) of UV-
illed and viable Chlamydia suis . The number of total reads is the
umber of sequencing reads after processing of the nanopore se-
uencing data by Porechop; the number of genus-classified reads

s the number of sequencing reads that map to the Escherichia
r Chlamydia genus, respectively, using Kraken2 (Materials and
ethods). 
upplementary Table S3. Cultivation, viability PCR (vPCR), and
anopore sequencing metrics of UV-killed Chlamydia suis . Cul-
ivation titer in number of inclusion forming units (IFUs) per

illiliter, PMA-untreated vPCR reflecting total Chlamydia con-
ent, PMA-treated vPCR reflecting viable Chlamydia content and
log10 of the PMA-treated copy number divided by the PMA-
ntreated copy number reflecting overall viability, total number
f nanopore sequencing reads after Porechop processing, and

https://github.com/Genomics4OneHealth/Squiggle4Viability.git


Nanopore- and AI-empowered microbial viability inference | 11

 

 

i
f  

i

A
H
o
a  

W
s
e  

E
P
g
t
i
s
v
(
p
L
s  

W

F
T  

a  

fi
Z
H
a
t  

d
S
B  

a  

s
N  

v  

r
N

D
A  

a  

d  

p  

d
a  

O
t  

[

C
T

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giaf100/8246397 by guest on 06 January 2026
number of Chlamydia -classified reads using Kraken2 (Materials 
and Methods), of 2 biological replicates (BR1 and BR2) of viable 
and dead C. suis . 
Supplementary Table S4. Sequencing read-level viability infer- 
ences of antibiotic exposure ResNet1. Performance metrics across 
sequencing reads of the ResNet1 model trained on antibiotic- 
exposed E. coli for the E. coli test dataset and held-out biological 
replicates (BRs). The number of E. coli reads is the number of se- 
quencing reads after processing of the nanopore sequencing data 
by Porechop and mapping to the Escherichia genus using Kraken2 
(Materials and Methods). 
Supplementary Fig. S1. Training and validation loss across deep 

neural network architectures tested for nanopore squiggle signal- 
based viability inference. (A–C) Model loss of ResNet1 at learning 
rates (LRs) of 1e-3, 1e-4, and 1e-5. (D–F) Model loss of ResNet2 at 
LRs of 1e-3, 1e-4, and 1e-5. (G–I) Model loss of ResNet3 at LRs of 
1e-3, 1e-4, and 1e-5. (J–L) Model loss of the transformer models 
at LRs of 1e-3, 1e-4, and 1e-5. The solid blue line indicates the 
training loss, the solid red line indicates the validation loss, and 

the dashed line indicates the minimum validation loss from the 
final ResNet1, LR = 1e-4, model. 
Supplementary Fig. S2. Training and validation loss of ResNet1 at 
various signal chunk sizes. The signal chunk size varies: (A) 1k, (B) 
5k, (C) 7k, (D) 10k, (E) 12k, and (F) 20k. The solid blue line indicates 
the training loss, the solid red line indicates the validation loss,
and the dashed line indicates the minimum validation loss from 

the final ResNet1 model using a signal chunk size of 10k. 
Supplementary Fig. S3. Exemplary drops in ResNet1 prediction 

probabilities in nanopore signal chunks after consecutive mask- 
ing of the signal region with the respectively highest CAM value.
Figure headers : signal chunk ID/total number of masked signal val- 
ues/prediction probability per signal chunk “prob.” Left to right : 
Five exemplary nanopore signal chunks (length of 10k signals). Top 
to bottom : Consecutive masking of 200 signal values per masking 
event (Materials and Methods). Legends : Red-colored CAM value 
visualizations; higher CAM values indicate stronger feature map 

activations. 
Supplementary Fig. S4. Exemplary nanopore signal patterns of 
antibiotic-killed E. coli sequencing reads and XAI Class Activation 

Mapping (CAM). Legend : Red-colored CAM value visualizations; 
higher CAM values indicate stronger feature map activations. 

Abbreviations 

AUC: area under the curve; AUPR: area under the precision–recall 
curve; AUROC: area under the receiver operating characteristic 
curve; BSA: bovine serum albumin; CAM: Class Activation Map; 
EMA: ethidium monoazide; FC: fully connected; GAP: global av- 
erage pooling; LB: Luria–Bertani; LR: learning rate; MAD: median 

absolute deviation; MAG: metagenome-assembled genome; MH: 
Müller–Hinton; PBS: phosphate-buffered saline; PMA: propidium 

monoazide; ResNet: Residual Neural Network; ROC: receiver op- 
erating characteristic; SEM: standard error of the mean; SPG: su- 
crose phosphate glutamate; vPCR: viability PCR; XAI: explainable 
artificial intelligence. 
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