Mitlasoczkietal. 1

Title: Hippocampal spreading depolarization drives post-ictal ambulation

Authors: Bence Mitlaséczki'?, Adrian Gutiérrez Goémez'!, Midia Kamali'?, Natalia
Babushkina®#, Mayan Baues'?, Laura Kick'?, André Nathan Haubrich?, Theodoros
Tamiolakis’?, Annika Breuer', Simon Granak'!, Merlin Schwering-Sohnrey’?, Ingo
Gerhauser®, Wolfgang Baumgartner®, Laura Ewell®, Thoralf Opitz?, Julika Pitsch’, Simon
Musall?34, Rainer Surges', Florian Mormann', Heinz Beck?’, Michael Wenzel"?

Affiliations:

1 University Hospital Bonn, Dept. of Epileptology, Bonn, Germany

2 University of Bonn, Medical Faculty, Institute of Experimental Epileptology and Cognition Research, Bonn, Germany
3 Institute of Biological Information Processing (IBI-3) — Bioelectronics Forschungszentrum, Jilich, Germany

4 Institute of Biology Il, RWTH Aachen University, Aachen, Germany

5 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany

6 Department of Anatomy and Neurobiology, University of California, Irvine, USA

7 Deutsches Zentrum fur Neurodegenerative Erkrankungen e.V., Bonn, Germany

*Correspondence to:

Michael Wenzel

University Hospital Bonn, Dept. of Epileptology, Venusberg-Campus 1, 53127 Bonn, Germany
Email: michael.wenzel@ukbonn.de

Phone: +49 228 287 16954

Number of main figures: 5
Number of suppl. figures/tables: 11/3

Author approvals: All authors have seen and approved the manuscript, and the
manuscript has not been accepted or published elsewhere.

Conflict of Interest: The authors declare no competing interests.



—

10

11

12

13

14

15

16

17

18

19
20
21
22
23
24
25
26
27
28
29
30
31

Mitlasoczkietal. 2

Abstract

Post-seizure (post-ictal) symptoms are regularly encountered in epilepsy, and can be life-
threatening, yet their neurobiological underpinnings remain understudied. Using two-
photon or widefield imaging, field potential and unit recordings, optogenetics, and basic
behavioral assessment under healthy conditions or viral encephalitis, we studied seizures
and post-ictal symptoms in mice. In addition, we analyzed Behnke-Fried depth-electrode
recordings in an initial cohort of 4 patients with chronic epilepsy. In mice, we show a
massive propensity of the hippocampus for seizure-associated spreading depolarization
(sSD). Via optogenetic stimulation, we provide evidence that isolated hippocampal SD
drives post-ictal ambulation (PIA), whereas optogenetic seizure-like episodes do not.
Further, PIA occurred in the absence of SD progression to the neocortex. In support of
our experiments in mice, we also found an increased vulnerability of the human
temporomesial system (hippocampus, amygdala) for putative sSD at Sz termination, and
differential recovery times of affected vs. non-affected brain regions. This work uncovers
sSD as a previously underrecognized key pathoclinical entity underlying distinct postictal
symptoms in epilepsy. Our results carry ramifications for epilepsy research and

neurology, and challenge current EEG-standards.
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Main Text:

Introduction

The post-ictal period often manifests with confusion, aphasia, amnesia, or unaware
ambulation (post-ictal wandering), which is most commonly observed in temporal lobe
epilepsy (TLE, ~25-45%)(7—4), and associated with a risk of potentially life-threatening
injuries(7, 5). Despite the far-reaching clinical and socio-economic impact (7, 2), except
for particular entities such as sudden unexpected death in epilepsy (SUDEP)(6, 7), the
neurobiological underpinnings of the post-ictal state remain unclear, and most related
research on this topic has focused on consequence rather than initial cause(8, 9). One
reason for the continued scarcity of neurobiological insight may be that the ictus itself has
continually formed the center of interest in epilepsy research and clinical care, which is

also reflected in clinical terminology (ictus, ictal, pre-/post-/peri-ictal).

Previous work has suggested that network dynamics other than seizures (Sz), e.g.
spreading depolarization/depression (SD)(70), could in principle account for a number of
post-ictal symptoms(2, 6, 717). Most of what is known about SD stems from research on
migraine, stroke and traumatic brain injury(72—174). In this context, Sz and neocortical SD
have also been systematically investigated in clinical electrical recordings(75-24),
whereas studies on SD in chronic human epilepsy have remained scarce(25, 26). While
SD has been recorded in various brain regions including deep structures like the
hippocampus(27-33), thalamus(34, 35), basal ganglia(27), or brainstem(6, 7), the vast
majority of SD research has focused on neocortex, which brought about the common term
cortical spreading depression (CSD)(74). Put simply, SD constitutes a massive ion

translocation across the neuronal cell membrane resulting in a profound depolarization
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above the inactivation threshold, a break-down of the membrane potential and
consecutive neuronal depression(70, 74, 36). SD can be elicited in various ways, e.g. by
energy depletion(37-39), hypoxia(77), high extracellular K*(39—42), repetitive electrical
or mechanical stimulation(70), or optogenetic neuronal depolarization(43—48). Depending
on the etiology, SD has profound effects on affected brain tissue such as transient edema
and vasoconstriction, danger molecule release in the extracellular space (i.e. ATP), or
immune activation(71, 74, 30, 49). Such effects may be reversible, but can also lead to

permanent tissue damage(23, 50).

In basic epilepsy research, the role of SD remains debated. SD has both been suggested
to increase neural excitability(33, 57), and to disrupt ictal oscillations(37, 52, 63). Some
have speculated about a protective role of SD in epilepsy(52, 54), while others have
described Sz-related SD as a potential cause for SUDEP via brain stem invasion(6, 7).
Certainly, as most basic research on Sz-related SD has been carried out in vitro, or under
anesthesia(70, 11, 27, 30, 51, 52), the general relationship between Sz-related SD and
potentially distinct clinical symptoms have remained understudied. In epileptology,
concepts revolving around Sz-related SD and its potential clinical-level impact, aside from

SUDEP, currently play little to no role.

Here, we provide evidence in mice and humans that Sz-associated focal spreading
depolarization (sSD) constitutes a proper pathoclinical entity in epilepsy. Using two-
photon or one-photon widefield imaging (hippocampus, neocortex), field potential and
single unit recordings, and behavioral assessment in mice, we first studied seizures

during viral encephalitis, and subsequently established an optogenetic approach to
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dissociate hippocampal Sz and SD. We find profound region-specific differences in sSD
occurrence, characterize its progression, and show that temporomesial SD triggers post-
ictal ambulation (PIA). Then, by Behnke-Fried (BF) electrode recordings in an initial
cohort of four patients with refractory focal epilepsy undergoing pre-surgical diagnostic
work-up, we provide corroborating evidence for an increased vulnerability of the human
temporomesial system (hippocampus, amygdala) for putative sSD at Sz termination, and

differential recovery times of affected vs. non-affected brain regions.

Results

Two-photon Ca?* imaging of epileptic network dynamics during viral encephalitis
We initially set out to study naturally occurring temporal lobe Sz at cellular scale. To this
end, we employed resonant two-photon (2p) population Ca?* imaging in the hippocampus
(CA1) or cortex (CTX, motor) in awake adult transgenic Thy1-GCaMP6s mice (JAX
025776; 15 Hz scanning, ~700x700 pm, 16X Nikon 0.80 NA 3.0 mm WD), in the recent
Theiler's murine encephalomyelitis virus (TMEV) etiocopy mouse model of TLE (Fig. 1 A,
B). The model is based on an initial self-limiting viral encephalitis that encompasses acute
disease stage focal onset seizures (~2-7 days post infection [p.i.], Fig. 1 C, Suppl. Fig. 1,
for details, see methods)(55).

For electrophysiological reference of optically recorded network dynamics, we combined
2p-imaging with local field potential (LFP) recordings (Fig. 1 A, insulated tungsten @ ~125
pum). Notably, both in bi-hippocampal wireless LFP recordings (Suppl. Fig. 2) and all
combined imaging-LFP recordings in CA1 (Fig. 1 E i), focal electrographic Sz were
faithfully detected in both hemispheres. Thus, for practical procedural reasons, in

experiments involving both chronic in vivo 2p-imaging and LFP recordings, we placed
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one LFP electrode at the stereotaxic site of hippocampal TMEV inoculation (from Bregma:
AP -1.9, ML 1.6, DV 1.5 mm from pial surface), while imaging was performed in
contralateral CA1 or CTX (Fig. 1 A, E). In our framework, electrographic and optical
hippocampal Sz corresponded well, while optical neocortical Sz invasion occurred with a

delay of seconds (Fig. 1 E ii, 10.20 £ 5.55 sec s.e.m.).
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Fig. 1. Chronic hippocampal or neocortical 2p-imaging of seizures during viral encephalitis
A, Exp. setup. Contralateral (contra) cranial window above hippocampus (i: CA1) or neocortex (ii: CTX) to
ipsilateral (ipsi) LFP electrode (black pin, at superficial CA1) and TMEYV injection site (CA1), in transgenic
GCaMP6s mice. B, Exp. workflow. C, Detected clinical seizures (Sz, filled circles) during viral encephalitis
in initial video-monitoring (7 mice, gray shades). Max. number (#) of Sz (k.d.e.: kernel density estimate)
typically occur on day 2-5 post injection (d.p.i.). D, Representative average (avg) fluorescence (F) images
of neuronal signals during pre-ictal baseline (gray), Sz (blue) and sSD (red/violet) invasion of CA1. Arrows
depict travelling direction of Sz (blue) or sSD (red). Dotted lines depict propagating wavefronts of sSD1
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(red) and sSD2 (yellow). E, Two paradigmatic experiments, for approach i) or ii) shown in A. LFP (black,
ipsi CA1) and avg population Ca?* imaging signals (green, contra) in CA1 (top, approach i), or CTX (bottom,
approach ii)) during local Sz and sSD invasion (a.f.u.: arbitrary fluorescent units). Colored boxes correspond
to time periods for avg images in D. Note that sSD is not detected in raw LFP when high-pass filter is set
too high (#0.3 Hz, top) whereas a large biphasic LFP shift is visible in bottom panel (#0.05 Hz). Note also
delayed optical CTX Sz invasion. F, All imaged Sz in CA1 (13 Sz, 4 mice, blue shades) or CTX (8 Sz, 3
mice, green shades). Note the presence or absence of sSD. Dotted lines indicate momentary breaks
between imaging sessions. G, Quantification of occurrence of Sz-sSD, Sz, or SD during encephalitis in
CA1 (left, Friedman test, p<0.0001) or CTX (right, Friedman test, p=0.0005), n.d. = not detected. H,
Comparison of Sz vs. sSD relative Ca?* signal amplitudes in CA1 (a.f.u., A F: Delta Fluorescence), Left: Sz
vs sSD, paired Wilcoxon test (12 Sz-sSD, 117.1 + 32.6 [Sz] vs. 164.8 + 43.35 [sSD], p=0.0005), Right:
sSD1 vs sSD2, paired Wilcoxon test (12 sSD1-sSD2, 91.92 + 36.2 [sSD1] vs. 144.1 + 40.42 [sSD2],
p=0.0005). I, Comparison of CA1 vs CTX pre- and post-ictal minimal F (a.f.u., A F min), Mann-Whitney test
(13 events in CA1 vs. 8 events in CTX, 3.02 + 3.54 vs. 1.77 + 1.04, p=0.8044). J, Comparison of CA1 vs
CTX F recovery time (minutes), Mann-Whitney test (13 events in CA1 vs. 8 events in CTX, 6.531 £ 2.15
vs. 0.188 + 0.038, p=0.0061). K, Observed (solid lines) standard deviations (std) of spatial trajectory angles
(°) of Sz (left), sSD1 (middle), and sSD2 (right). Top panel, within-mouse analysis: 3 mice (blue shades,
each mouse > 3 imaged Sz-sSD) vs corresponding shuffled distributions from 1000 randomized datasets.
Bottom panel, across-mice analysis: solid line depicts observed std of angle means (all 4 CA1-imaged mice)
vs corresponding shuffled distributions from 1000 randomized datasets (gray). In all plots, dashed lines
mark respective significance thresholds (where observed std <95% of all surrogate std). L, Top:
Paradigmatic experiment with spatial Sz-sSD trajectory map within imaged FOV (general anatomical
landmarks: M medial, L lateral, P posterior, A anterior). Outer ring shows Sz, intermediate ring sSD1, inner
ring sSD2 trajectories (gray shades: individual events, black: mean). Bottom: Across-mice depiction (blue
shades: per-mouse angle mean, black: grand mean) for Sz, sSD1 and sSD2. Top and bottom: shaded
areas display mean trajectory angle between Sz and sSD1 (light blue), or sSD1 and sSD2 (dark blue). M,
Calculated angles (°) for each imaged Sz-sSD1 and sSD1-sSD2 (blue shades for individual mice). One
event excluded from analysis, as immediate Sz onset was not recorded, see Fig. 1 F. L, Quantification of
angles (°) between Sz and sSD1 (12 events, 126.9 + 17.87), Sz and sSD2 (11 events, 143.4 + 10.77), and
sSD1 and sSD2 (12 events, 37.23 + 8.65), mixed effects analysis with Tukey’s test (F[1.396, 13.96]=26.35;
Sz-sSD1 vs. Sz-sSD2 p=0.3938, Sz-sSD1 vs. sSD1-2 p=0.0020, Sz-sSD2 vs. sSD1-2 p<0.0001). For entire
fig.: Plotted error bars represent s.e.m., all given + denote s.e.m.. Depiction of violin plots: median (solid
lines), quartiles (dotted lines). Depiction of statistical significance: n.s. not significant, *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001.

Consistent association of seizures with spreading depolarization in hippocampus
Across a total of 205 imaging hours (CA1: 118 hrs; CTX: 87 hrs) in 26 mice and 158 days
of viral encephalitis, interictal epileptiform network activity was detected in all mice. In 7
out of those 26 mice, based on the ACNS consensus criteria for ictal activity(56)(for
details, see methods), we successfully captured seizures (13 Sz in CA1, 4 mice [Fig. 1 F,
blue/left], 8 Sz in CTX, 3 mice [Fig. 1 F, green/right]). Strikingly, imaged hippocampal Sz
in CA1 were consistently followed by a massive second, multiplexed wave of Ca?* signal,

in what appeared to be spreading depolarization / depression (SD, Fig. 1 F, G and suppl.
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movie 1)(57). Typically, two Sz-associated SD waves (sSD1 and sSD2, Fig. 1 D)
succeeded one another in the imaged field of view (12 sSD1-sSD2, delay: 6.044 + 0.9156
sec). In line with the published literature, both sSD waves progressed at the speed of few
mm/min across the imaged CA1 region, while preceding Sz propagated much faster (13
sSD1:7.75 £ 0.52, 12 sSD2: 6.87 + 0.36, 12 Sz: 79.6 + 12.67 mm/min; One-way ANOVA
with Tukey’s test (F[2,34]=30.56; sSD1 vs. sSD2 p=0.8823, sSD1 vs. Sz p<0.0001, sSD2
vs. Sz p<0.0001). In CA1, neither Sz nor SD ever occurred alone. By contrast, in the
imaged CTX, isolated SD or sSD were never detected (Fig. 1 F, G, suppl. movie 2). As
described previously, maximum hippocampal Ca?* signal amplitudes of Sz-related SD
(sSD) were consistently larger than preceding Sz (Fig. 1 H left)(9). Moreover, sSD2
showed consistently larger amplitudes than sSD1 (Fig. 1 H right). Intriguingly, despite the
clear discrepancy of sSD occurrence in CA1 versus CTX, both recorded territories
displayed reduced basic Ca?* fluorescence post-sSD (CA1) or post-Sz (CTX) in
comparison to the pre-ictal period (Fig. 1 1). However, recovery times to pre-ictal basic

Ca?* fluorescence in CA1 were longer than in CTX, on the order of minutes (Fig. 1 J).

Hippocampal seizures and sSD propagate in opposite directions

To evaluate potentially conserved micro-progression patterns in naturally occurring
hippocampal Sz and sSD during encephalitis, we analyzed spatiotemporal Sz and sSD
trajectories across successive events similarly to previous reports(58, 59). Based on the
recruitment timepoints of identified individual neurons for a given Sz or sSD, we
calculated interpolated linear spatial trajectories of every Sz or sSD across events in all
CA-1 imaged mice (Fig. 1 F). Along the antero-posterior and medio-lateral dimension of

the imaged field of view (FOV), this resulted in a number of spatial vectors per Sz, sSD1
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and sSD2. For within-mouse analysis (Fig. 1 K, top panel), we calculated the standard
deviations (std) across spatial vectors for Sz, sSD1 and sSD2 for each mouse with at
least three recorded events where Sz and sSD onsets were fully captured (3 mice, CA1,
3.3 £ 0.3 events s.e.m., Fig. 1 F). Since chance level trajectory std’s are unknown, the
derived standard deviations of observed trajectories were compared to randomized
surrogate distributions. In all three mice, Sz trajectories displayed significantly smaller
variability in the observed dataset than would be expected by chance (Fig. 1 K top left)
suggesting repeated spatiotemporal Sz progression pathways(58—60). To a lesser extent,
the same held true for sSD waves (Fig. 1 K top middle, right). A subsequent analysis
across mice (std of per-experiment means) showed significantly small trajectory std’s for
Sz, sSD1 and sSD2 (Fig. 1 K bottom), which suggested, beyond patterned progression
within experiments, commonly repeated micro-progression routes of Sz and sSD.

Next, we investigated the relative spatial relationship between individual Sz and
successive sSD in CA1 by calculating the angles between spatial trajectories of Sz and
sSD1 as well as sSD1 and sSD2 (Fig. 1 L). Unexpectedly, we found vast angles between
Sz and sSD1 trajectories (Fig. 1 L-N). Typically, in our CA1 FOV, Sz progressed along a
medio-lateral path (hippocampal anatomy: distoproximal path, towards CA2 (67)), while
sSD1/2 travelled the opposite way (proximodistal path, from CA2; Fig. 1 L, M top panel,
N: 4 mice, 12 Sz-sSD1 events, median angle 162.01° [range 42.1 — 177.2°]). By contrast,
sSD1 and sSD2 displayed more similar spatial trajectories (Fig. 1 L, M bottom panel, N:
4 mice, 11 sSD1-sSD2 events, median angle 42.5° [0.1 — 100.5°)).

Together, these experiments identified a complete association of naturally occurring Sz
and sSD in CA1 during viral encephalitis, whereas this association was not found in the

imaged CTX. Regardless, both CA1 and CTX displayed reduced basic fluorescence post-
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sSD or post-Sz, but the post-sSD recovery time of the neuronal network in CA1 clearly
outlasted the post-Sz recovery time in CTX. Sz and sSD waves showed significantly non-
random spatiotemporal progression, while strikingly, hippocampal Sz and sSD1 travelled

in vastly different directions (Sz: CA1 - CA2, sSD: CA2 > CA1).

Post-ictal ambulation is associated with sSD in hippocampus

In the TMEV model, we went on to correlate the observed network dynamics to clinical
signs (semiology) related to Sz or sSD. Importantly, during 2p-imaging of focal Sz in
awake head-restrained mice, generalized tonic-clonic convulsions never occurred.

What stood out at the clinical level in encephalitis-related Sz was that the mice regularly
started locomoting upon optical sSD appearance, which then lasted for minutes (Fig. 2 A,
Suppl. Fig. 3). In comparison to the pre-ictal period, locomotion was indeed systematically
increased post-sSD (pre-ictal 5min vs. post-sSD 5min, Fig. 2 B), fitting well with so-called
post-ictal wandering (PIW), a prominent post-ictal symptom regularly encountered in
clinical epileptology (see also discussion). PIW is most frequently observed in patients
with TLE(3, 4), and characterized by unconscious ambulatory automatisms. It typically
lasts for minutes to hours, with potentially life-threatening consequences (e.g. if one walks
onto a highway). Aside from locomotion time, we quantified travelled distance, number of
locomotion episodes and maximum locomotion speed, all of which were increased over
the 5 min post-sSD period as well (Fig. 2 C-E). Together, these experiments showed that
during viral encephalitis, hippocampal sSD is associated with the onset of a locomotor
phenotype that lasts for minutes, providing a candidate mechanism for PIW. Throughout

this text, we refer to this locomotor phenotype in mice as post-ictal ambulation (PIA).
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Fig. 2. Hippocampal sSD during encephalitis corresponds to onset of post-ictal ambulation
A, Locomotion on linear treadmill across 13 Sz-sSD events in all 4 CA1-imaged mice (gray shades) during
encephalitis, aligned by optical Sz invasion (dotted green line), sSD onsets marked in light green. B-E:
Comparison of 21 pre- vs. post-ictal periods (5min each) in all imaged 7 mice (CA1 or CTX). B, % time
locomotion, paired t-test (2.525 + 0.957 [pre] vs. 11.06 + 2.83 [post], p=0.0119). C, Travelled distance (cm),
paired t-test (184.1 + 67.32 [pre] vs. 754.3 + 166.5 [post], p=0.0065). D, # of locomotion episodes, paired
t-test (1.429 + 0.519 [pre] vs. 4.0 £ 0.974 [post], p=0.0239). E, maximum speed (m/sec), paired t-test (0.312
+0.077 [pre] vs. 0.553 + 0.11 [post], p=0.0523). For entire fig.: All given + denote s.e.m.. Depiction of violin
plots: median (solid lines), quartiles (dotted lines). Depiction of statistical significance: n.s. not significant,
*p <0.05, *p < 0.01, ***p < 0.001, ***p < 0.0001.

Optogenetic dissection of the role of hippocampal SD in post-ictal ambulation
Although hippocampal sSD appearance coincided with the onset of sustained locomotion
during encephalitis, the complete association of hippocampal Sz and sSD precluded us
from decisively differentiating the role of Sz versus SD in PIA. To arrive at a more
mechanistic understanding, based on previous studies(62, 63), we established a
combined 2p-imaging (GCaMP6s [JAX 025776], or ]RGECO [AAV2/1-NES-JRGECO1a]
Vector Core Uni Bonn), 1p optogenetics (ChR2, AAV-hSyn-hChR2[H134R]-mCherry,
Addgene ID 26976-AAV5) and LFP approach (Fig. 3 A left; 3 B, suppl. Fig. 4) that allowed
us to generate either Sz or SD in a controlled manner. Using this 2p/1p/LFP approach,
Sz or SD were never elicited by 2p-imaging itself (16X Nikon 0.80 NA, wavelength range
940-980nm [GCaMP] or 1050nm [JRGECOQ]).

In CA1, Sz could be reliably elicited by a brief square wave light pulse (typically 500-
750ms, Coherent Inc., CA, Sapphire LP CW laser, 488nm, power at brain surface 4-
5mW/mm?) in the imaged FOV (Fig. 3 C left, D). Interestingly, these optogenetically

induced Sz in the healthy hippocampus were again consistently followed by sSD, and Sz-
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sSD could be bilaterally detected (Fig. 3 C left, D, suppl. movie 3). To reliably trigger
isolated SD without a preceding focal Sz, a prolonged light pulse (~4 sec, 488nm, 4-
5mW/mm?) was applied, similarly to previous reports (Fig. 3 C right, suppl. Fig. 4 C, suppl.
movies 4, 5)(44, 45). Neither Sz nor SD were elicited by control illumination at 561nm
(Coherent Inc., Santa Clara, CA, Sapphire LP CW laser, 7 mW/mm?), ensuring that the
effects were not unselectively driven by light stimulation alone. Notably, hippocampal
encephalitic Sz-sSD and optogenetic Sz-sSD showed similar differential optical signal
amplitudes (Suppl. Fig. 5 A). Further, there were no significant differences between
optogenetic sSD vs. SD depolarization half-widths and progression speeds in the optical
recordings (suppl. Fig. 5 B, C). In keeping with the results during encephalitis, imaged
CA1 also consistently displayed reduced basic Ca?* fluorescence in the wake of
optogenetic SD or Sz-sSD as compared to the pre-stimulation period (Suppl. Fig. 5 D),
and fluorescence recovery times occurred on the order of minutes (Suppl. Fig. 5 E). Thus,

basic SD features were preserved across different experimental models.
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Fig. 3. Optogenetic dissection of hippocampal SD vs. SLE in post-ictal ambulation

A, Optogenetic experimental setup. Left (2p/1p/LFP approach): CA1 window for 2p imaging (GCaMP6s or
JRGECO1a) and 1p optogenetic stimulation (ChR2: 488nm, ctr: 561nm), both contralateral to LFP electrode
(black pin, at CA1). Right (1p/LFP approach): uni-/bilateral optogenetic stimulation (ChR2: 475nm, ctr:
590nm) via optical cannulae (CA1) and LFP electrode (black pin, at CA1). B, Co-expression of GCaMP6s
(transgenic, green) and ChR2 (AAV, magenta) in CA1 (str. pyr.). C, Two examples for 2p/1p/LFP approach,
Left: 0.75 sec optogenetic stimulation (488 nm) elicits Sz-sSD (optical ipsilateral, electrographic
contralateral, note differential Sz-sSD delays). Top trace depicts avg pop. Ca?* signal, middle traces LFP
(0.01-50 Hz or 0.5-50 Hz) and corresponding spectrogram, bottom trace locomotion; locomotion artifacts
in LFP are marked gray in LFP traces; Right: same setting, but 4 sec optogenetic stimulation triggers
isolated SD in imaged field of view. In contralat. LFP, neither Sz nor SD are detected. Locomotion artefacts
marked in gray in LFP traces. D, All 2p/1p/LFP optogenetic Sz stim. (3 mice, 9 Sz-sSD [3 each]). Top: avg.
Ca?* population signals per stim. (light green), avg. signal across stim. below (green). Bottom:
Superimposed individual LFP traces (gray, 0.01-50 Hz) with avg. LFP (black), and corresponding avg.
spectrogram. All optogenetic Sz were followed by sSD. Note the pronounced post-sSD spectral depression.
E, Ratio of detectable neurons in imaged FOV (CA1) across pre- and post-stim. periods (5min each) in 5
mice, pooled sample #: 12 ctr stim., 15 SD and 9 Sz-sSD, pre/post ratio: 1.006 + 0.0396 (ctr), 0.433 + 0.046
(SD), 49.33 + 0.083 (Sz-sSD). One-way ANOVA with Tukey’s test (F [2, 33] = 35.37; ctr vs SD p<0.0001,
ctr vs Sz-sSD p<0.0001, SD vs. Sz-sSD p=0.7265. F, Optogenetic stim. framework for analysis in G to J.
G-J, Comparison of respective value A between pre- and post-stim. periods (5min each) in 7 mice (1p/LFP
approach), pooled sample #: 33 ctr stim., 17 unilateral SD, 20 Sz-sSD, 10 bilateral SD. G, A % time
locomotion: -4.403 + 1.187 (ctr), 8.331 + 1.861 (unilat. SD), 32.18 £ 3.540 (Sz-sSD), 40.68 + 4.325 (bilat.
SD). One-way ANOVA with Tukey’s test (F[3,76]=72.44; ctr vs unilat. SD p=0.001, ctr vs Sz-sSD p<0.0001,
ctr vs. bilat. SD p<0.0001, unilat. SD vs. Sz-sSD p<0.0001, unilat. SD vs. bilat. SD p<0.0001, Sz-sSD vs.
bilat. SD p=0.1862). H, A travelled distance (cm): -177.4 + 35.15 (ctr), 129.3 + 37.64 (unilat. SD), 874.3 +
116.9 (Sz-sSD), 1001.0 + 139.0 (bilat. SD). One-way ANOVA with Tukey’s test (F[3, 76]=57.39; ctr vs unilat.
SD p=0.0188, ctr vs Sz-sSD p<0.0001, ctr vs. bilat. SD p<0.0001, unilat. SD vs. Sz-sSD p<0.0001, unilat.
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SD vs. bilat. SD p<0.0001, Sz-sSD vs. bilat. SD p=0.9120). I, A # of locomotion episodes: -1.697 + 0.4636
(ctr), 4.176 £ 1.129 (unilat. SD), 8.05 £ 0.95 (Sz-sSD), 7.0 + 1.461 (bilat. SD). One-way ANOVA with Tukey’s
test (F[3, 76]=32.48; ctr vs unilat. SD p<0.0001, ctr vs Sz-sSD p<0.0001, ctr vs. bilat. SD p<0.0001, unilat.
SD vs. Sz-sSD p=0.0152, unilat. SD vs. bilat. SD p=0.2561, Sz-sSD vs. bilat. SD p=0.8929). J, A maximum
speed (m/sec): -0.1516 + 0.0523 (ctr), 0.072 + 0.063 (unilat. SD), 0.243 + 0.077 (Sz-sSD), 0.366 + 0.106
(bilat. SD). One-way ANOVA with Tukey’s test (F[3, 76]=10.80; ctr vs unilat. SD p=0.0803, ctr vs Sz-sSD
p=0.0001, ctr vs. bilat. SD p<0.0001, unilat. SD vs. Sz-sSD p=0.3423, unilat. SD vs. bilat. SD p=0.0876,
Sz-sSD vs. bilat. SD p=0.7322). K, Bilateral optogenetic (1p/LFP approach [0.05-50 Hz]) SD vs. Sz-like
episodes (SLE, for details see methods). Displayed are two exp. in adult animals, one mouse with AAV-
ChR2 (top), one transgenic (tg) thy1-ChR mouse (bottom). In both approaches, bilateral hippocampal stim.
(CA1; 475nm, respective stim. patterns in blue) reliably elicited either SD (left LFP panels with
corresponding avg. spectrogram), or isolated SLE (right LFP panels with corresponding avg. spectrogram).
Corresponding control stim. (590nm) neither elicited SD nor SLE regardless of stim. pattern (suppl. Fig. 8).
L, Magnified individual optogenetic SLE from K (dotted arrow; LFP in black, stim pattern in blue). Note close
LFP correspondence to stim. pattern, with successive frequency decrement and amplitude increment
across SLE. M-P, Comparison of respective value A between pre- and post-stim. (1p/LFP approach, all
stim. bilateral) periods (5min each) in 6 mice (3 AAV, 3 tg), pooled sample #: 37 ctr, 22 SLE, 16 SD. M, A %
time locomotion: -1.337 £ 1.234 (ctr), -0.4183 + 2.077 (SLE), 33.85 + 3.959 (SD). One-way ANOVA with
Tukey’s test (F[2,72]=70.71; ctr vs SLE p=0.9424, ctr vs SD p<0.0001, SLE vs. SD p<0.0001). N, A travelled
distance (cm): -22.81 + 26.14 (ctr), -13.25 £ 33.43 (SLE), 885.7 £ 152.3 (SD). Kruskal-Wallis with Dunn’s
test (ctr vs SLE p>0.9999, ctr vs SD p<0.0001, SLE vs. SD p<0.0001). O, A # of locomotion episodes: -
0.973 + 1.169 (ctr), 1.545 + 1.939 (SLE), 9.25 + 1.561 (SD). Kruskal-Wallis with Dunn’s test (ctr vs SLE
p>0.9999, ctr vs SD p<0.0001, SLE vs. SD p=0.0016). P, A maximum speed (m/sec): 0.04196 + 0.8761
(ctr), -0.2461 + 1.537 (SLE), 3.251 + 0.6887 (SD). Kruskal-Wallis with Dunn’s test (ctr vs SLE p>0.9999, ctr
vs SD p=0.0083, SLE vs. SD p=0.0079). For entire fig.: All given £ denote s.e.m.. Depiction of violin plots:
median (solid lines), quartiles (dotted lines). Depiction of statistical significance: n.s. not significant, *p <
0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

In line with our imaging experiments during encephalitis, both optogenetically triggered
Sz-sSD and isolated SD led to an equally strong post-ictal reduction of detectable
neurons in the FOV (Fig. 3 E) underscoring functional depression of the CA1 network due
to SD. To make sure that these optical imaging results were not confounded by GFP-
quenching due to SD-related pH shifts (ongoing neuronal firing in the quenched absence
of optical signals), we repeated the optogenetic SD experiments with electrophysiology,
now employing hippocampal tetrode recordings (+ optical cannula, see methods) in freely
moving mice instead of 2p-imaging. In keeping with the imaging experiments, we found
a prolonged and profound cessation of firing of a large majority of units upon optogenetic

SD in CA1 (suppl. Fig. 5 F), and increased post-SD ambulation (suppl. Fig. 5 G, H).
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As unilateral optogenetic Sz induction consistently triggered bi-hippocampal Sz (Fig. 3 C
left, D), we additionally implemented a 1p optogenetic stimulation approach enabling uni-
or bilateral hippocampal Sz or SD induction via implanted optical cannulas, combined
with LFP recordings (1p/LFP approach; Fig. 3 A right). Here, for optogenetic Sz or SD
induction versus control, instead of lasers, fiber-coupled LEDs were employed using the
same stimulation durations as mentioned above (Chrolis/Thorlabs: 475 nm or 590nm [2-
3mW/mm?]). Based on the 2p/1p/LFP or 1p/LFP approach, we then compared a pre- and
post-stimulation (for control and SD) or pre-stimulation and post-sSD (for Sz-sSD) period
(5min each, Fig. 3 F) analyzing the same locomotor parameters as in encephalitis (Fig. 2
B-E).

In the initial 2p/1p/LFP experiment, we unilaterally triggered SD or Sz versus unilateral
control (Suppl. Fig. 6 A-D). In the 1p/LFP experiment, we carried out bilateral SD,
unilateral Sz (except in one animal, where bilateral stimulation was necessary to trigger
hippocampal Sz), and uni- or bilateral control stimulations (Suppl. Fig. 6 E-H). Since with
respect to all analyzed clinical parameters, uni- versus bilateral control stimulations
showed no significant differences, neither within nor across experimental configurations
(Suppl. Fig. 6 E-L), these data were pooled. As the same held true for uni- and bilateral
hippocampal Sz inductions within and across experiments, these data were also pooled
(Suppl. Fig. 6 I-L, statistics for suppl. Fig. 6 are displayed in suppl. Table 1 and 2).
Remarkably, in comparison to control (590nm stim.), isolated optogenetic unilateral SD
(475nm stim.) in CA1 produced an increased locomotor phenotype like Sz-sSD in CA1
during encephalitis, indicating that hippocampal SD alone is sufficient to trigger PIA (Fig.
3 G-J, suppl. Fig. 7, suppl. Fig. 5 G, H) across experimental frameworks (2p/1p/LFP,

tetrode/1p/LFP, 1p/LFP). Interestingly, across most tested locomotor parameters (% time
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of locomotion, travelled distance, number of locomotion episodes), the effect triggered by
unilateral hippocampal optogenetic SD stimulation was significantly surpassed by
unilateral hippocampal optogenetic Sz-sSD stimulation (Fig. 2 G-J, suppl. Fig. 7). We
hypothesized that this difference in effect size could be due to the involvement of bilateral
hippocampal circuitry during focal onset hippocampal Sz, which we had observed during
encephalitis and optogenetic experiments (Fig. 1 E, 3 C left). In this case, even a
unilaterally triggered hippocampal Sz would, due to its bi-hippocampal recruitment,
prompt bilateral hippocampal sSD (Fig. 3 C left). In turn, unlike hippocampal Sz-sSD, due
to the different, non-synaptic nearest-neighbor progression of SD, unilaterally triggered
SD would typically remain unilateral (Fig. 3 C right). In line with this rationale, uni- or
bilateral hippocampal Sz-sSD stimulation produced a similar locomotor phenotype
(Suppl. Fig. 6 E-H), and Sz-sSD stimulation systematically produced a stronger
phenotype as compared to unilateral optogenetic SD stimulation, except for maximum
speed (Fig. 3 G-J, suppl. Fig. 6 A-D and I-L). Yet crucially, Sz-sSD and bilateral SD
stimulation consistently evoked a similar clinical phenotype across analyzed locomotor
parameters (Fig. 3 G-J, suppl. Fig. 6 E-L, suppl. Fig. 7).

To further substantiate the evidence that hippocampal SD is a primary driver of PIA, one
would need to show that isolated hippocampal Sz fail to trigger PIA, which proved
experimentally impossible in our experiments thus far (100% association of SD with
encephalitic or optogenetic hippocampal Sz). For several reasons including unclear site
of sSD origin and currently insufficiently known technical means to precisely inhibit
propagating sSD (see discussion), we thus set out to implement an experiment within our
optogenetic in vivo framework that allows to produce hippocampal Sz-like episodes (SLE)

without subsequent SD. To this end, using our 1P/LFP approach (Fig. 3 A right), we
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titrated custom optogenetic SLE vs. SD in mice with AAV-mediated hippocampal ChR2-
expression, or transgenic (tg) thy-ChR2 mice (B6.Cg-Tg(Thy1-COP4/EYFP)18Gfng/J,
JAX 007612). SLE stimulations were designed such that they match the average duration
of all optogenetic Sz (27 Sz [electr./opt. pooled]: 24.63 + 1.509 sec; SLE stim.: 22 SLE
[electr.]: 25 + 0.335 sec), and based on ACNS consensus criteria for ictal EEG activity
including rhythmic activity (>2.5Hz), frequency decrement and amplitude increment (Fig.
3 Kright, L; Suppl. Fig 8 B-D [stim. parameters], for details, see methods). In both groups
(AAV, TG), bilateral SLE or SD could be reliably triggered in CA1 (475nm, Fig. 3 K, L),
whereas matching control stimulation (560nm) never produced SLE or SD (Suppl. Fig. 8
A). Then, we analyzed pre- vs. post-stim. ambulation as before (Fig. 3 F-J). Since there
were no differences between any of the employed control stimulation paradigms with
regards to all analyzed locomotor parameters (Suppl. Fig. 8 E-H), these control groups
were pooled. Remarkably, across all analyzed locomotor parameters, while bi-
hippocampal SD produced PIA as in our prior optogenetic experiments, optogenetic bi-
hippocampal SLE never deviated significantly from controls (Fig. 3 M-P). Together, these
experiments unveiled i) a mechanistic role of hippocampal SD in PIA, ii) a scaling of
severity of the clinical phenotype depending on uni- vs. bilateral hippocampal SD, and iii)
similar clinical effect sizes across hippocampal Sz-sSD and bilateral SD. Importantly,
optogenetic hippocampal SLE failed to trigger PIA. This suggests that rather than

hippocampal Sz themselves, SD prompts PIA.

Optogenetic induction of hippocampal SD and neocortical widefield imaging
While we had never observed Sz-sSD in motor cortex using 2p-imaging during

encephalitis, our imaged FOV was confined to ~700x700 um. Thus next, with the
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optogenetic approach of on-demand focal SD induction at hand, and combined LFP
recordings and one-photon (1p) widefield Ca?* imaging, we went on to investigate the
potential spread of optogenetic unilateral hippocampal SD to CTX(32, 33). For
hemispheric neocortical 1p-imaging (30 Hz scanning, 470 / 405 nm, LED M470L3 /
M405L3, Thorlabs) through cleared skull in awake adult mice, we employed an inverted
tandem lens macroscope(64), and transgenic tetO-GCaMP6s / CaMK2a-tTA mice (JAX
024742 / 007004) expressing GCaMP6s in excitatory neurons across cortical layers (for

details, see methods) (Fig. 4 A).
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A pimaging B #0.01 Hz
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Fig. 4. Hippocampal SD coactivates but does not invade imaged neocortex

A, Top: Experimental setup, widefield Ca?* imaging of neocortex (CTX) in tetO-GCaMP6s/CaMK2a-tTA
mice through cleared skull, in combination with hippocampal optogenetic 1p stimulation (ChR2, optical
cannula at CA1) and LFP (black pin, at CA1), Bottom: Example image of cortical surface after skull clearing,
and implant sites of LFP electrode (white filled circle) and optical fiber (blue circle). Overlaid white lines
show Allen CCF borders. B, Two examples of stimulus-related CTX activity. Hippocampal (HPC) LFP of
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optogenetic SD stimulation (5 sec, blue line), and cortical widefield Ca2* activity in secondary/primary motor
(M2, M1) and parietal cortex (P). Corresponding to pre- (orange) and post-stim. periods (violet) 10-sec avg
A F/F images of CTX activity (bottom, white circles depict M2, M1, P). Note immediate post-stim. widefield
CTX activation and continued post-stim. activity, either without any baseline F shift (left) or a brief transient
negative baseline shift (right), yet always with continued presence of cortical Ca?* transients. C,
Superposition of peri-stim. CTX A F/F activity traces (individual traces in gray, mean in black; 3 mice, 12
HPC SD stim. [4/mouse, 1/day]). D, Quantification of pre- (-10 - 0 sec to stim., orange) vs. post-stim. (0 —
10 sec from stim., violet) avg CTX activity in M2 (0.01 £ 0.252 [pre] vs. 1.589 + 0.337 [post]), M1 (0.118 +
0.348 [pre] vs. 1.778 + 0.371 [post]) and P (-0.044 + 0.196 [pre] vs. 1.831 + 0.432 [post]). One-way ANOVA
with Sidak’s test (F[2.146, 23.60] = 17.98; pre vs. post: M2 p=0.0029, M1 p=0.0014, P p=0.0018). No
significant differences of A (post — pre) activity among M2, M1, and P. One-way ANOVA with Tukey’s test
(F[1.837, 20.21]=0.5231; M2 vs. M1 p=0.946, M2 vs. P p=0.657, M1 vs. P p=0.766). E, Cross-correlation
of peri-stim. activity of M2 and P (12 HPC SD stim., [4/mouse, 1/day], individual traces in gray, mean in
black), mean lag = 0 sec. F-N, ‘pre’ and ‘post’ denote pre- vs. post-stim. periods of 5min each. All
quantifications include 3 mice and 12 HPC SD stim.. F, Top: avg A F/F images of movement-related CTX
Ca?* transients. Bottom: corresponding movement-related avg A F/F CTX Ca?" dynamics (shades depict
s.e.m.). Note congruence btw. pre- (orange) vs. post-stim. (violet) period (pre vs. post events). G,
Quantification of pre- vs. post-stim. post-movement-onset Ca%* dynamics shown in F. Left: avg. peak A F/F
post-movement-onset (3 mice, 12 HPC SD stim.). Paired t-test (5.532 + 0.6456 [pre] vs. 6.002 + 0.7225
[post], p=0.3639). Right: avg. delay (sec) of peak A F/F post-movement-onset. Wilcoxon test (1.111 £ 0.035
[pre] vs. 1.092 + 0.04 [post], p=0.4336). H, Pre- and post-stim. activity correlation of M2, M1, and P. Note
increased correlation of activity post HPC SD stimulation. I, CTX pre- vs. post-ictal minimal F (A min F
baseline/min F post-ictal; M2 0.739 £ 0.243, M1 0.781 + 0.26, P 0.643 £ 0.247), One-way ANOVA with
Tukey’s test (F[2, 33]=0.0807; M2 vs. M1 p=0.992, M2 vs. P p=0.96, M1 vs. P p=0.919). Note that all areas
show a decreased post-stim. min F on avg. J, Comparison of cross-area F recovery time (sec, M2 18.33 £
4.323, M1 19.58 + 4.15, P 22.5 + 5.418), One-way ANOVA with Tukey’s test (F[2, 33]=0.2102; M2 vs. M1
p=0.98, M2 vs. P p=0.804, M1 vs. P p=0.898). K, Quantification of pre- vs. post-stim avg. motion energy
(a.u.: arbitrary units). Paired t-test (0.3916 + 0.02803 [pre] vs. 0.5545 + 0.0643 [post], p=0.009). L,
Correlation of wide-field imaging (WFI) and motion energy, pre- vs. post-stim. Paired t-test (0.424 + 0.05273
[pre] vs. 0.5140 + 0.0479 [post], p=0.0023). M, Correlation of LFP and motion energy, pre- vs. post-stim.
Paired t-test (-0.0233 + 0.0331 [pre] vs. -0.0029 + 0.021 [post], p=0.6402). N, Correlation of wide-field
imaging (WFI) and LFP, pre- vs. post-stim. Paired t-test (-0.0059 + 0.040 [pre] vs. -0.0991 + 0.0791 [post],
p=0.0367). For entire fig.: All given + denote s.e.m.. Depiction of violin plots: median (solid lines), quartiles
(dotted lines). Depiction of statistical significance: n.s. not significant, *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.

Around six weeks before the actual experiment, pAAV-hSyn-hChR2(H134R)-mCherry
was stereotactically injected into the left hippocampal CA1 region (coordinates from
Bregma: AP -1.9, ML -1.6, DV -1.5 mm). In addition, a custom-made optrode comprising
an insulated tungsten electrode (@ ~125 ym) and an optical fiber (& 200 ym, NA = 0.37)
were chronically implanted above the left hippocampus, for LFP recordings and optical

stimulation.
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Similar to our previous optogenetic experiments, hippocampal SD could be reliably
induced by a square wave light pulse (5 sec, 488 nm, 15 mW/mm?, 1p CW laser
READYBeam™ Bio2, FISBA AG, SUI) (Fig. 4 B). For practical procedural reasons related
to the optrode implant, imaging was carried out in the cortical hemisphere contralateral to
hippocampal SD induction (Fig. 4 A). While a widespread coactivation of the imaged CTX
(e.g. motor cortex: M2, M1; parietal cortex: Pa) was observed during optogenetically
induced hippocampal SD across 12 recordings (4 mice, 3 SD each, one SD stim./d, Fig.
4 B-D), no SD or wave-like invasion resembling SD dynamics were ever observed. In line
with this, no activation lags could be found across distant neocortical areas (e.g. M2/P,
Fig. 4 E), and CTX continued to show typical transients of Ca?* activity (Fig. 4 B),
specifically also with respect to movement (Fig. 4 F, G) (65, 66). Notably, neocortical
areas showed an enhanced correlation of activity in the post-stimulation period (Fig. 4 H).
Still, similar to our 2p-imaging results in CTX during encephalitis, cortical dynamics across
regions also often displayed, although moderately, a reduction of basic fluorescence in
the immediate post-stimulation period despite the absence of SD (Fig. 4 B right, 4 C and
|, suppl. Fig. 9). Importantly, also during this time, Ca?* transients continued without
interruption (Fig. 4 B right). Further, as in our 2p-imaging experiments, the recovery to
pre-stimulation basic fluorescence was consistently fast in CTX (<1 min, Fig. 4 J).

In line with our encephalitis and optogenetic experiments before, hippocampal SD
prompted increased motion energy during the post-stim. period (Fig. 4 K). Interestingly,
while CTX imaging and motion energy signals also showed increased correlation in the
post-stim. period (Fig. 4 L), the correlation between hippocampal LFP and motion energy
remained unchanged (Fig. 4 M), and the correlation of CTX imaging and hippocampal

LFP decreased (Fig. 4 N), indicating divergent post-stim. cortical and hippocampal activity
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dynamics. Together, these wide-field imaging experiments of the contralateral
hemisphere recapitulated results from our 2p-imaging experiments, and substantiated the
evidence that hippocampal SD does not typically propagate to CTX, at least where we
imaged. Neocortical Ca?* transients appeared to continue throughout the post-stimulation
period without signs of activity depression, and, in contrast to SD dynamics, showed a
rapid recovery from reduced basic fluorescence to pre-stimulation conditions. Further, the
correlation between CTX activity dynamics and motion energy increased in the post-
stimulation period, while it did not between hippocampal LFP and motion energy, and

decreased between hippocampal LFP and CTX, suggesting divergent dynamics.

Seizure-associated putative SD in human epilepsy

The current EEG-standard with a bandwidth of 0.5-70 Hz(67) renders SD invisible in
clinical practice (suppl. Fig. 10). Thus, we finally sought to examine the occurrence, and
potentially regional preference of focal electrographic slow shifts at Sz termination in
human focal epilepsy through multi-regional Behnke-Fried (BF) electrode recordings, in
the context of stereotactic depth macro-electrode recordings (SEEG) during pre-epilepsy-
surgery diagnostic work-up (Fig. 5 A, B, Suppl. Fig. 11, Suppl. Table 3, see methods for
details). Although not DC-coupled full-bandwidth recordings, these AC recordings
included a 0.1 Hz high-pass filter, allowing detection of slow shifts at Sz termination which

we labeled putative sSD (psSD).
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Fig. 5. Putative sSD at Sz termination in BF electrode recordings in human epilepsy

A, Scheme and dimensions of individual Behnke-Fried (BF) electrodes composed of depth-electrode
macro-contacts and microwire bundle. B, 3D-reconstructed brain MRI and location of implanted BF
electrodes. Green dots indicate macro-contact locations, shades of green designate different brain regions
and violet markers depict microwire bundles. AMD: amygdala, aHPC: anterior hippocampus, EC: entorhinal
cortex, pHPC: posterior hippocampus, PHC: parahippocampal cortex, PIC: piriform cortex, Ta: temporal
cortex a, Th: temporal cortex b. C i, LFP traces from BF microwire bundles across recorded regions (0.1
HP filter, referenced to local common average) of a temporomesial focal onset Sz. C ii, magnified inset
from Ci, aHPC (as marked by orange lines). Note putative sSD (psSD) at Sz termination, confined to HPC.
D, Regional occurrence count of psSD across all Sz-invaded regions (all Sz/patients included). E, aHPC,
most distal macro contact trace (top), corresponding microwire trace (middle) and multi-unit activity from
the same microwire (bottom). F, Change in power between the first postictal minute and the preictal minute.
Each line represents one Sz-invaded microwire, color shades indicate Sz-invaded (gray, psSD-neg.) and
Sz-psSD-invaded (purple, psSD-pos.) regions, bold lines depict the mean of each group. G, Comparison
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of respective A pre- and post-ictal broadband power (dB, 2-50 Hz) in psSD-neg. (18 events) vs. psSD-
pos. (5 events) Sz-invaded regions, unpaired t-test (-1.365 + 0.8728 [psSD-neg.] vs. -5.870 + 1.107 [psSD-
pos.], p=0.0189). H, Comparison of postictal broadband power recovery time (min) of psSD-neg. (18
events) vs. psSD-pos. (5 events) Sz-invaded regions, Mann-Whitney test (16.7 + 3.84 [sS-neg.] vs. 84.87
+ 51.29 [psSD-pos.], p=0.0112). I, Comparison of respective A pre- and post-ictal high-gamma power (dB,
80-150 Hz) in psSD-neg. (18 events) vs. psSD-pos. (5 events) Sz-invaded regions, unpaired t-test (-1.184
+ 0.544 [psSD-neg.] vs. -4.227 + 0.6825 [psSD-pos.], p=0.0117). J, Comparison of postictal high-gamma
power recovery time (min) of psSD-neg. (18 events) vs. psSD-pos. (5 events) Sz-invaded regions, Mann-
Whitney test (27.05 + 11.00 [psSD-neg.] vs. 37.97 + 7.08 [psSD-pos.], p=0.078). For entire fig.: All given +
denote s.e.m.. Depiction of violin plots: median (solid lines), quartiles (dotted lines). Depiction of statistical
significance: n.s. not significant, *p < 0.05, **p < 0.01.

As an initial cohort, we included four patients (2 female / 2 male patients, age range 23-
50 yrs) with refractory focal epilepsy based on different pathologies, a history of post-ictal
symptoms comprising PIW, confusion or aphasia, and depth electrodes in the temporal
lobe (Fig. 5 B, for implant schemes and clinical information, see suppl. Fig. 11 and suppl.
Table 3). Across a total of 272 BF microelectrodes (8/bundle), 7 brain regions (amygdala,
hippocampus [ant., post.], entorhinal / parahippocampal / piriform / temporal cortex), and
39 recording days during pre-surgical evaluation, 16 focal-onset seizures were recorded,
of which 13 could be analyzed at the microelectrodes (3 excluded for technical reasons).
Strikingly, we found what appeared to be localized psSD in the BF microwire recordings
(Fig. 5 Ci, Cii) in every patient (4/13 Sz in total). In the per-region analysis of Sz-invasions,
in line with our murine recordings, we found psSD to occur primarily in temporomesial
regions (hippocampus, amygdala), while it was not detected in the other recorded regions
(Fig. 5 C, D). Notably, in 3 of 4 psSD, the invaded region corresponded to the first Sz-
invaded region at the macrocontacts, where psSD were not visible (Fig. 5 E top panel,
suppl. Table 3). On average, both psSD-neg. and psSD-pos. regions displayed a
postictal/post-sSD reduction in spectral power (Fig. 5 F), but psSD-pos. regions showed
a more profound decrease, and a delayed recovery to the pre-ictal condition (Fig. 5 G,

H). Consistent with our murine results and previous literature(70, 14, 19, 68), at the
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neuronal unit level, psSD-invasion coincided with a break-down of neuronal firing (Fig. 5
E, middle and bottom panel). To compare neuronal activity independently of stably
trackable neuronal units, we used high gamma (80-150 Hz) oscillatory power as a proxy,
as previously described(69). Again, on average, both psSD-neg. and psSD-pos. regions
showed a decreased post-ictal high gamma power, but psSD-pos. regions displayed a
stronger reduction, and delayed recovery (Fig. 5 1, J).

In sum, these BF recordings in a cohort of 4 patients showed focal slow shifts at seizure
termination suggestive of localized sSD in human focal epilepsy, and point towards an
increased propensity of temporomesial regions to experience psSD. Further, in line with
the murine experiments, among Sz-invaded areas, psSD-pos. regions took longer to

recover to their pre-ictal baseline than psSD-neg. regions.

Discussion

This work suggests that seizure-associated focal spreading depolarization (sSD) is a
pathoclinical hallmark of epilepsy, that is, focal sSD triggers distinct clinical symptoms
previously attributed to Sz themselves. We find profound region-specific differences in
sSD occurrence that hold true across mice and humans, and provide evidence in mice
that temporomesial SD causes post-ictal ambulation (PIA). PIA is a hallmark feature of
post-ictal wandering (PIW), a prominent symptom whose neurobiological underpinnings
have remained unclear. Although PIW was famously described by Jean-Marie Charcot
already in 1888-1889 in his Legons du mardi a Salpétriere(1), and even though PIW is
regularly encountered in clinical epileptology, its precise prevalence has only recently
been quantified. Tai and colleagues described a general PIW occurrence rate of 26% in

epilepsy patients with focal unaware seizures(3). Interestingly, in line with our
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experiments, subgroup analyses showed a clear preference of temporal over
extratemporal epilepsy (45.0 vs. 10.0 %), and temporal over extratemporal seizures (9.7
vs. 0.8%). In another study, Jin and Inoue found a PIW occurrence rate of 8.3 % in
temporal seizures and of 25.2% in TLE patients(4). Although not completely congruent,
both studies clearly underscore that PIW is a significant entity in epilepsy. Further, PIW
is associated with a risk for severe, potentially life-threatening injuries(7, 5), and carries
profound socio-economic implications for affected patients (7, 5, 70). In a still topical case,
Charcot described all these aspects in the epilepsy patient Mr. Me...s in Paris who would,
upon sudden loss of consciousness, come to himself in a different part of the city, or
immersed in the river Seine. In the context of such unconscious episodes, Mr. Men...s,
although always carrying a note by Charcot stating the epilepsy diagnosis and ambulatory
automatisms, was considered a thief and jailed by police, and lost his employment at a
bronze manufactory (7). A recently published case series about PIW in the public in an
unclothed state, e.g. following nocturnal seizures, further underscore the social and even

legal dimension of the phenomenon(70).

While we observed sSD primarily in temporomesial structures, several aspects require
discussion in this regard. First, our analyses of mouse and human sSD were based on
focal onset seizures with known or suspected onset zones in the temporal lobe (Suppl.
Table 3). Therefore, sSD emergence may depend on its spatial relationship to the Sz
onset zone (SOZ) and (peri-)lesional tissue. Still, there are basic neuroanatomical
features that could inherently predispose e.g. the hippocampus to sSD. First,
hippocampal wiring with itself and other regions renders it more excitable than other

portions of the brain such as the neocortex(71, 72). In line with this longstanding notion,
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our hippocampal optogenetic Sz-induction protocol failed to induce seizures in healthy
neocortex. At the synaptic level, the CA3 region contains so-called “conditional detonator”
synapses that can strongly drive postsynaptic firing(73), which may be why CA3 displayed
a high propensity for SD upon repetitive mossy fiber stimulation under hyperexcitable
conditions in vitro(74). Further, aside from its neuronal connectivity, recent data suggests
that the hippocampus displays relatively reduced blood oxygenation and neurovascular
coupling in comparison to neocortex due to differences in vascular architecture(75).
Among other potential contributing factors such as subregion-specific oxidative metabolic
capacity(76), this may make the hippocampus susceptible to an energy shortage during
Sz, promoting sSD. We propose that in addition to possible (peri-)lesional vulnerabilities
for sSD, basic neuroanatomical differences across brain regions support differential sSD
occurrence rates. This carries implications for notions revolving around regional post-ictal
EEG signal depression and its spatial overlap with the assumed SOZ(77). It is possible
that e.g. the hippocampus, even if only secondarily recruited into a Sz, may be at risk for
sSD due to its anatomy. This could then prompt post-ictal signal depression in this territory

without it being part of the SOZ.

Adhering to the neuroanatomical argument, regarding the disparate spatiotemporal
trajectories of Sz and sSD in our imaging experiments, work by Scharfman on SD
susceptibilities of hippocampal sub-regions(74) may provide a potential explanation for
this unexpected result. We always imaged CA1 contralateral to the TMEV CA1 injection
site, and consistently observed a mediolateral Sz spread (CA1 - CA2). sSD mostly
travelled the other way, which points towards CA2 or CA3 as the source of sSD(74).

Based on Scharfman’s dual region electrical recordings, her observation that mossy-fiber-
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stimulation-triggered SD in CAS3 travelled back to dentate gyrus (DG)(74), and our CA1
imaging results, one could hypothesize that CA3-prompted sSD propagate both towards
DG and CA1. Alternatively, CA2 could be an sSD source, as it receives strong excitatory
input from entorhinal cortex, and has been shown to display enhanced excitability in
chronic epilepsy(78, 79). Finally, it is also conceivable that multiple potential sSD

generators exist across CA regions.

We can only speculate about the exact nature of sSD1 versus sSD2 in our optical imaging
experiments. We believe that sSD1 corresponds to what has been described as pre-SD
excitation(19, 31, 80, 81). This pre-excitation has been observed to typically include a
brief increase in neuronal firing and fast LFP oscillations, lasting a few seconds on the
initial shoulder of depolarization (see e.g. Herreras et al. [1994] Fig. 1 A, or Nasretdinov
et al. [2023] Fig. 4 A)(19, 80). These characteristics fit with our LFP recordings of SD (see
e.g. Fig. 3 K left), and intriguingly also, the optical delay between sSD1 and sSD2 (~6
seconds, see results). Further, sSD2 consistently had the highest fluorescence among
Sz, sSD1 and sSD2. Thus, optical sSD2 could mark the moment of neuronal
depolarization above the inactivation threshold and cessation of firing in SD-invaded
regions(79, 31, 80, 817). Albeit technically challenging, a combination of in vivo imaging
with unit recordings or voltage imaging experiments present viable approaches to support

or falsify this speculation.

A main finding of this study is that hippocampal SD triggers PIA, whereas hippocampal
Sz-mimics do not. Importantly, this does not per se mean that the hippocampus as an

anatomical region is the primary driver of the observed phenotype. While a transient
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shutdown of hippocampal networks (see Fig. 3 E) will likely contribute to unaware
ambulation e.g. through navigational confusion, it is likely that the enhanced locomotion
upon hippocampal SD is brought about by a number of interconnected brain regions(82,
83) that interact with the hippocampus and that may be indirectly or directly affected by
hippocampal SD, including the septum(84, 85) and mesencephalic structures(82, 86).
Clearly also, while in our murine models, sSD was observed only in hippocampus during
viral encephalitis, and optogenetic hippocampal SD did not invade imaged neocortical
areas, this does not mean that it never does (it can, see (32, 33)), nor that it does not
invade other subcortical structures (we hypothesize that it does), nor that it does not

invade the hippocampus if emerging elsewhere (e.g. in the neocortex(32)).

While much has been learned about SD in neurological research e.g. on migraine or
traumatic brain injury(72—14), the relationship between SD and clinical symptoms in
epilepsy has remained understudied. Part of the reason is that most studies on SD in
epilepsy have been carried out in vitro, or under anesthesia (10, 11, 27, 30, 51, 52), which
precludes clinical correlation. At other times, it was not primarily intended to link
neurophysiological measures to clinical semiology, i.e. in studies focusing on SD-related
Sz termination(52, 563). Of note, different types of epilepsies (e.g. acquired vs. genetic
epilepsy) and seizures (focal vs. bilateral tonic clonic) will likely affect the occurrence and
spatial extent of SD (e.g. local vs. [bi-]lhemispheric), and thus impact clinical
phenotypes(87). Remarkably, most epilepsy research studies do not specifically
distinguish Sz with or without SD, although SD has long been suggested to represent a
‘separate entity’ (see Bures et al.(28), p.10). Based on this suggestion and the results

shown here, it may indeed be the case that some of the previously observed
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neurobiological effects attributed directly to Sz are instead mediated by sSD. Notably, as
Sz and sSD can co-occur at the same time in different brain regions, this also extends to
clinical semiology. Some previously described “ictal” symptoms may instead present
compound semiology based on spatially separate, simultaneous Sz and sSD. Re-visiting
reported effects and effect-sizes, and clinical symptoms through the lens of Sz versus
sSD will likely propel new diagnostic and therapeutic research on many acute and chronic

clinical circumstances that involve seizures, and thus potentially, sSD.

Due to the current EEG standard (=0.5 Hz)(67), SD is invisible in routine clinical care. As
a result, medical professionals regularly encounter post-ictal symptoms, but are blind to
SD as a potential major determinant of these phenomena. As there is a traditionally strong
focus on the “ictus” in epileptology (underscored by current terminology), such symptoms
are then usually related to Sz, and sSD plays little to no role in clinical care. Inversely, it
is known in basic research that sSD terminates ongoing Sz(31, 52), but since SD-
mediated Sz termination has been studied mostly in vitro or under anesthesia, the clinical
impact of sSD could not be studied. Therefore, our results highlight the necessity of a
close cross-talk between clinical and basic research disciplines. Clearly, sSD can have
potentially life-threatening clinical consequences(6, 7). Thus in our view, caution is
required if sSD is proposed as a protective factor of the brain against Sz, and as a
potential epilepsy treatment tool(52, 54). However, under specific conditions such as
refractory status epilepticus, which involves intensive care settings and general
anesthesia, SD may be a treatment option, as its pathoclinical impact is suppressed (by
anesthesia). This also applies to electroconvulsive treatment - applied under anesthesia

in certain hard-to-treat psychiatric disorders - where new research suggests a potentially
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beneficial role of SD(88). Finally, in other neurological conditions such as stroke, recent
basic research points towards a double-edged SD impact. In a rodent model of
hippocampal stroke, Boyce and colleagues showed acutely deleterious effects of ipsi-
lesional terminal SD, while interestingly, contextual fear conditioning was improved only
in mice with contralesional SD 7 days post-stroke(89). These examples highlight the
necessity of further research into possibly varied roles of SD across the neuropsychiatric
disease spectrum. For epileptic seizures, our work supports the notion that sSD
constitutes a transient homeostatic break-down of a biological system driven beyond its

physiological range of operation(74), with acute clinical impact.

There are of course limitations to this study. First, although our murine findings held true
across recording modalities, different murine models of hippocampal Sz and SD, and
under healthy (optogenetics) and disease (TMEV) conditions, we do not know whether
these findings extend across many different etiologies. Aside from the factors discussed
above, the exact parameters that favor sSD emergence in hippocampal Sz are not yet
clear, and may include e.g. Sz duration, extent of spatial Sz invasion and hippocampal
subfields, Sz dynamics (e.g. tonic vs. clonic), internal state or transition between states
(e.g. wakefulness, sleep). Another limitation is that while hippocampal SLE (“Sz-mimics”)
may approximate naturally occurring hippocampal Sz, the ideal experiment would involve
closed-loop sSD inhibition upon hippocampal Sz detection in a chronic epilepsy model.
Still, we established this approach for several reasons. First, Sz and sSD trajectories differ
profoundly, and the exact point of hippocampal sSD emergence remains unknown,
precluding sSD inhibition at its onset. Whether partial sSD blockage during propagation

can change clinical symptoms, remains to be determined. Further, it is not known if
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spatiotemporal precision tools such as optogenetics can block SD on its way. We did not
employ pharmacology to reduce sSD duration or amplitude as has been documented
before(90), as this would change Sz dynamics as well. What's more, the side-effect
profiles of some agents that alter SD dynamics, e.g. NMDA-receptor antagonists(52),
include changes of locomotor behavior, which prevents proper assessment of PIA (97).
Finally, our optogenetic SLE stimulation allowed for a direct comparison of optogenetic
SLE- vs. SD-mediated effects on locomotor activity within the same technical framework.
For these reasons, we regard optogenetic SLE stimulation as a suitable tool not just for
this study, but a vital option for future research on Sz- vs. SD-mediated effects.

Inherently, there are also limitations related to the human data in this study. In our wide-
bandwidth AC recordings, the lowest possible high-pass filter was 0.1 Hz for technical
reasons, leading to slow shift signal attenuation and morphology alteration. Thus, from
the raw signal, we cannot be certain whether the terminal slow shifts indeed corresponded
to focal sSD, even if our additional analyses point this way. Further, due to the high-pass
filter, it is possible that some terminal slow shifts were missed. Indeed, in two recent
studies involving DC-coupled surface or depth electrodes recordings in patients with
refractory epilepsy, a higher occurrence rate of slow shifts was reported(25, 26). Notably,
while we focused on slow shifts at Sz termination, both Bastanyi et al. and Norby et al.
analyzed slow shifts all throughout Sz epochs, in part also during pre- and interictal
periods. It remains unclear whether all reported slow shifts solely represented SD, or
partly other known slow signal dynamics (e.g. in association with low-voltage fast activity
at seizure onset)(92, 93). Another reason for a possible underestimation of the true psSD
occurrence rate in our human data is that current depth electrode recordings strongly

spatially undersample targeted brain areas. In the near future, this limitation may become
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softened to some extent, on the heels of recent advances in high-density electrode
arrays(94-97). First steps towards a systematic investigation of sSD in larger patient
cohorts will require coordinated efforts by institutions that have access to wide-bandwidth
AC or DC-coupled intracranial electrical recordings in epilepsy patients. Ideally, such
coordinated efforts will include the establishment of high-fidelity sSD-specific functional
biomarkers in human epilepsy. Beyond the currently available recording modalities in
clinical practice, one should also consider newly available technology for potential high-
fidelity full-bandwidth recordings of Sz, SD and sSD in humans, e.g. biocompatible flexible

microtransistors(32).

In sum, this work sets stage for a wider discussion of the pathoclinical role of sSD in
epilepsy, and a potential re-consideration of the clinical EEG filter standard(67). Beyond
post-ictal ambulation, our results suggest that focal sSD could underlie other post-ictal
symptoms, e.g. confusion, receptive aphasia, navigational impairment, or defensive-like
aggression(2, 98, 99). Finally, beyond its immediate effects, sSD may play a pathoclinical
role in comorbidities of epilepsy, and other diseases encompassing temporal lobe
pathology and seizures, e.g. neurodegenerative diseases, which are not primarily treated

by epileptologists.
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