

Title: Hippocampal spreading depolarization drives post-ictal ambulation

Authors: Bence Mitlasóczki^{1,2}, Adrián Gutiérrez Gómez¹, Midia Kamali^{1,2}, Natalia Babushkina^{3,4}, Mayan Baues^{1,2}, Laura Kück^{1,2}, André Nathan Haubrich², Theodoros Tamiolakis^{1,2}, Annika Breuer¹, Simon Granak¹, Merlin Schwering-Sohnrey^{1,2}, Ingo Gerhauser⁵, Wolfgang Baumgärtner⁵, Laura Ewell⁶, Thoralf Opitz², Julika Pitsch¹, Simon Musall^{2,3,4}, Rainer Surges¹, Florian Mormann¹, Heinz Beck^{2,7}, Michael Wenzel^{1,2*}

Affiliations:

1 University Hospital Bonn, Dept. of Epileptology, Bonn, Germany

2 University of Bonn, Medical Faculty, Institute of Experimental Epileptology and Cognition Research, Bonn, Germany

3 Institute of Biological Information Processing (IBI-3) – Bioelectronics Forschungszentrum, Jülich, Germany

4 Institute of Biology II, RWTH Aachen University, Aachen, Germany

5 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany

6 Department of Anatomy and Neurobiology, University of California, Irvine, USA

7 Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Bonn, Germany

***Correspondence to:**

Michael Wenzel

University Hospital Bonn, Dept. of Epileptology, Venusberg-Campus 1, 53127 Bonn, Germany

Email: michael.wenzel@ukbonn.de

Phone: +49 228 287 16954

Number of main figures: 5

Number of suppl. figures/tables: 11/3

Author approvals: All authors have seen and approved the manuscript, and the manuscript has not been accepted or published elsewhere.

Conflict of Interest: The authors declare no competing interests.

1 **Abstract**
2

3 Post-seizure (*post-ictal*) symptoms are regularly encountered in epilepsy, and can be life-
4 threatening, yet their neurobiological underpinnings remain understudied. Using two-
5 photon or widefield imaging, field potential and unit recordings, optogenetics, and basic
6 behavioral assessment under healthy conditions or viral encephalitis, we studied seizures
7 and post-ictal symptoms in mice. In addition, we analyzed Behnke-Fried depth-electrode
8 recordings in an initial cohort of 4 patients with chronic epilepsy. In mice, we show a
9 massive propensity of the hippocampus for seizure-associated spreading depolarization
10 (sSD). Via optogenetic stimulation, we provide evidence that isolated hippocampal SD
11 drives *post-ictal ambulation* (PIA), whereas optogenetic seizure-like episodes do not.
12 Further, PIA occurred in the absence of SD progression to the neocortex. In support of
13 our experiments in mice, we also found an increased vulnerability of the human
14 temporomesial system (hippocampus, amygdala) for putative sSD at Sz termination, and
15 differential recovery times of affected vs. non-affected brain regions. This work uncovers
16 sSD as a previously underrecognized key pathoclinical entity underlying distinct postictal
17 symptoms in epilepsy. Our results carry ramifications for epilepsy research and
18 neurology, and challenge current EEG-standards.

19
20
21
22
23
24
25
26
27
28
29
30
31

32 **Main Text:**

33 **Introduction**

34 The post-ictal period often manifests with confusion, aphasia, amnesia, or unaware
35 ambulation (*post-ictal wandering*), which is most commonly observed in temporal lobe
36 epilepsy (TLE, ~25-45%)(1–4), and associated with a risk of potentially life-threatening
37 injuries(1, 5). Despite the far-reaching clinical and socio-economic impact (1, 2), except
38 for particular entities such as sudden unexpected death in epilepsy (SUDEP)(6, 7), the
39 neurobiological underpinnings of the post-ictal state remain unclear, and most related
40 research on this topic has focused on consequence rather than initial cause(8, 9). One
41 reason for the continued scarcity of neurobiological insight may be that the *ictus* itself has
42 continually formed the center of interest in epilepsy research and clinical care, which is
43 also reflected in clinical terminology (ictus, ictal, pre-/post-/peri-ictal).

44

45 Previous work has suggested that network dynamics other than seizures (Sz), e.g.
46 spreading depolarization/depression (SD)(10), could in principle account for a number of
47 post-ictal symptoms(2, 6, 11). Most of what is known about SD stems from research on
48 migraine, stroke and traumatic brain injury(12–14). In this context, Sz and neocortical SD
49 have also been systematically investigated in clinical electrical recordings(15–24),
50 whereas studies on SD in chronic human epilepsy have remained scarce(25, 26). While
51 SD has been recorded in various brain regions including deep structures like the
52 hippocampus(27–33), thalamus(34, 35), basal ganglia(27), or brainstem(6, 7), the vast
53 majority of SD research has focused on neocortex, which brought about the common term
54 cortical spreading depression (CSD)(14). Put simply, SD constitutes a massive ion
55 translocation across the neuronal cell membrane resulting in a profound depolarization

56 above the inactivation threshold, a break-down of the membrane potential and
57 consecutive neuronal depression(10, 14, 36). SD can be elicited in various ways, e.g. by
58 energy depletion(37–39), hypoxia(11), high extracellular K⁺(39–42), repetitive electrical
59 or mechanical stimulation(10), or optogenetic neuronal depolarization(43–48). Depending
60 on the etiology, SD has profound effects on affected brain tissue such as transient edema
61 and vasoconstriction, danger molecule release in the extracellular space (i.e. ATP), or
62 immune activation(11, 14, 30, 49). Such effects may be reversible, but can also lead to
63 permanent tissue damage(23, 50).

64

65 In basic epilepsy research, the role of SD remains debated. SD has both been suggested
66 to increase neural excitability(33, 51), and to disrupt ictal oscillations(31, 52, 53). Some
67 have speculated about a protective role of SD in epilepsy(52, 54), while others have
68 described Sz-related SD as a potential cause for SUDEP via brain stem invasion(6, 7).
69 Certainly, as most basic research on Sz-related SD has been carried out in vitro, or under
70 anesthesia(10, 11, 27, 30, 51, 52), the general relationship between Sz-related SD and
71 potentially distinct clinical symptoms have remained understudied. In epileptology,
72 concepts revolving around Sz-related SD and its potential clinical-level impact, aside from
73 SUDEP, currently play little to no role.

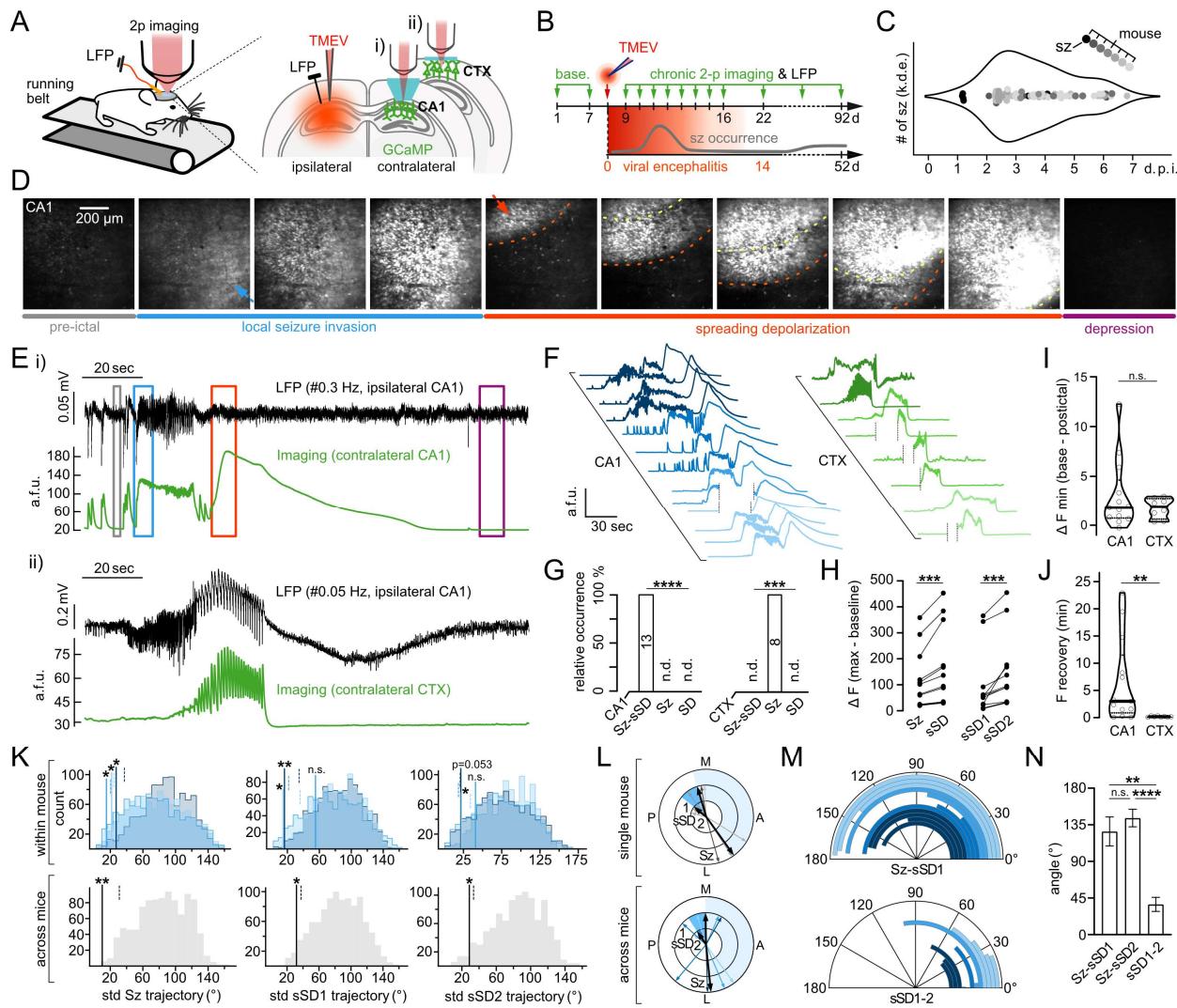
74

75 Here, we provide evidence in mice and humans that Sz-associated focal spreading
76 depolarization (sSD) constitutes a proper pathoclinical entity in epilepsy. Using two-
77 photon or one-photon widefield imaging (hippocampus, neocortex), field potential and
78 single unit recordings, and behavioral assessment in mice, we first studied seizures
79 during viral encephalitis, and subsequently established an optogenetic approach to

80 dissociate hippocampal Sz and SD. We find profound region-specific differences in sSD
81 occurrence, characterize its progression, and show that temporomesial SD triggers *post-*
82 *ictal ambulation* (PIA). Then, by Behnke-Fried (BF) electrode recordings in an initial
83 cohort of four patients with refractory focal epilepsy undergoing pre-surgical diagnostic
84 work-up, we provide corroborating evidence for an increased vulnerability of the human
85 temporomesial system (hippocampus, amygdala) for putative sSD at Sz termination, and
86 differential recovery times of affected vs. non-affected brain regions.

87

88 **Results**


89

90 **Two-photon Ca^{2+} imaging of epileptic network dynamics during viral encephalitis**

91 We initially set out to study naturally occurring temporal lobe Sz at cellular scale. To this
92 end, we employed resonant two-photon (2p) population Ca^{2+} imaging in the hippocampus
93 (CA1) or cortex (CTX, motor) in awake adult transgenic Thy1-GCaMP6s mice (JAX
94 025776; 15 Hz scanning, \sim 700x700 μm , 16X Nikon 0.80 NA 3.0 mm WD), in the recent
95 Theiler's murine encephalomyelitis virus (TMEV) etiopathy mouse model of TLE (Fig. 1 A,
96 B). The model is based on an initial self-limiting viral encephalitis that encompasses acute
97 disease stage focal onset seizures (\sim 2-7 days post infection [p.i.], Fig. 1 C, Suppl. Fig. 1,
98 for details, see methods)(55).

99 For electrophysiological reference of optically recorded network dynamics, we combined
100 2p-imaging with local field potential (LFP) recordings (Fig. 1 A, insulated tungsten $\varnothing \sim$ 125
101 μm). Notably, both in bi-hippocampal wireless LFP recordings (Suppl. Fig. 2) and all
102 combined imaging-LFP recordings in CA1 (Fig. 1 E i), focal electrographic Sz were
103 faithfully detected in both hemispheres. Thus, for practical procedural reasons, in
104 experiments involving both chronic *in vivo* 2p-imaging and LFP recordings, we placed

105 one LFP electrode at the stereotaxic site of hippocampal TMEV inoculation (from Bregma:
 106 AP -1.9, ML 1.6, DV 1.5 mm from pial surface), while imaging was performed in
 107 contralateral CA1 or CTX (Fig. 1 A, E). In our framework, electrographic and optical
 108 hippocampal Sz corresponded well, while optical neocortical Sz invasion occurred with a
 109 delay of seconds (Fig. 1 E ii, 10.20 ± 5.55 sec s.e.m.).

111 **Fig. 1. Chronic hippocampal or neocortical 2p-imaging of seizures during viral encephalitis**
 112 **A**, Exp. setup. Contralateral (contra) cranial window above hippocampus (i: CA1) or neocortex (ii: CTX) to
 113 ipsilateral (ipsi) LFP electrode (black pin, at superficial CA1) and TMEV injection site (CA1), in transgenic
 114 GCaMP6s mice. **B**, Exp. workflow. **C**, Detected clinical seizures (Sz, filled circles) during viral encephalitis
 115 in initial video-monitoring (7 mice, gray shades). Max. number (#) of Sz (k.d.e.: kernel density estimate)
 116 typically occur on day 2-5 post injection (d.p.i.). **D**, Representative average (avg) fluorescence (F) images
 117 of neuronal signals during pre-ictal baseline (gray), Sz (blue) and sSD (red/violet) invasion of CA1. Arrows
 118 depict travelling direction of Sz (blue) or sSD (red). Dotted lines depict propagating wavefronts of sSD1

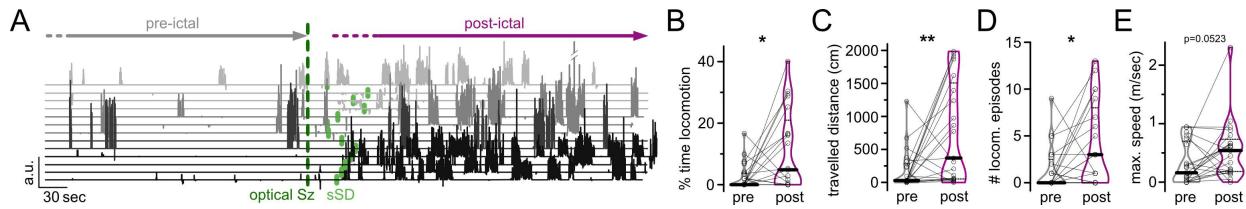
119 (red) and sSD2 (yellow). **E**, Two paradigmatic experiments, for approach i) or ii) shown in A. LFP (black,
 120 ipsi CA1) and avg population Ca^{2+} imaging signals (green, contra) in CA1 (top, approach i), or CTX (bottom,
 121 approach ii)) during local Sz and sSD invasion (a.f.u.: arbitrary fluorescent units). Colored boxes correspond
 122 to time periods for avg images in D. Note that sSD is not detected in raw LFP when high-pass filter is set
 123 too high (#0.3 Hz, top) whereas a large biphasic LFP shift is visible in bottom panel (#0.05 Hz). Note also
 124 delayed optical CTX Sz invasion. **F**, All imaged Sz in CA1 (13 Sz, 4 mice, blue shades) or CTX (8 Sz, 3
 125 mice, green shades). Note the presence or absence of sSD. Dotted lines indicate momentary breaks
 126 between imaging sessions. **G**, Quantification of occurrence of Sz-sSD, Sz, or SD during encephalitis in
 127 CA1 (left, Friedman test, $p < 0.0001$) or CTX (right, Friedman test, $p = 0.0005$), n.d. = not detected. **H**,
 128 Comparison of Sz vs. sSD relative Ca^{2+} signal amplitudes in CA1 (a.f.u., ΔF : Delta Fluorescence), Left: Sz
 129 vs sSD, paired Wilcoxon test (12 Sz-sSD, 117.1 ± 32.6 [Sz] vs. 164.8 ± 43.35 [sSD], $p = 0.0005$), Right:
 130 sSD1 vs sSD2, paired Wilcoxon test (12 sSD1-sSD2, 91.92 ± 36.2 [sSD1] vs. 144.1 ± 40.42 [sSD2],
 131 $p = 0.0005$). **I**, Comparison of CA1 vs CTX pre- and post-ictal minimal F (a.f.u., ΔF min), Mann-Whitney test
 132 (13 events in CA1 vs. 8 events in CTX, 3.02 ± 3.54 vs. 1.77 ± 1.04 , $p = 0.8044$). **J**, Comparison of CA1 vs
 133 CTX F recovery time (minutes), Mann-Whitney test (13 events in CA1 vs. 8 events in CTX, 6.531 ± 2.15
 134 vs. 0.188 ± 0.038 , $p = 0.0061$). **K**, Observed (solid lines) standard deviations (std) of spatial trajectory angles
 135 ($^\circ$) of Sz (left), sSD1 (middle), and sSD2 (right). Top panel, within-mouse analysis: 3 mice (blue shades,
 136 each mouse ≥ 3 imaged Sz-sSD) vs corresponding shuffled distributions from 1000 randomized datasets.
 137 Bottom panel, across-mice analysis: solid line depicts observed std of angle means (all 4 CA1-imaged mice)
 138 vs corresponding shuffled distributions from 1000 randomized datasets (gray). In all plots, dashed lines
 139 mark respective significance thresholds (where observed std $< 95\%$ of all surrogate std). **L**, Top:
 140 Paradigmatic experiment with spatial Sz-sSD trajectory map within imaged FOV (general anatomical
 141 landmarks: M medial, L lateral, P posterior, A anterior). Outer ring shows Sz, intermediate ring sSD1, inner
 142 ring sSD2 trajectories (gray shades: individual events, black: mean). Bottom: Across-mice depiction (blue
 143 shades: per-mouse angle mean, black: grand mean) for Sz, sSD1 and sSD2. Top and bottom: shaded
 144 areas display mean trajectory angle between Sz and sSD1 (light blue), or sSD1 and sSD2 (dark blue). **M**,
 145 Calculated angles ($^\circ$) for each imaged Sz-sSD1 and sSD1-sSD2 (blue shades for individual mice). One
 146 event excluded from analysis, as immediate Sz onset was not recorded, see Fig. 1 F. **L**, Quantification of
 147 angles ($^\circ$) between Sz and sSD1 (12 events, 126.9 ± 17.87), Sz and sSD2 (11 events, 143.4 ± 10.77), and
 148 sSD1 and sSD2 (12 events, 37.23 ± 8.65), mixed effects analysis with Tukey's test ($F[1.396, 13.96] = 26.35$;
 149 Sz-sSD1 vs. Sz-sSD2 $p = 0.3938$, Sz-sSD1 vs. sSD1-2 $p = 0.0020$, Sz-sSD2 vs. sSD1-2 $p < 0.0001$). For entire
 150 fig.: Plotted error bars represent s.e.m., all given \pm denote s.e.m.. Depiction of violin plots: median (solid
 151 lines), quartiles (dotted lines). Depiction of statistical significance: n.s. not significant, $^*p < 0.05$, $^{**}p < 0.01$,
 152 $^{***}p < 0.001$, $^{****}p < 0.0001$.
 153

154 **Consistent association of seizures with spreading depolarization in hippocampus**

155 Across a total of 205 imaging hours (CA1: 118 hrs; CTX: 87 hrs) in 26 mice and 158 days
 156 of viral encephalitis, interictal epileptiform network activity was detected in all mice. In 7
 157 out of those 26 mice, based on the ACNS consensus criteria for ictal activity(56)(for
 158 details, see methods), we successfully captured seizures (13 Sz in CA1, 4 mice [Fig. 1 F,
 159 blue/left], 8 Sz in CTX, 3 mice [Fig. 1 F, green/right]). Strikingly, imaged hippocampal Sz
 160 in CA1 were consistently followed by a massive second, multiplexed wave of Ca^{2+} signal,
 161 in what appeared to be spreading depolarization / depression (SD, Fig. 1 F, G and suppl.

162 movie 1)(57). Typically, two Sz-associated SD waves (sSD1 and sSD2, Fig. 1 D)
163 succeeded one another in the imaged field of view (12 sSD1-sSD2, delay: 6.044 ± 0.9156
164 sec). In line with the published literature, both sSD waves progressed at the speed of few
165 mm/min across the imaged CA1 region, while preceding Sz propagated much faster (13
166 sSD1: 7.75 ± 0.52 , 12 sSD2: 6.87 ± 0.36 , 12 Sz: 79.6 ± 12.67 mm/min; One-way ANOVA
167 with Tukey's test ($F[2,34]=30.56$; sSD1 vs. sSD2 $p=0.8823$, sSD1 vs. Sz $p<0.0001$, sSD2
168 vs. Sz $p<0.0001$). In CA1, neither Sz nor SD ever occurred alone. By contrast, in the
169 imaged CTX, isolated SD or sSD were never detected (Fig. 1 F, G, suppl. movie 2). As
170 described previously, maximum hippocampal Ca^{2+} signal amplitudes of Sz-related SD
171 (sSD) were consistently larger than preceding Sz (Fig. 1 H left)(9). Moreover, sSD2
172 showed consistently larger amplitudes than sSD1 (Fig. 1 H right). Intriguingly, despite the
173 clear discrepancy of sSD occurrence in CA1 versus CTX, both recorded territories
174 displayed reduced basic Ca^{2+} fluorescence post-sSD (CA1) or post-Sz (CTX) in
175 comparison to the pre-ictal period (Fig. 1 I). However, recovery times to pre-ictal basic
176 Ca^{2+} fluorescence in CA1 were longer than in CTX, on the order of minutes (Fig. 1 J).

177 **Hippocampal seizures and sSD propagate in opposite directions**

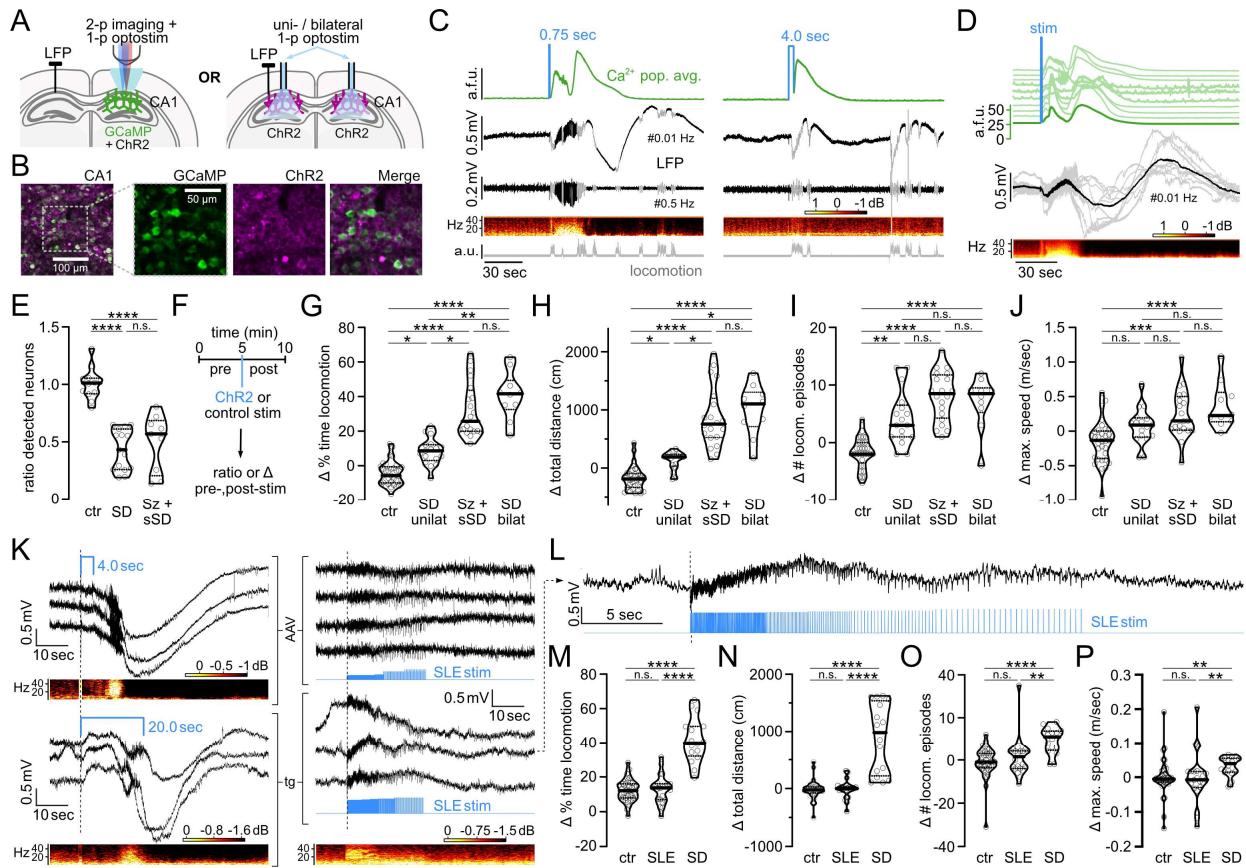

178 To evaluate potentially conserved micro-progression patterns in naturally occurring
179 hippocampal Sz and sSD during encephalitis, we analyzed spatiotemporal Sz and sSD
180 trajectories across successive events similarly to previous reports(58, 59). Based on the
181 recruitment timepoints of identified individual neurons for a given Sz or sSD, we
182 calculated interpolated linear spatial trajectories of every Sz or sSD across events in all
183 CA-1 imaged mice (Fig. 1 F). Along the antero-posterior and medio-lateral dimension of
184 the imaged field of view (FOV), this resulted in a number of spatial vectors per Sz, sSD1

185 and sSD2. For within-mouse analysis (Fig. 1 K, top panel), we calculated the standard
186 deviations (std) across spatial vectors for Sz, sSD1 and sSD2 for each mouse with at
187 least three recorded events where Sz and sSD onsets were fully captured (3 mice, CA1,
188 3.3 ± 0.3 events s.e.m., Fig. 1 F). Since chance level trajectory std's are unknown, the
189 derived standard deviations of observed trajectories were compared to randomized
190 surrogate distributions. In all three mice, Sz trajectories displayed significantly smaller
191 variability in the observed dataset than would be expected by chance (Fig. 1 K top left)
192 suggesting repeated spatiotemporal Sz progression pathways(58–60). To a lesser extent,
193 the same held true for sSD waves (Fig. 1 K top middle, right). A subsequent analysis
194 across mice (std of per-experiment means) showed significantly small trajectory std's for
195 Sz, sSD1 and sSD2 (Fig. 1 K bottom), which suggested, beyond patterned progression
196 within experiments, commonly repeated micro-progression routes of Sz and sSD.
197 Next, we investigated the relative spatial relationship between individual Sz and
198 successive sSD in CA1 by calculating the angles between spatial trajectories of Sz and
199 sSD1 as well as sSD1 and sSD2 (Fig. 1 L). Unexpectedly, we found vast angles between
200 Sz and sSD1 trajectories (Fig. 1 L-N). Typically, in our CA1 FOV, Sz progressed along a
201 medio-lateral path (hippocampal anatomy: distoproximal path, towards CA2 (61)), while
202 sSD1/2 travelled the opposite way (proximodistal path, from CA2; Fig. 1 L, M top panel,
203 N: 4 mice, 12 Sz-sSD1 events, median angle 162.01° [range $42.1 - 177.2^\circ$]). By contrast,
204 sSD1 and sSD2 displayed more similar spatial trajectories (Fig. 1 L, M bottom panel, N:
205 4 mice, 11 sSD1-sSD2 events, median angle 42.5° [$0.1 - 100.5^\circ$]).
206 Together, these experiments identified a complete association of naturally occurring Sz
207 and sSD in CA1 during viral encephalitis, whereas this association was not found in the
208 imaged CTX. Regardless, both CA1 and CTX displayed reduced basic fluorescence post-

209 sSD or post-Sz, but the post-sSD recovery time of the neuronal network in CA1 clearly
210 outlasted the post-Sz recovery time in CTX. Sz and sSD waves showed significantly non-
211 random spatiotemporal progression, while strikingly, hippocampal Sz and sSD1 travelled
212 in vastly different directions (Sz: CA1 → CA2, sSD: CA2 → CA1).

213 ***Post-ictal ambulation is associated with sSD in hippocampus***

214 In the TMEV model, we went on to correlate the observed network dynamics to clinical
215 signs (semiology) related to Sz or sSD. Importantly, during 2p-imaging of focal Sz in
216 awake head-restrained mice, generalized tonic-clonic convulsions never occurred.
217 What stood out at the clinical level in encephalitis-related Sz was that the mice regularly
218 started locomoting upon optical sSD appearance, which then lasted for minutes (Fig. 2 A,
219 Suppl. Fig. 3). In comparison to the pre-ictal period, locomotion was indeed systematically
220 increased post-sSD (pre-ictal 5min vs. post-sSD 5min, Fig. 2 B), fitting well with so-called
221 *post-ictal wandering* (PIW), a prominent post-ictal symptom regularly encountered in
222 clinical epileptology (see also discussion). PIW is most frequently observed in patients
223 with TLE(3, 4), and characterized by unconscious ambulatory automatisms. It typically
224 lasts for minutes to hours, with potentially life-threatening consequences (e.g. if one walks
225 onto a highway). Aside from locomotion time, we quantified travelled distance, number of
226 locomotion episodes and maximum locomotion speed, all of which were increased over
227 the 5 min post-sSD period as well (Fig. 2 C-E). Together, these experiments showed that
228 during viral encephalitis, hippocampal sSD is associated with the onset of a locomotor
229 phenotype that lasts for minutes, providing a candidate mechanism for PIW. Throughout
230 this text, we refer to this locomotor phenotype in mice as *post-ictal ambulation* (PIA).


Fig. 2. Hippocampal sSD during encephalitis corresponds to onset of post-ictal ambulation
A, Locomotion on linear treadmill across 13 Sz-sSD events in all 4 CA1-imaged mice (gray shades) during encephalitis, aligned by optical Sz invasion (dotted green line), sSD onsets marked in light green. **B-E**: Comparison of 21 pre- vs. post-ictal periods (5min each) in all imaged 7 mice (CA1 or CTX). **B**, % time locomotion, paired t-test (2.525 ± 0.957 [pre] vs. 11.06 ± 2.83 [post], $p=0.0119$). **C**, Travelled distance (cm), paired t-test (184.1 ± 67.32 [pre] vs. 754.3 ± 166.5 [post], $p=0.0065$). **D**, # of locomotion episodes, paired t-test (1.429 ± 0.519 [pre] vs. 4.0 ± 0.974 [post], $p=0.0239$). **E**, maximum speed (m/sec), paired t-test (0.312 ± 0.077 [pre] vs. 0.553 ± 0.11 [post], $p=0.0523$). For entire fig.: All given \pm denote s.e.m.. Depiction of violin plots: median (solid lines), quartiles (dotted lines). Depiction of statistical significance: n.s. not significant, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$.

Optogenetic dissection of the role of hippocampal SD in post-ictal ambulation

Although hippocampal sSD appearance coincided with the onset of sustained locomotion during encephalitis, the complete association of hippocampal Sz and sSD precluded us from decisively differentiating the role of Sz versus SD in PIA. To arrive at a more mechanistic understanding, based on previous studies(62, 63), we established a combined 2p-imaging (GCaMP6s [JAX 025776], or jRGECO [AAV2/1-NES-jRGECO1a] Vector Core Uni Bonn), 1p optogenetics (ChR2, AAV-hSyn-hChR2[H134R]-mCherry, Addgene ID 26976-AAV5) and LFP approach (Fig. 3 A left; 3 B, suppl. Fig. 4) that allowed us to generate either Sz or SD in a controlled manner. Using this 2p/1p/LFP approach, Sz or SD were never elicited by 2p-imaging itself (16X Nikon 0.80 NA, wavelength range 940-980nm [GCaMP] or 1050nm [jRGECO]).

In CA1, Sz could be reliably elicited by a brief square wave light pulse (typically 500-750ms, Coherent Inc., CA, Sapphire LP CW laser, 488nm, power at brain surface 4-5mW/mm²) in the imaged FOV (Fig. 3 C left, D). Interestingly, these optogenetically induced Sz in the healthy hippocampus were again consistently followed by sSD, and Sz-

258 sSD could be bilaterally detected (Fig. 3 C left, D, suppl. movie 3). To reliably trigger
259 isolated SD without a preceding focal Sz, a prolonged light pulse (~4 sec, 488nm, 4-
260 5mW/mm²) was applied, similarly to previous reports (Fig. 3 C right, suppl. Fig. 4 C, suppl.
261 movies 4, 5)(44, 45). Neither Sz nor SD were elicited by control illumination at 561nm
262 (Coherent Inc., Santa Clara, CA, Sapphire LP CW laser, 7 mW/mm²), ensuring that the
263 effects were not unselectively driven by light stimulation alone. Notably, hippocampal
264 encephalitic Sz-sSD and optogenetic Sz-sSD showed similar differential optical signal
265 amplitudes (Suppl. Fig. 5 A). Further, there were no significant differences between
266 optogenetic sSD vs. SD depolarization half-widths and progression speeds in the optical
267 recordings (suppl. Fig. 5 B, C). In keeping with the results during encephalitis, imaged
268 CA1 also consistently displayed reduced basic Ca²⁺ fluorescence in the wake of
269 optogenetic SD or Sz-sSD as compared to the pre-stimulation period (Suppl. Fig. 5 D),
270 and fluorescence recovery times occurred on the order of minutes (Suppl. Fig. 5 E). Thus,
271 basic SD features were preserved across different experimental models.

272

Fig. 3. Optogenetic dissection of hippocampal SD vs. SLE in post-ictal ambulation

273 **A**, Optogenetic experimental setup. Left (2p/1p/LFP approach): CA1 window for 2p imaging (GCaMP6s or
 274 jRGECO1a) and 1p optogenetic stimulation (ChR2: 488nm, ctr: 561nm), both contralateral to LFP electrode
 275 (black pin, at CA1). Right (1p/LFP approach): uni-/bilateral optogenetic stimulation (ChR2: 475nm, ctr:
 276 590nm) via optical cannulae (CA1) and LFP electrode (black pin, at CA1). **B**, Co-expression of GCaMP6s
 277 (transgenic, green) and ChR2 (AAV, magenta) in CA1 (str. pyr.). **C**, Two examples for 2p/1p/LFP approach,
 278 Left: 0.75 sec optogenetic stimulation (488 nm) elicits Sz-sSD (optical ipsilateral, electrographic
 279 contralateral, note differential Sz-sSD delays). Top trace depicts avg pop. Ca^{2+} signal, middle traces LFP
 280 (0.01-50 Hz or 0.5-50 Hz) and corresponding spectrogram, bottom trace locomotion; locomotion artefacts
 281 marked gray in LFP traces; Right: same setting, but 4 sec optogenetic stimulation triggers
 282 isolated SD in imaged field of view. In contralat. LFP, neither Sz nor SD are detected. Locomotion artefacts
 283 marked in gray in LFP traces. **D**, All 2p/1p/LFP optogenetic Sz stim. (3 mice, 9 Sz-sSD [3 each]). Top: avg.
 284 Ca^{2+} population signals per stim. (light green), avg. signal across stim. below (green). Bottom:
 285 Superimposed individual LFP traces (gray, 0.01-50 Hz) with avg. LFP (black), and corresponding avg.
 286 spectrogram. All optogenetic Sz were followed by SSD. Note the pronounced post-sSD spectral depression.
 287 **E**, Ratio of detectable neurons in imaged FOV (CA1) across pre- and post-stim. periods (5min each) in 5
 288 mice, pooled sample #: 12 ctr stim., 15 SD and 9 Sz-sSD, pre/post ratio: 1.006 ± 0.0396 (ctr), 0.433 ± 0.046
 289 (SD), 49.33 ± 0.083 (Sz-sSD). One-way ANOVA with Tukey's test ($F[2, 33] = 35.37$; ctr vs SD $p < 0.0001$,
 290 ctr vs Sz-sSD $p < 0.0001$, SD vs. Sz-sSD $p = 0.7265$). **F**, Optogenetic stim. framework for analysis in G to J.
 291 **G-J**, Comparison of respective value Δ between pre- and post-stim. periods (5min each) in 7 mice (1p/LFP
 292 approach), pooled sample #: 33 ctr stim., 17 unilateral SD, 20 Sz-sSD, 10 bilateral SD. **G**, Δ % time
 293 locomotion: -4.403 ± 1.187 (ctr), 8.331 ± 1.861 (unilat. SD), 32.18 ± 3.540 (Sz-sSD), 40.68 ± 4.325 (bilat.
 294 SD). One-way ANOVA with Tukey's test ($F[3, 76] = 72.44$; ctr vs unilat. SD $p = 0.001$, ctr vs Sz-sSD $p < 0.0001$,
 295 ctr vs. bilat. SD $p < 0.0001$, unilat. SD vs. Sz-sSD $p < 0.0001$, unilat. SD vs. bilat. SD $p < 0.0001$, Sz-sSD vs.
 296 bilat. SD $p = 0.1862$). **H**, Δ travelled distance (cm): -177.4 ± 35.15 (ctr), 129.3 ± 37.64 (unilat. SD), $874.3 \pm$
 297 116.9 (Sz-sSD), 1001.0 ± 139.0 (bilat. SD). One-way ANOVA with Tukey's test ($F[3, 76] = 57.39$; ctr vs unilat.
 298 SD $p = 0.0188$, ctr vs Sz-sSD $p < 0.0001$, ctr vs. bilat. SD $p < 0.0001$, unilat. SD vs. Sz-sSD $p < 0.0001$, unilat.
 299

300 SD vs. bilat. SD $p<0.0001$, Sz-sSD vs. bilat. SD $p=0.9120$). **I**, Δ # of locomotion episodes: -1.697 ± 0.4636
 301 (ctr), 4.176 ± 1.129 (unilat. SD), 8.05 ± 0.95 (Sz-sSD), 7.0 ± 1.461 (bilat. SD). One-way ANOVA with Tukey's
 302 test ($F[3, 76]=32.48$; ctr vs unilat. SD $p<0.0001$, ctr vs Sz-sSD $p<0.0001$, ctr vs. bilat. SD $p<0.0001$, unilat.
 303 SD vs. Sz-sSD $p=0.0152$, unilat. SD vs. bilat. SD $p=0.2561$, Sz-sSD vs. bilat. SD $p=0.8929$). **J**, Δ maximum
 304 speed (m/sec): -0.1516 ± 0.0523 (ctr), 0.072 ± 0.063 (unilat. SD), 0.243 ± 0.077 (Sz-sSD), 0.366 ± 0.106
 305 (bilat. SD). One-way ANOVA with Tukey's test ($F[3, 76]=10.80$; ctr vs unilat. SD $p=0.0803$, ctr vs Sz-sSD
 306 $p=0.0001$, ctr vs. bilat. SD $p<0.0001$, unilat. SD vs. Sz-sSD $p=0.3423$, unilat. SD vs. bilat. SD $p=0.0876$,
 307 Sz-sSD vs. bilat. SD $p=0.7322$). **K**, Bilateral optogenetic (1p/LFP approach [0.05-50 Hz]) SD vs. Sz-like
 308 episodes (SLE, for details see methods). Displayed are two exp. in adult animals, one mouse with AAV-
 309 ChR2 (top), one transgenic (tg) thy1-ChR mouse (bottom). In both approaches, bilateral hippocampal stim.
 310 (CA1; 475nm, respective stim. patterns in blue) reliably elicited either SD (left LFP panels with
 311 corresponding avg. spectrogram), or isolated SLE (right LFP panels with corresponding avg. spectrogram).
 312 Corresponding control stim. (590nm) neither elicited SD nor SLE regardless of stim. pattern (suppl. Fig. 8).
 313 **L**, Magnified individual optogenetic SLE from K (dotted arrow; LFP in black, stim pattern in blue). Note close
 314 LFP correspondence to stim. pattern, with successive frequency decrement and amplitude increment
 315 across SLE. **M-P**, Comparison of respective value Δ between pre- and post-stim. (1p/LFP approach, all
 316 stim. bilateral) periods (5min each) in 6 mice (3 AAV, 3 tg), pooled sample #: 37 ctr, 22 SLE, 16 SD. **M**, Δ %
 317 time locomotion: -1.337 ± 1.234 (ctr), -0.4183 ± 2.077 (SLE), 33.85 ± 3.959 (SD). One-way ANOVA with
 318 Tukey's test ($F[2,72]=70.71$; ctr vs SLE $p=0.9424$, ctr vs SD $p<0.0001$, SLE vs. SD $p<0.0001$). **N**, Δ travelled
 319 distance (cm): -22.81 ± 26.14 (ctr), -13.25 ± 33.43 (SLE), 885.7 ± 152.3 (SD). Kruskal-Wallis with Dunn's
 320 test (ctr vs SLE $p>0.9999$, ctr vs SD $p<0.0001$, SLE vs. SD $p<0.0001$). **O**, Δ # of locomotion episodes: $-$
 321 0.973 ± 1.169 (ctr), 1.545 ± 1.939 (SLE), 9.25 ± 1.561 (SD). Kruskal-Wallis with Dunn's test (ctr vs SLE
 322 $p>0.9999$, ctr vs SD $p<0.0001$, SLE vs. SD $p=0.0016$). **P**, Δ maximum speed (m/sec): 0.04196 ± 0.8761
 323 (ctr), -0.2461 ± 1.537 (SLE), 3.251 ± 0.6887 (SD). Kruskal-Wallis with Dunn's test (ctr vs SLE $p>0.9999$, ctr
 324 vs SD $p=0.0083$, SLE vs. SD $p=0.0079$). For entire fig.: All given \pm denote s.e.m.. Depiction of violin plots:
 325 median (solid lines), quartiles (dotted lines). Depiction of statistical significance: n.s. not significant, * $p <$
 326 0.05, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$.
 327

328 In line with our imaging experiments during encephalitis, both optogenetically triggered
 329 Sz-sSD and isolated SD led to an equally strong post-ictal reduction of detectable
 330 neurons in the FOV (Fig. 3 E) underscoring functional depression of the CA1 network due
 331 to SD. To make sure that these optical imaging results were not confounded by GFP-
 332 quenching due to SD-related pH shifts (ongoing neuronal firing in the quenched absence
 333 of optical signals), we repeated the optogenetic SD experiments with electrophysiology,
 334 now employing hippocampal tetrode recordings (+ optical cannula, see methods) in freely
 335 moving mice instead of 2p-imaging. In keeping with the imaging experiments, we found
 336 a prolonged and profound cessation of firing of a large majority of units upon optogenetic
 337 SD in CA1 (suppl. Fig. 5 F), and increased post-SD ambulation (suppl. Fig. 5 G, H).

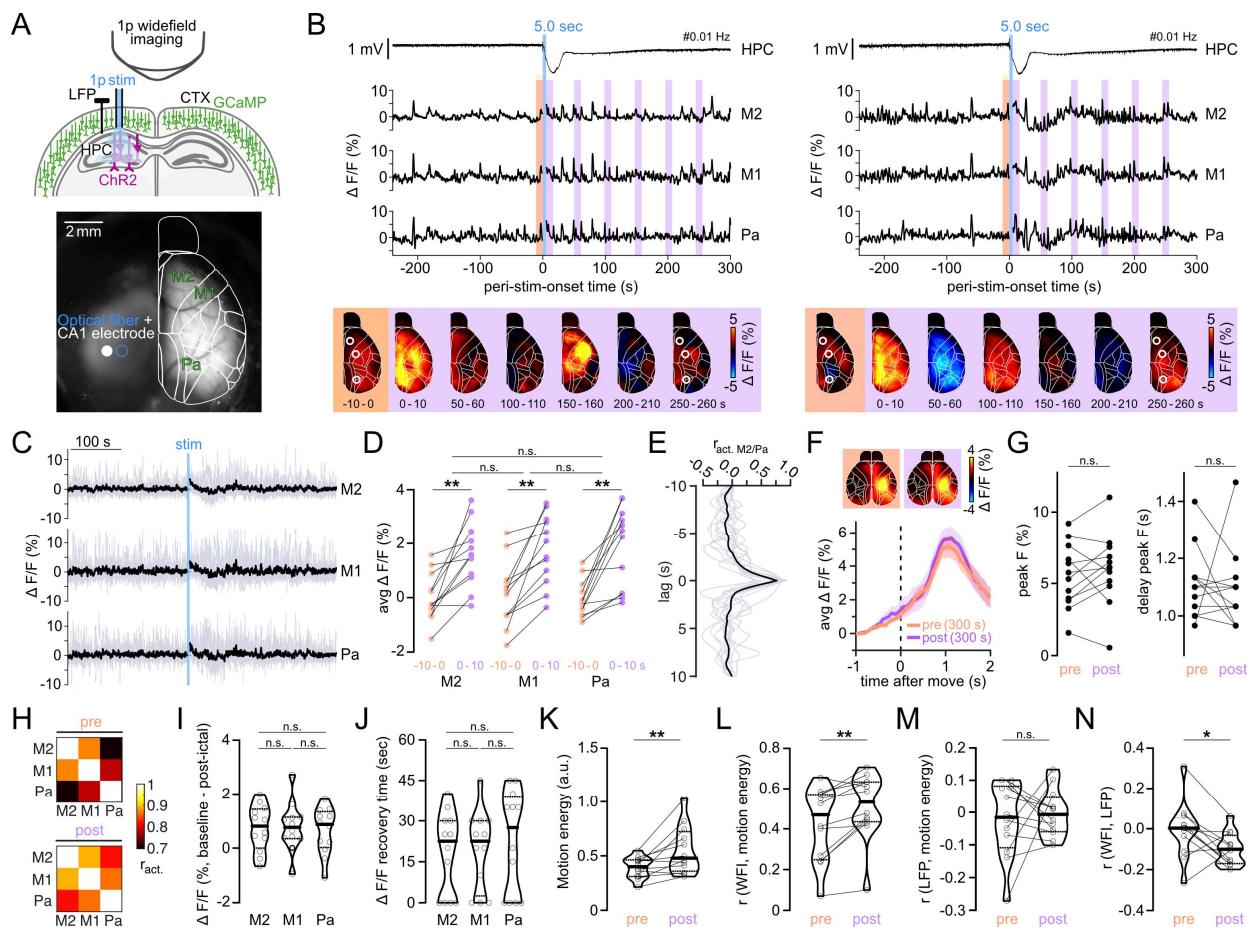
338 As unilateral optogenetic Sz induction consistently triggered bi-hippocampal Sz (Fig. 3 C
339 left, D), we additionally implemented a 1p optogenetic stimulation approach enabling uni-
340 or bilateral hippocampal Sz or SD induction via implanted optical cannulas, combined
341 with LFP recordings (1p/LFP approach; Fig. 3 A right). Here, for optogenetic Sz or SD
342 induction versus control, instead of lasers, fiber-coupled LEDs were employed using the
343 same stimulation durations as mentioned above (Chrolis/Thorlabs: 475 nm or 590nm [2-
344 3mW/mm²]). Based on the 2p/1p/LFP or 1p/LFP approach, we then compared a pre- and
345 post-stimulation (for control and SD) or pre-stimulation and post-sSD (for Sz-sSD) period
346 (5min each, Fig. 3 F) analyzing the same locomotor parameters as in encephalitis (Fig. 2
347 B-E).

348 In the initial 2p/1p/LFP experiment, we unilaterally triggered SD or Sz versus unilateral
349 control (Suppl. Fig. 6 A-D). In the 1p/LFP experiment, we carried out bilateral SD,
350 unilateral Sz (except in one animal, where bilateral stimulation was necessary to trigger
351 hippocampal Sz), and uni- or bilateral control stimulations (Suppl. Fig. 6 E-H). Since with
352 respect to all analyzed clinical parameters, uni- versus bilateral control stimulations
353 showed no significant differences, neither within nor across experimental configurations
354 (Suppl. Fig. 6 E-L), these data were pooled. As the same held true for uni- and bilateral
355 hippocampal Sz inductions within and across experiments, these data were also pooled
356 (Suppl. Fig. 6 I-L, statistics for suppl. Fig. 6 are displayed in suppl. Table 1 and 2).

357 Remarkably, in comparison to control (590nm stim.), isolated optogenetic unilateral SD
358 (475nm stim.) in CA1 produced an increased locomotor phenotype like Sz-sSD in CA1
359 during encephalitis, indicating that hippocampal SD alone is sufficient to trigger PIA (Fig.
360 3 G-J, suppl. Fig. 7, suppl. Fig. 5 G, H) across experimental frameworks (2p/1p/LFP,
361 tetrode/1p/LFP, 1p/LFP). Interestingly, across most tested locomotor parameters (% time

362 of locomotion, travelled distance, number of locomotion episodes), the effect triggered by
363 unilateral hippocampal optogenetic SD stimulation was significantly surpassed by
364 unilateral hippocampal optogenetic Sz-sSD stimulation (Fig. 2 G-J, suppl. Fig. 7). We
365 hypothesized that this difference in effect size could be due to the involvement of bilateral
366 hippocampal circuitry during focal onset hippocampal Sz, which we had observed during
367 encephalitis and optogenetic experiments (Fig. 1 E, 3 C left). In this case, even a
368 unilaterally triggered hippocampal Sz would, due to its bi-hippocampal recruitment,
369 prompt bilateral hippocampal sSD (Fig. 3 C left). In turn, unlike hippocampal Sz-sSD, due
370 to the different, non-synaptic nearest-neighbor progression of SD, unilaterally triggered
371 SD would typically remain unilateral (Fig. 3 C right). In line with this rationale, uni- or
372 bilateral hippocampal Sz-sSD stimulation produced a similar locomotor phenotype
373 (Suppl. Fig. 6 E-H), and Sz-sSD stimulation systematically produced a stronger
374 phenotype as compared to unilateral optogenetic SD stimulation, except for maximum
375 speed (Fig. 3 G-J, suppl. Fig. 6 A-D and I-L). Yet crucially, Sz-sSD and bilateral SD
376 stimulation consistently evoked a similar clinical phenotype across analyzed locomotor
377 parameters (Fig. 3 G-J, suppl. Fig. 6 E-L, suppl. Fig. 7).

378 To further substantiate the evidence that hippocampal SD is a primary driver of PIA, one
379 would need to show that isolated hippocampal Sz fail to trigger PIA, which proved
380 experimentally impossible in our experiments thus far (100% association of SD with
381 encephalitic or optogenetic hippocampal Sz). For several reasons including unclear site
382 of sSD origin and currently insufficiently known technical means to precisely inhibit
383 propagating sSD (see discussion), we thus set out to implement an experiment within our
384 optogenetic *in vivo* framework that allows to produce hippocampal Sz-like episodes (SLE)
385 without subsequent SD. To this end, using our 1P/LFP approach (Fig. 3 A right), we


386 titrated custom optogenetic SLE vs. SD in mice with AAV-mediated hippocampal ChR2-
387 expression, or transgenic (tg) thy-ChR2 mice (B6.Cg-Tg(Thy1-COP4/EYFP)18Gfng/J,
388 JAX 007612). SLE stimulations were designed such that they match the average duration
389 of all optogenetic Sz (27 Sz [electr./opt. pooled]: 24.63 ± 1.509 sec; SLE stim.: 22 SLE
390 [electr.]: 25 ± 0.335 sec), and based on ACNS consensus criteria for ictal EEG activity
391 including rhythmic activity (>2.5Hz), frequency decrement and amplitude increment (Fig.
392 3 K right, L; Suppl. Fig 8 B-D [stim. parameters], for details, see methods). In both groups
393 (AAV, TG), bilateral SLE or SD could be reliably triggered in CA1 (475nm, Fig. 3 K, L),
394 whereas matching control stimulation (560nm) never produced SLE or SD (Suppl. Fig. 8
395 A). Then, we analyzed pre- vs. post-stim. ambulation as before (Fig. 3 F-J). Since there
396 were no differences between any of the employed control stimulation paradigms with
397 regards to all analyzed locomotor parameters (Suppl. Fig. 8 E-H), these control groups
398 were pooled. Remarkably, across all analyzed locomotor parameters, while bi-
399 hippocampal SD produced PIA as in our prior optogenetic experiments, optogenetic bi-
400 hippocampal SLE never deviated significantly from controls (Fig. 3 M-P). Together, these
401 experiments unveiled i) a mechanistic role of hippocampal SD in PIA, ii) a scaling of
402 severity of the clinical phenotype depending on uni- vs. bilateral hippocampal SD, and iii)
403 similar clinical effect sizes across hippocampal Sz-sSD and bilateral SD. Importantly,
404 optogenetic hippocampal SLE failed to trigger PIA. This suggests that rather than
405 hippocampal Sz themselves, SD prompts PIA.

406

407 **Optogenetic induction of hippocampal SD and neocortical widefield imaging**

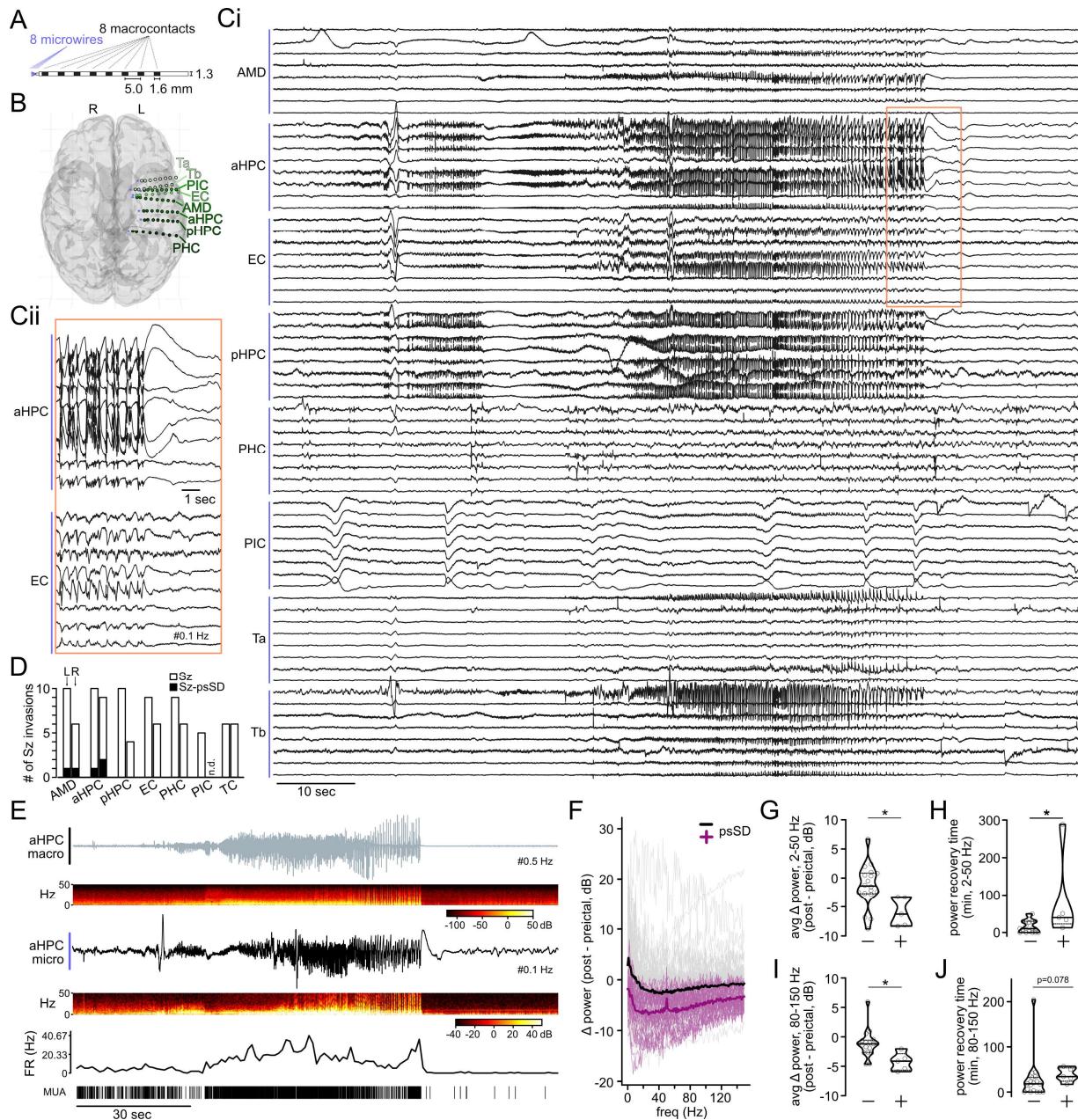
408 While we had never observed Sz-sSD in motor cortex using 2p-imaging during
409 encephalitis, our imaged FOV was confined to $\sim 700 \times 700$ μm . Thus next, with the

410 optogenetic approach of on-demand focal SD induction at hand, and combined LFP
 411 recordings and one-photon (1p) widefield Ca^{2+} imaging, we went on to investigate the
 412 potential spread of optogenetic unilateral hippocampal SD to CTX(32, 33). For
 413 hemispheric neocortical 1p-imaging (30 Hz scanning, 470 / 405 nm, LED M470L3 /
 414 M405L3, Thorlabs) through cleared skull in awake adult mice, we employed an inverted
 415 tandem lens microscope(64), and transgenic tetO-GCaMP6s / CaMK2a-tTA mice (JAX
 416 024742 / 007004) expressing GCaMP6s in excitatory neurons across cortical layers (for
 417 details, see methods) (Fig. 4 A).

419 **Fig. 4. Hippocampal SD coactivates but does not invade imaged neocortex**
 420 **A**, Top: Experimental setup, widefield Ca^{2+} imaging of neocortex (CTX) in tetO-GCaMP6s/CaMK2a-tTA
 421 mice through cleared skull, in combination with hippocampal optogenetic 1p stimulation (ChR2, optical
 422 cannula at CA1) and LFP (black pin, at CA1), Bottom: Example image of cortical surface after skull clearing,
 423 and implant sites of LFP electrode (white filled circle) and optical fiber (blue circle). Overlaid white lines
 424 show Allen CCF borders. **B**, Two examples of stimulus-related CTX activity. Hippocampal (HPC) LFP of

425 optogenetic SD stimulation (5 sec, blue line), and cortical widefield Ca^{2+} activity in secondary/primary motor
 426 (M2, M1) and parietal cortex (P). Corresponding to pre- (orange) and post-stim. periods (violet) 10-sec avg
 427 $\Delta F/F$ images of CTX activity (bottom, white circles depict M2, M1, P). Note immediate post-stim. widefield
 428 CTX activation and continued post-stim. activity, either without any baseline F shift (left) or a brief transient
 429 negative baseline shift (right), yet always with continued presence of cortical Ca^{2+} transients. **C**,
 430 Superposition of peri-stim. CTX $\Delta F/F$ activity traces (individual traces in gray, mean in black; 3 mice, 12
 431 HPC SD stim. [4/mouse, 1/day]). **D**, Quantification of pre- (-10 - 0 sec to stim., orange) vs. post-stim. (0 –
 432 10 sec from stim., violet) avg CTX activity in M2 (0.01 ± 0.252 [pre] vs. 1.589 ± 0.337 [post]), M1 ($0.118 \pm$
 433 0.348 [pre] vs. 1.778 ± 0.371 [post]) and P (-0.044 ± 0.196 [pre] vs. 1.831 ± 0.432 [post]). One-way ANOVA
 434 with Šidák's test ($F[2,146, 23.60] = 17.98$; pre vs. post: M2 $p=0.0029$, M1 $p=0.0014$, P $p=0.0018$). No
 435 significant differences of Δ (post – pre) activity among M2, M1, and P. One-way ANOVA with Tukey's test
 436 ($F[1.837, 20.21] = 0.5231$; M2 vs. M1 $p=0.946$, M2 vs. P $p=0.657$, M1 vs. P $p=0.766$). **E**, Cross-correlation
 437 of peri-stim. activity of M2 and P (12 HPC SD stim., [4/mouse, 1/day], individual traces in gray, mean in
 438 black), mean lag = 0 sec. **F-N**, 'pre' and 'post' denote pre- vs. post-stim. periods of 5min each. All
 439 quantifications include 3 mice and 12 HPC SD stim.. **F**, Top: avg $\Delta F/F$ images of movement-related CTX
 440 Ca^{2+} transients. Bottom: corresponding movement-related avg $\Delta F/F$ CTX Ca^{2+} dynamics (shades depict
 441 s.e.m.). Note congruence btw. pre- (orange) vs. post-stim. (violet) period (pre vs. post events). **G**,
 442 Quantification of pre- vs. post-stim. post-movement-onset Ca^{2+} dynamics shown in F. Left: avg. peak $\Delta F/F$
 443 post-movement-onset (3 mice, 12 HPC SD stim.). Paired t-test (5.532 ± 0.6456 [pre] vs. 6.002 ± 0.7225
 444 [post], $p=0.3639$). Right: avg. delay (sec) of peak $\Delta F/F$ post-movement-onset. Wilcoxon test (1.111 ± 0.035
 445 [pre] vs. 1.092 ± 0.04 [post], $p=0.4336$). **H**, Pre- and post-stim. activity correlation of M2, M1, and P. Note
 446 increased correlation of activity post HPC SD stimulation. **I**, CTX pre- vs. post-ictal minimal F (Δ min F
 447 baseline/min F post-ictal; M2 0.739 ± 0.243 , M1 0.781 ± 0.26 , P 0.643 ± 0.247), One-way ANOVA with
 448 Tukey's test ($F[2, 33] = 0.0807$; M2 vs. M1 $p=0.992$, M2 vs. P $p=0.96$, M1 vs. P $p=0.919$). Note that all areas
 449 show a decreased post-stim. min F on avg. **J**, Comparison of cross-area F recovery time (sec, M2 $18.33 \pm$
 450 4.323 , M1 19.58 ± 4.15 , P 22.5 ± 5.418), One-way ANOVA with Tukey's test ($F[2, 33] = 0.2102$; M2 vs. M1
 451 $p=0.98$, M2 vs. P $p=0.804$, M1 vs. P $p=0.898$). **K**, Quantification of pre- vs. post-stim avg. motion energy
 452 (a.u.: arbitrary units). Paired t-test (0.3916 ± 0.02803 [pre] vs. 0.5545 ± 0.0643 [post], $p=0.009$). **L**,
 453 Correlation of wide-field imaging (WFI) and motion energy, pre- vs. post-stim. Paired t-test (0.424 ± 0.05273
 454 [pre] vs. 0.5140 ± 0.0479 [post], $p=0.0023$). **M**, Correlation of LFP and motion energy, pre- vs. post-stim.
 455 Paired t-test (-0.0233 ± 0.0331 [pre] vs. -0.0029 ± 0.021 [post], $p=0.6402$). **N**, Correlation of wide-field
 456 imaging (WFI) and LFP, pre- vs. post-stim. Paired t-test (-0.0059 ± 0.040 [pre] vs. -0.0991 ± 0.0791 [post],
 457 $p=0.0367$). For entire fig.: All given \pm denote s.e.m.. Depiction of violin plots: median (solid lines), quartiles
 458 (dotted lines). Depiction of statistical significance: n.s. not significant, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$,
 459 **** $p < 0.0001$.
 460

461 Around six weeks before the actual experiment, pAAV-hSyn-hChR2(H134R)-mCherry
 462 was stereotactically injected into the left hippocampal CA1 region (coordinates from
 463 Bregma: AP -1.9, ML -1.6, DV -1.5 mm). In addition, a custom-made optrode comprising
 464 an insulated tungsten electrode ($\varnothing \sim 125 \mu\text{m}$) and an optical fiber ($\varnothing 200 \mu\text{m}$, NA = 0.37)
 465 were chronically implanted above the left hippocampus, for LFP recordings and optical
 466 stimulation.


467 Similar to our previous optogenetic experiments, hippocampal SD could be reliably
468 induced by a square wave light pulse (5 sec, 488 nm, 15 mW/mm², 1p CW laser
469 READYBeam™ Bio2, FISBA AG, SUI) (Fig. 4 B). For practical procedural reasons related
470 to the optrode implant, imaging was carried out in the cortical hemisphere contralateral to
471 hippocampal SD induction (Fig. 4 A). While a widespread coactivation of the imaged CTX
472 (e.g. motor cortex: M2, M1; parietal cortex: Pa) was observed during optogenetically
473 induced hippocampal SD across 12 recordings (4 mice, 3 SD each, one SD stim./d, Fig.
474 4 B-D), no SD or wave-like invasion resembling SD dynamics were ever observed. In line
475 with this, no activation lags could be found across distant neocortical areas (e.g. M2/P,
476 Fig. 4 E), and CTX continued to show typical transients of Ca²⁺ activity (Fig. 4 B),
477 specifically also with respect to movement (Fig. 4 F, G) (65, 66). Notably, neocortical
478 areas showed an enhanced correlation of activity in the post-stimulation period (Fig. 4 H).
479 Still, similar to our 2p-imaging results in CTX during encephalitis, cortical dynamics across
480 regions also often displayed, although moderately, a reduction of basic fluorescence in
481 the immediate post-stimulation period despite the absence of SD (Fig. 4 B right, 4 C and
482 I, suppl. Fig. 9). Importantly, also during this time, Ca²⁺ transients continued without
483 interruption (Fig. 4 B right). Further, as in our 2p-imaging experiments, the recovery to
484 pre-stimulation basic fluorescence was consistently fast in CTX (<1 min, Fig. 4 J).
485 In line with our encephalitis and optogenetic experiments before, hippocampal SD
486 prompted increased motion energy during the post-stim. period (Fig. 4 K). Interestingly,
487 while CTX imaging and motion energy signals also showed increased correlation in the
488 post-stim. period (Fig. 4 L), the correlation between hippocampal LFP and motion energy
489 remained unchanged (Fig. 4 M), and the correlation of CTX imaging and hippocampal
490 LFP decreased (Fig. 4 N), indicating divergent post-stim. cortical and hippocampal activity

491 dynamics. Together, these wide-field imaging experiments of the contralateral
492 hemisphere recapitulated results from our 2p-imaging experiments, and substantiated the
493 evidence that hippocampal SD does not typically propagate to CTX, at least where we
494 imaged. Neocortical Ca^{2+} transients appeared to continue throughout the post-stimulation
495 period without signs of activity depression, and, in contrast to SD dynamics, showed a
496 rapid recovery from reduced basic fluorescence to pre-stimulation conditions. Further, the
497 correlation between CTX activity dynamics and motion energy increased in the post-
498 stimulation period, while it did not between hippocampal LFP and motion energy, and
499 decreased between hippocampal LFP and CTX, suggesting divergent dynamics.

500

501 **Seizure-associated putative SD in human epilepsy**

502 The current EEG-standard with a bandwidth of 0.5-70 Hz(67) renders SD invisible in
503 clinical practice (suppl. Fig. 10). Thus, we finally sought to examine the occurrence, and
504 potentially regional preference of focal electrographic slow shifts at Sz termination in
505 human focal epilepsy through multi-regional Behnke-Fried (BF) electrode recordings, in
506 the context of stereotactic depth macro-electrode recordings (SEEG) during pre-epilepsy-
507 surgery diagnostic work-up (Fig. 5 A, B, Suppl. Fig. 11, Suppl. Table 3, see methods for
508 details). Although not DC-coupled full-bandwidth recordings, these AC recordings
509 included a 0.1 Hz high-pass filter, allowing detection of slow shifts at Sz termination which
510 we labeled putative sSD (psSD).

512 **Fig. 5. Putative sSD at Sz termination in BF electrode recordings in human epilepsy**

513 **A**, Scheme and dimensions of individual Behnke-Fried (BF) electrodes composed of depth-electrode

514 macro-contacts and microwire bundle. **B**, 3D-reconstructed brain MRI and location of implanted BF

515 electrodes. Green dots indicate macro-contact locations, shades of green designate different brain regions

516 and violet markers depict microwire bundles. AMD: amygdala, aHPC: anterior hippocampus, EC:

517 entorhinal cortex, pHPC: posterior hippocampus, PHC: parahippocampal cortex, PIC: piriform cortex, Ta:

518 temporal cortex a, Tb: temporal cortex b. **C i**, LFP traces from BF microwire bundles across recorded regions (0.1

519 HP filter, referenced to local common average) of a temporomesial focal onset Sz. **C ii**, magnified inset

520 from Ci, aHPC (as marked by orange lines). Note putative sSD (psSD) at Sz termination, confined to HPC.

521 **D**, Regional occurrence count of psSD across all Sz-invaded regions (all Sz/patients included). **E**, aHPC,

522 most distal macro contact trace (top), corresponding microwire trace (middle) and multi-unit activity from

523 the same microwire (bottom). **F**, Change in power between the first postictal minute and the preictal minute.

524 Each line represents one Sz-invaded microwire, color shades indicate Sz-invaded (gray, psSD-neg.) and

525 Sz-psSD-invaded (purple, psSD-pos.) regions, bold lines depict the mean of each group. **G**, Comparison

526 of respective Δ pre- and post-ictal broadband power (dB, 2-50 Hz) in psSD-neg. (18 events) vs. psSD-
527 pos. (5 events) Sz-invaded regions, unpaired t-test (-1.365 ± 0.8728 [psSD-neg.] vs. -5.870 ± 1.107 [psSD-
528 pos.], $p=0.0189$). **H**, Comparison of postictal broadband power recovery time (min) of psSD-neg. (18
529 events) vs. psSD-pos. (5 events) Sz-invaded regions, Mann-Whitney test (16.7 ± 3.84 [sS-neg.] vs. 84.87
530 ± 51.29 [psSD-pos.], $p=0.0112$). **I**, Comparison of respective Δ pre- and post-ictal high-gamma power (dB,
531 80-150 Hz) in psSD-neg. (18 events) vs. psSD-pos. (5 events) Sz-invaded regions, unpaired t-test (-1.184
532 ± 0.544 [psSD-neg.] vs. -4.227 ± 0.6825 [psSD-pos.], $p=0.0117$). **J**, Comparison of postictal high-gamma
533 power recovery time (min) of psSD-neg. (18 events) vs. psSD-pos. (5 events) Sz-invaded regions, Mann-
534 Whitney test (27.05 ± 11.00 [psSD-neg.] vs. 37.97 ± 7.08 [psSD-pos.], $p=0.078$). For entire fig.: All given \pm
535 denote s.e.m.. Depiction of violin plots: median (solid lines), quartiles (dotted lines). Depiction of statistical
536 significance: n.s. not significant, $*p < 0.05$, $**p < 0.01$.

537

538 As an initial cohort, we included four patients (2 female / 2 male patients, age range 23-
539 50 yrs) with refractory focal epilepsy based on different pathologies, a history of post-ictal
540 symptoms comprising PIW, confusion or aphasia, and depth electrodes in the temporal
541 lobe (Fig. 5 B, for implant schemes and clinical information, see suppl. Fig. 11 and suppl.
542 Table 3). Across a total of 272 BF microelectrodes (8/bundle), 7 brain regions (amygdala,
543 hippocampus [ant., post.], entorhinal / parahippocampal / piriform / temporal cortex), and
544 39 recording days during pre-surgical evaluation, 16 focal-onset seizures were recorded,
545 of which 13 could be analyzed at the microelectrodes (3 excluded for technical reasons).
546 Strikingly, we found what appeared to be localized psSD in the BF microwire recordings
547 (Fig. 5 Ci, Cii) in every patient (4/13 Sz in total). In the per-region analysis of Sz-invasions,
548 in line with our murine recordings, we found psSD to occur primarily in temporomesial
549 regions (hippocampus, amygdala), while it was not detected in the other recorded regions
550 (Fig. 5 C, D). Notably, in 3 of 4 psSD, the invaded region corresponded to the first Sz-
551 invaded region at the macrocontacts, where psSD were not visible (Fig. 5 E top panel,
552 suppl. Table 3). On average, both psSD-neg. and psSD-pos. regions displayed a
553 postictal/post-sSD reduction in spectral power (Fig. 5 F), but psSD-pos. regions showed
554 a more profound decrease, and a delayed recovery to the pre-ictal condition (Fig. 5 G,
555 H). Consistent with our murine results and previous literature(10, 14, 19, 68), at the

556 neuronal unit level, psSD-invasion coincided with a break-down of neuronal firing (Fig. 5
557 E, middle and bottom panel). To compare neuronal activity independently of stably
558 trackable neuronal units, we used high gamma (80-150 Hz) oscillatory power as a proxy,
559 as previously described(69). Again, on average, both psSD-neg. and psSD-pos. regions
560 showed a decreased post-ictal high gamma power, but psSD-pos. regions displayed a
561 stronger reduction, and delayed recovery (Fig. 5 I, J).

562 In sum, these BF recordings in a cohort of 4 patients showed focal slow shifts at seizure
563 termination suggestive of localized sSD in human focal epilepsy, and point towards an
564 increased propensity of temporomesial regions to experience psSD. Further, in line with
565 the murine experiments, among Sz-invaded areas, psSD-pos. regions took longer to
566 recover to their pre-ictal baseline than psSD-neg. regions.

567

568 **Discussion**

569 This work suggests that seizure-associated focal spreading depolarization (sSD) is a
570 pathoclinical hallmark of epilepsy, that is, focal sSD triggers distinct clinical symptoms
571 previously attributed to Sz themselves. We find profound region-specific differences in
572 sSD occurrence that hold true across mice and humans, and provide evidence in mice
573 that temporomesial SD causes *post-ictal ambulation* (PIA). PIA is a hallmark feature of
574 post-ictal wandering (PIW), a prominent symptom whose neurobiological underpinnings
575 have remained unclear. Although PIW was famously described by Jean-Marie Charcot
576 already in 1888-1889 in his *Leçons du mardi à Salpêtrière*(1), and even though PIW is
577 regularly encountered in clinical epileptology, its precise prevalence has only recently
578 been quantified. Tai and colleagues described a general PIW occurrence rate of 26% in
579 epilepsy patients with focal unaware seizures(3). Interestingly, in line with our

580 experiments, subgroup analyses showed a clear preference of temporal over
581 extratemporal epilepsy (45.0 vs. 10.0 %), and temporal over extratemporal seizures (9.7
582 vs. 0.8%). In another study, Jin and Inoue found a PIW occurrence rate of 8.3 % in
583 temporal seizures and of 25.2% in TLE patients(4). Although not completely congruent,
584 both studies clearly underscore that PIW is a significant entity in epilepsy. Further, PIW
585 is associated with a risk for severe, potentially life-threatening injuries(1, 5), and carries
586 profound socio-economic implications for affected patients (1, 5, 70). In a still topical case,
587 Charcot described all these aspects in the epilepsy patient *Mr. Me...s* in Paris who would,
588 upon sudden loss of consciousness, come to himself in a different part of the city, or
589 immersed in the river Seine. In the context of such unconscious episodes, *Mr. Men...s*,
590 although always carrying a note by Charcot stating the epilepsy diagnosis and ambulatory
591 automatisms, was considered a thief and jailed by police, and lost his employment at a
592 bronze manufactory (1). A recently published case series about PIW in the public in an
593 unclothed state, e.g. following nocturnal seizures, further underscore the social and even
594 legal dimension of the phenomenon(70).

595 While we observed sSD primarily in temporomesial structures, several aspects require
596 discussion in this regard. First, our analyses of mouse and human sSD were based on
597 focal onset seizures with known or suspected onset zones in the temporal lobe (Suppl.
598 Table 3). Therefore, sSD emergence may depend on its spatial relationship to the Sz
599 onset zone (SOZ) and (peri-)lesional tissue. Still, there are basic neuroanatomical
600 features that could inherently predispose e.g. the hippocampus to sSD. First,
601 hippocampal wiring with itself and other regions renders it more excitable than other
602 portions of the brain such as the neocortex(71, 72). In line with this longstanding notion,

603 our hippocampal optogenetic Sz-induction protocol failed to induce seizures in healthy
604 neocortex. At the synaptic level, the CA3 region contains so-called “conditional detonator”
605 synapses that can strongly drive postsynaptic firing(73), which may be why CA3 displayed
606 a high propensity for SD upon repetitive mossy fiber stimulation under hyperexcitable
607 conditions in vitro(74). Further, aside from its neuronal connectivity, recent data suggests
608 that the hippocampus displays relatively reduced blood oxygenation and neurovascular
609 coupling in comparison to neocortex due to differences in vascular architecture(75).
610 Among other potential contributing factors such as subregion-specific oxidative metabolic
611 capacity(76), this may make the hippocampus susceptible to an energy shortage during
612 Sz, promoting sSD. We propose that in addition to possible (peri-)lesional vulnerabilities
613 for sSD, basic neuroanatomical differences across brain regions support differential sSD
614 occurrence rates. This carries implications for notions revolving around regional post-ictal
615 EEG signal depression and its spatial overlap with the assumed SOZ(77). It is possible
616 that e.g. the hippocampus, even if only secondarily recruited into a Sz, may be at risk for
617 sSD due to its anatomy. This could then prompt post-ictal signal depression in this territory
618 without it being part of the SOZ.

619

620 Adhering to the neuroanatomical argument, regarding the disparate spatiotemporal
621 trajectories of Sz and sSD in our imaging experiments, work by Scharfman on SD
622 susceptibilities of hippocampal sub-regions(74) may provide a potential explanation for
623 this unexpected result. We always imaged CA1 contralateral to the TMEV CA1 injection
624 site, and consistently observed a mediolateral Sz spread (CA1 → CA2). sSD mostly
625 travelled the other way, which points towards CA2 or CA3 as the source of sSD(74).
626 Based on Scharfman’s dual region electrical recordings, her observation that mossy-fiber-

627 stimulation-triggered SD in CA3 travelled back to dentate gyrus (DG)(74), and our CA1
628 imaging results, one could hypothesize that CA3-prompted sSD propagate both towards
629 DG and CA1. Alternatively, CA2 could be an sSD source, as it receives strong excitatory
630 input from entorhinal cortex, and has been shown to display enhanced excitability in
631 chronic epilepsy(78, 79). Finally, it is also conceivable that multiple potential sSD
632 generators exist across CA regions.

633

634 We can only speculate about the exact nature of sSD1 versus sSD2 in our optical imaging
635 experiments. We believe that sSD1 corresponds to what has been described as *pre-SD*
636 *excitation*(19, 31, 80, 81). This pre-excitation has been observed to typically include a
637 brief increase in neuronal firing and fast LFP oscillations, lasting a few seconds on the
638 initial shoulder of depolarization (see e.g. Herreras et al. [1994] Fig. 1 A, or Nasretdinov
639 et al. [2023] Fig. 4 A)(19, 80). These characteristics fit with our LFP recordings of SD (see
640 e.g. Fig. 3 K left), and intriguingly also, the optical delay between sSD1 and sSD2 (~6
641 seconds, see results). Further, sSD2 consistently had the highest fluorescence among
642 Sz, sSD1 and sSD2. Thus, optical sSD2 could mark the moment of neuronal
643 depolarization above the inactivation threshold and cessation of firing in SD-invaded
644 regions(19, 31, 80, 81). Albeit technically challenging, a combination of *in vivo* imaging
645 with unit recordings or voltage imaging experiments present viable approaches to support
646 or falsify this speculation.

647

648 A main finding of this study is that hippocampal SD triggers PIA, whereas hippocampal
649 Sz-mimics do not. Importantly, this does not *per se* mean that the hippocampus as an
650 anatomical region is the primary driver of the observed phenotype. While a transient

651 shutdown of hippocampal networks (see Fig. 3 E) will likely contribute to unaware
652 ambulation e.g. through navigational confusion, it is likely that the enhanced locomotion
653 upon hippocampal SD is brought about by a number of interconnected brain regions(82,
654 83) that interact with the hippocampus and that may be indirectly or directly affected by
655 hippocampal SD, including the septum(84, 85) and mesencephalic structures(82, 86).
656 Clearly also, while in our murine models, sSD was observed only in hippocampus during
657 viral encephalitis, and optogenetic hippocampal SD did not invade imaged neocortical
658 areas, this does not mean that it never does (it can, see (32, 33)), nor that it does not
659 invade other subcortical structures (we hypothesize that it does), nor that it does not
660 invade the hippocampus if emerging elsewhere (e.g. in the neocortex(32)).

661
662 While much has been learned about SD in neurological research e.g. on migraine or
663 traumatic brain injury(12–14), the relationship between SD and clinical symptoms in
664 epilepsy has remained understudied. Part of the reason is that most studies on SD in
665 epilepsy have been carried out in vitro, or under anesthesia (10, 11, 27, 30, 51, 52), which
666 precludes clinical correlation. At other times, it was not primarily intended to link
667 neurophysiological measures to clinical semiology, i.e. in studies focusing on SD-related
668 Sz termination(52, 53). Of note, different types of epilepsies (e.g. acquired vs. genetic
669 epilepsy) and seizures (focal vs. bilateral tonic clonic) will likely affect the occurrence and
670 spatial extent of SD (e.g. local vs. [bi]-hemispheric), and thus impact clinical
671 phenotypes(87). Remarkably, most epilepsy research studies do not specifically
672 distinguish Sz with or without SD, although SD has long been suggested to represent a
673 ‘separate entity’ (see Bureš et al.(28), p.10). Based on this suggestion and the results
674 shown here, it may indeed be the case that some of the previously observed

675 neurobiological effects attributed directly to Sz are instead mediated by sSD. Notably, as
676 Sz and sSD can co-occur at the same time in different brain regions, this also extends to
677 clinical semiology. Some previously described “ictal” symptoms may instead present
678 compound semiology based on spatially separate, simultaneous Sz and sSD. Re-visiting
679 reported effects and effect-sizes, and clinical symptoms through the lens of Sz versus
680 sSD will likely propel new diagnostic and therapeutic research on many acute and chronic
681 clinical circumstances that involve seizures, and thus potentially, sSD.

682

683 Due to the current EEG standard (≥ 0.5 Hz)(67), SD is invisible in routine clinical care. As
684 a result, medical professionals regularly encounter post-ictal symptoms, but are blind to
685 SD as a potential major determinant of these phenomena. As there is a traditionally strong
686 focus on the “ictus” in epileptology (underscored by current terminology), such symptoms
687 are then usually related to Sz, and sSD plays little to no role in clinical care. Inversely, it
688 is known in basic research that sSD terminates ongoing Sz(31, 52), but since SD-
689 mediated Sz termination has been studied mostly in vitro or under anesthesia, the clinical
690 impact of sSD could not be studied. Therefore, our results highlight the necessity of a
691 close cross-talk between clinical and basic research disciplines. Clearly, sSD can have
692 potentially life-threatening clinical consequences(6, 7). Thus in our view, caution is
693 required if sSD is proposed as a protective factor of the brain against Sz, and as a
694 potential epilepsy treatment tool(52, 54). However, under specific conditions such as
695 refractory status epilepticus, which involves intensive care settings and general
696 anesthesia, SD may be a treatment option, as its pathoclinical impact is suppressed (by
697 anesthesia). This also applies to electroconvulsive treatment - applied under anesthesia
698 in certain hard-to-treat psychiatric disorders - where new research suggests a potentially

699 beneficial role of SD(88). Finally, in other neurological conditions such as stroke, recent
700 basic research points towards a double-edged SD impact. In a rodent model of
701 hippocampal stroke, Boyce and colleagues showed acutely deleterious effects of ipsi-
702 lesional terminal SD, while interestingly, contextual fear conditioning was improved only
703 in mice with contralateral SD 7 days post-stroke(89). These examples highlight the
704 necessity of further research into possibly varied roles of SD across the neuropsychiatric
705 disease spectrum. For epileptic seizures, our work supports the notion that sSD
706 constitutes a transient homeostatic break-down of a biological system driven beyond its
707 physiological range of operation(14), with acute clinical impact.

708

709 There are of course limitations to this study. First, although our murine findings held true
710 across recording modalities, different murine models of hippocampal Sz and SD, and
711 under healthy (optogenetics) and disease (TMEV) conditions, we do not know whether
712 these findings extend across many different etiologies. Aside from the factors discussed
713 above, the exact parameters that favor sSD emergence in hippocampal Sz are not yet
714 clear, and may include e.g. Sz duration, extent of spatial Sz invasion and hippocampal
715 subfields, Sz dynamics (e.g. tonic vs. clonic), internal state or transition between states
716 (e.g. wakefulness, sleep). Another limitation is that while hippocampal SLE (“Sz-mimics”)
717 may approximate naturally occurring hippocampal Sz, the ideal experiment would involve
718 closed-loop sSD inhibition upon hippocampal Sz detection in a chronic epilepsy model.
719 Still, we established this approach for several reasons. First, Sz and sSD trajectories differ
720 profoundly, and the exact point of hippocampal sSD emergence remains unknown,
721 precluding sSD inhibition at its onset. Whether partial sSD blockage during propagation
722 can change clinical symptoms, remains to be determined. Further, it is not known if

723 spatiotemporal precision tools such as optogenetics can block SD on its way. We did not
724 employ pharmacology to reduce sSD duration or amplitude as has been documented
725 before(90), as this would change Sz dynamics as well. What's more, the side-effect
726 profiles of some agents that alter SD dynamics, e.g. NMDA-receptor antagonists(52),
727 include changes of locomotor behavior, which prevents proper assessment of PIA (91).
728 Finally, our optogenetic SLE stimulation allowed for a direct comparison of optogenetic
729 SLE- vs. SD-mediated effects on locomotor activity within the same technical framework.
730 For these reasons, we regard optogenetic SLE stimulation as a suitable tool not just for
731 this study, but a vital option for future research on Sz- vs. SD-mediated effects.
732 Inherently, there are also limitations related to the human data in this study. In our wide-
733 bandwidth AC recordings, the lowest possible high-pass filter was 0.1 Hz for technical
734 reasons, leading to slow shift signal attenuation and morphology alteration. Thus, from
735 the raw signal, we cannot be certain whether the terminal slow shifts indeed corresponded
736 to focal sSD, even if our additional analyses point this way. Further, due to the high-pass
737 filter, it is possible that some terminal slow shifts were missed. Indeed, in two recent
738 studies involving DC-coupled surface or depth electrodes recordings in patients with
739 refractory epilepsy, a higher occurrence rate of slow shifts was reported(25, 26). Notably,
740 while we focused on slow shifts at Sz termination, both Bastanyi et al. and Norby et al.
741 analyzed slow shifts all throughout Sz epochs, in part also during pre- and interictal
742 periods. It remains unclear whether all reported slow shifts solely represented SD, or
743 partly other known slow signal dynamics (e.g. in association with low-voltage fast activity
744 at seizure onset)(92, 93). Another reason for a possible underestimation of the true psSD
745 occurrence rate in our human data is that current depth electrode recordings strongly
746 spatially undersample targeted brain areas. In the near future, this limitation may become

747 softened to some extent, on the heels of recent advances in high-density electrode
748 arrays(94–97). First steps towards a systematic investigation of sSD in larger patient
749 cohorts will require coordinated efforts by institutions that have access to wide-bandwidth
750 AC or DC-coupled intracranial electrical recordings in epilepsy patients. Ideally, such
751 coordinated efforts will include the establishment of high-fidelity sSD-specific functional
752 biomarkers in human epilepsy. Beyond the currently available recording modalities in
753 clinical practice, one should also consider newly available technology for potential high-
754 fidelity full-bandwidth recordings of Sz, SD and sSD in humans, e.g. biocompatible flexible
755 microtransistors(32).

756

757 In sum, this work sets stage for a wider discussion of the pathoclinical role of sSD in
758 epilepsy, and a potential re-consideration of the clinical EEG filter standard(67). Beyond
759 post-ictal ambulation, our results suggest that focal sSD could underlie other post-ictal
760 symptoms, e.g. confusion, receptive aphasia, navigational impairment, or defensive-like
761 aggression(2, 98, 99). Finally, beyond its immediate effects, sSD may play a pathoclinical
762 role in comorbidities of epilepsy, and other diseases encompassing temporal lobe
763 pathology and seizures, e.g. neurodegenerative diseases, which are not primarily treated
764 by epileptologists.

765

766

767

768

769

References:

770 1. J. M. Charcot, in *Leçons du mardi à la Salpêtrière - Polyclinique 1888-1889*, E. Lecrosnier
771 & Babé, Ed. (Bureaux de Progrès médical, Paris, 1889), pp. 302–326.

772 2. J. C. M. Pottkämper, J. Hofmeijer, J. A. van Waarde, M. J. A. M. van Putten, The postictal
773 state — What do we know? *Epilepsia*. **61**, 1045–1061 (2020).

774 3. P. Tai, S. Poochikian-Sarkissian, D. Andrade, T. Valiante, M. del Campo, R. Wennberg,
775 Postictal wandering is common after temporal lobe seizures. *Neurology*. **74**, 932–933
776 (2010).

777 4. L. Jin, Y. Inoue, Spontaneous periictal leaving behavior: A potential lateralizing sign in
778 mesial temporal lobe epilepsy. *Epilepsia*. **50**, 1560–1565 (2009).

779 5. A. C. Grant, E. Koziorynska, C. Lushbough, D. Maus, K. Mortati, Acute postictal
780 confusion and violence: Two cases with unfortunate outcomes. *Epilepsy Behav. Case*
781 *Reports*. **1**, 71–73 (2013).

782 6. I. Aiba, J. L. Noebels, Spreading depolarization in the brainstem mediates sudden
783 cardiorespiratory arrest in mouse SUDEP models. *Sci. Transl. Med.* **7** (2015),
784 doi:10.1126/scitranslmed.aaa4050.

785 7. I. C. M. Loonen, N. A. Jansen, S. M. Cain, M. Schenke, R. A. Voskuyl, A. C. Yung, B.
786 Bohnet, P. Kozlowski, R. D. Thijs, M. D. Ferrari, T. P. Snutch, A. M. J. M. Van Den
787 Maagdenberg, E. A. Tolner, Brainstem spreading depolarization and cortical dynamics
788 during fatal seizures in Cacna1a S218L mice. *Brain*. **142**, 412–425 (2019).

789 8. J. S. Farrell, I. Gaxiola-Valdez, M. D. Wolff, L. S. David, H. I. Dika, B. L. Geeraert, X. R.
790 Wang, S. Singh, S. C. Spanswick, J. F. Dunn, M. C. Antle, P. Federico, G. C. Teskey,
791 Postictal behavioural impairments are due to a severe prolonged hypoperfusion/hypoxia
792 event that is COX-2 dependent. *Elife*. **5**, 1–24 (2016).

793 9. J. S. Farrell, R. Colangeli, B. Dudok, M. D. Wolff, S. L. Nguyen, J. Jackson, C. T.
794 Dickson, I. Soltesz, G. C. Teskey, In vivo assessment of mechanisms underlying the

795 neurovascular basis of postictal amnesia. *Sci. Rep.* **10**, 1–13 (2020).

796 10. A. A. P. Leao, Spreading Depression of Activity in the Cerebral Cortex. *J. Neurophysiol.*

797 **7**, 359–390 (1944).

798 11. T. Takano, G. F. Tian, W. Peng, N. Lou, D. Lovatt, A. J. Hansen, K. A. Kasischke, M.

799 Nedergaard, Cortical spreading depression causes and coincides with tissue hypoxia.

800 *Nat. Neurosci.* **10**, 754–762 (2007).

801 12. C. L. Lemale, J. Lückl, V. Horst, C. Reiffurth, S. Major, N. Hecht, J. Woitzik, J. P. Dreier,

802 Migraine Aura, Transient Ischemic Attacks, Stroke, and Dying of the Brain Share the

803 Same Key Pathophysiological Process in Neurons Driven by Gibbs–Donnan Forces,

804 Namely Spreading Depolarization. *Front. Cell. Neurosci.* **16**, 1–29 (2022).

805 13. O. Cozzolino, M. Marchese, F. Trovato, E. Pracucci, G. M. Ratto, M. G. Buzzi, F. Sicca,

806 F. M. Santorelli, Understanding spreading depression from headache to sudden

807 unexpected death. *Front. Neurol.* **9**, 1–13 (2018).

808 14. J. P. Dreier, The role of spreading depression, spreading depolarization and spreading

809 ischemia in neurological disease. *Nat. Med.* **17**, 439–447 (2011).

810 15. B. Bosche, R. Graf, R. I. Ernestus, C. Dohmen, T. Reithmeier, G. Brinker, A. J. Strong, J.

811 P. Dreier, J. Woitzik, Recurrent spreading depolarizations after subarachnoid hemorrhage

812 decreases oxygen availability in human cerebral cortex. *Ann. Neurol.* (2010),

813 doi:10.1002/ana.21943.

814 16. J. A. Hartings, N. Andaluz, M. R. Bullock, J. M. Hinzman, B. Mathern, C. Pahl, A. Puccio,

815 L. A. Shutter, A. J. Strong, A. Vagal, J. A. Wilson, J. P. Dreier, L. B. Ngwenya, B.

816 Foreman, L. Pahren, H. Lingsma, D. O. Okonkwo, Prognostic Value of Spreading

817 Depolarizations in Patients with Severe Traumatic Brain Injury. *JAMA Neurol.* **77**, 489–

818 499 (2020).

819 17. J. P. Dreier, S. Major, H. W. Pannek, J. Woitzik, M. Scheel, D. Wiesenthal, P. Martus, M.

820 K. L. Winkler, J. A. Hartings, M. Fabricius, E. J. Speckmann, A. Gorji, Spreading

821 convulsions, spreading depolarization and epileptogenesis in human cerebral cortex.

822 *Brain*. **135**, 259–275 (2012).

823 18. C. Dohmen, O. W. Sakowitz, M. Fabricius, B. Bosche, T. Reithmeier, R. I. Ernestus, G.

824 Brinker, J. P. Dreier, J. Woitzik, A. J. Strong, R. Graf, Spreading depolarizations occur in

825 human ischemic stroke with high incidence. *Ann. Neurol.* **63**, 720–728 (2008).

826 19. A. Nasretdinov, D. Vinokurova, C. L. Lemale, G. Burkhanova-zakirova, K. Chernova, J.

827 Makarova, O. Herreras, J. P. Dreier, R. Khazipov, Diversity of cortical activity changes

828 beyond depression during Spreading Depolarizations. *Nat. Commun.* **14** (2023),

829 doi:10.1038/s41467-023-43509-3.

830 20. M. Fabricius, S. Fuhr, L. Willumsen, J. P. Dreier, R. Bhatia, M. G. Boutelle, J. A. Hartings,

831 R. Bullock, A. J. Strong, M. Lauritzen, Association of seizures with cortical spreading

832 depression and peri-infarct depolarisations in the acutely injured human brain. *Clin.*

833 *Neurophysiol.* **119**, 1973–1984 (2008).

834 21. A. J. Strong, M. Fabricius, M. G. Boutelle, S. J. Hibbins, S. E. Hopwood, R. Jones, M. C.

835 Parkin, M. Lauritzen, Spreading and synchronous depressions of cortical activity in

836 acutely injured human brain. *Stroke*. **33**, 2738–2743 (2002).

837 22. A. Mayevsky, A. Doron, T. Manor, S. Meilin, N. Zarchin, G. E. Ouaknine, Cortical

838 spreading depression recorded from the human brain using a multiparametric monitoring

839 system. *Brain Res.* **740**, 268–274 (1996).

840 23. J. P. Dreier, J. Woitzik, M. Fabricius, R. Bhatia, S. Major, C. Drenckhahn, T. N. Lehmann,

841 A. Sarrafzadeh, L. Willumsen, J. A. Hartings, O. W. Sakowitz, J. H. Seemann, A. Thieme,

842 M. Lauritzen, A. J. Strong, Delayed ischaemic neurological deficits after subarachnoid

843 haemorrhage are associated with clusters of spreading depolarizations. *Brain*. **129**,

844 3224–3237 (2006).

845 24. C. Drenckhahn, M. K. L. Winkler, S. Major, M. Scheel, E. J. Kang, A. Pinczolits, C.

846 Grozea, J. A. Hartings, J. Woitzik, J. P. Dreier, Correlates of spreading depolarization in

847 human scalp electroencephalography. *Brain*. **135**, 853–868 (2012).

848 25. Z. J. R. Bastany, S. Askari, G. A. Dumont, C. Kellinghaus, A. Kazemi, A. Gorji,
849 Association of cortical spreading depression and seizures in patients with medically
850 intractable epilepsy. *Clin. Neurophysiol.* **131**, 2861–2874 (2020).

851 26. J. H. Norby, D. Hummel, N. Ricks, J. Rolston, S. Rahimpour, R. Cowan, J. Voipio, A. J.
852 Trevelyan, E. H. Smith, R. R. Parrish, Rodent and human seizures demonstrate a
853 dynamic interplay with spreading depolarizations. *Neurobiol. Dis.* **211** (2025),
854 doi:10.1016/j.nbd.2025.106937.

855 27. M. Sramka, G. Brozek, J. Bures, P. Nadvornik, Functional Ablation by Spreading
856 Depression: Possible Use in Human Stereotactic Neurosurgery. *Appl. Neurophysiol.* **40**,
857 48–61 (1978).

858 28. J. Bureš, O. Burešová, J. Křivánek, *The mechanism and applications of Leao's spreading*
859 *depression of electroencephalographic activity* (1974).

860 29. P. E. Kunkler, R. P. Kraig, Hippocampal spreading depression bilaterally activates the
861 caudal trigeminal nucleus in rodents. *Hippocampus*. **13**, 835–844 (2003).

862 30. B. E. Lindquist, C. W. Shuttleworth, Adenosine receptor activation is responsible for
863 prolonged depression of synaptic transmission after spreading depolarization in brain
864 slices. *Neuroscience*. **223**, 365–376 (2012).

865 31. A. Bragin, M. Penttonen, G. Buzsáki, Termination of epileptic afterdischarge in the
866 hippocampus. *J. Neurosci.* **17**, 2567–2579 (1997).

867 32. A. Bonaccini Calia, E. Masvidal-Codina, T. M. Smith, N. Schäfer, D. Rathore, E.
868 Rodríguez-Lucas, X. Illa, J. M. De la Cruz, E. Del Corro, E. Prats-Alfonso, D. Viana, J.
869 Bousquet, C. Hébert, J. Martínez-Aguilar, J. R. Sperling, M. Drummond, A. Halder, A.
870 Dodd, K. Barr, S. Savage, J. Fornell, J. Sort, C. Guger, R. Villa, K. Kostarelos, R. C.
871 Wykes, A. Guimerà-Brunet, J. A. Garrido, Full-bandwidth electrophysiology of seizures
872 and epileptiform activity enabled by flexible graphene microtransistor depth neural

873 probes. *Nat. Nanotechnol.* (2021), doi:10.1038/s41565-021-01041-9.

874 33. F. Bahari, P. Ssentongo, J. Liu, J. Kimbugwe, C. Curay, S. J. Schiff, B. J. Gluckman,
875 Seizure-associated spreading depression is a major feature of ictal events in two animal
876 models of chronic epilepsy. *bioRxiv*, 455519 (2020).

877 34. J. Aquino-Cias, S. Belceva, J. Bureš, E. Fifková, The influence of thalamic spreading
878 depression on cortical and reticular unit activity in the rat. *Brain Res.* **1**, 77–85 (1966).

879 35. E. Fifková, Leao's Spreading Depression in the Thalamic Nuclei of Rat. *Experientia*. **20**,
880 635–637 (1964).

881 36. D. R. Kramer, T. Fujii, I. Ohiorhenuan, C. Y. Liu, Cortical spreading depolarization:
882 Pathophysiology, implications, and future directions. *J. Clin. Neurosci.* **24**, 22–27 (2016).

883 37. L. Kros, K. Lykke-Hartmann, K. Khodakhah, Increased susceptibility to cortical spreading
884 depression and epileptiform activity in a mouse model for FHM2. *Sci. Rep.* **8**, 1–12
885 (2018).

886 38. C. Reiffurth, M. Alam, M. Zahedi-Khorasani, S. Major, J. P. Dreier, Na+/K+-ATPase α
887 isoform deficiency results in distinct spreading depolarization phenotypes. *J. Cereb.
888 Blood Flow Metab.* **40**, 622–638 (2020).

889 39. M. M. Haglund, P. A. Schwartzkroin, Role of Na-K pump potassium regulation and IPSPs
890 in seizures and spreading depression in immature rabbit hippocampal slices. *J.
891 Neurophysiol.* **63**, 225–239 (1990).

892 40. C. Nicholson, J. M. Phillips, C. Tobias, R. P. Kraig, in *Ion-Selective Microelectrodes and
893 Their Use in Excitable Tissues* (1981).

894 41. R. P. Kraig, C. R. Ferreira Filho, C. Nicholson, Alkaline and acid transients in cerebellar
895 microenvironment. *J. Neurophysiol.* (1983), doi:10.1152/jn.1983.49.3.831.

896 42. A. Gorji, D. Scheller, H. Straub, F. Tegtmeier, R. Köhling, J. M. Höhling, I. Tuxhorn, A.
897 Ebner, P. Wolf, H. W. Panneck, F. Oppel, E. J. Speckmann, Spreading depression in
898 human neocortical slices. *Brain Res.* **906**, 74–83 (2001).

899 43. D. Y. Chung, H. Sadeghian, T. Qin, S. Lule, H. Lee, F. Karakaya, S. Goins, F. Oka, M. A.
900 Yaseen, T. Houben, E. A. Tolner, A. M. J. M. Van Den Maagdenberg, M. J. Whalen, S.
901 Sakadžić, C. Ayata, Determinants of optogenetic cortical spreading depolarizations.
902 *Cereb. Cortex.* **29**, 1150–1161 (2019).

903 44. T. Houben, I. C. M. Loonen, S. M. Baca, M. Schenke, J. H. Meijer, M. D. Ferrari, G. M.
904 Terwindt, R. A. Voskuyl, A. Charles, A. M. J. M. Van Den Maagdenberg, E. A. Tolner,
905 Optogenetic induction of cortical spreading depression in anesthetized and freely
906 behaving mice. *J. Cereb. Blood Flow Metab.* **37**, 1641–1655 (2017).

907 45. E. Masvidal-Codina, T. M. Smith, D. Rathore, Y. Gao, X. Illa, E. Prats-Alfonso, E. Del
908 Corro, A. B. Calia, G. Rius, I. Martin-Fernandez, C. Guger, P. Reitner, R. Villa, J. A.
909 Garrido, A. Guimera-Brunet, R. C. Wykes, Characterization of optogenetically-induced
910 cortical spreading depression in awake mice using graphene micro-transistor arrays. *J.*
911 *Neural Eng.* **18** (2021), doi:10.1088/1741-2552/abecf3.

912 46. K. Sugimoto, D. Y. Chung, M. Böhm, P. Fischer, T. Takizawa, S. Aslihan Aykan, T. Qin,
913 T. Yanagisawa, A. Harriott, F. Oka, M. A. Yaseen, S. Sakadžić, C. Ayata, Peri-Infarct Hot-
914 Zones Have Higher Susceptibility to Optogenetic Functional Activation-Induced
915 Spreading Depolarizations. *Stroke.* **51**, 2526–2535 (2020).

916 47. M. Dell'Orco, J. E. Weisend, N. I. Perrone-Bizzozero, A. P. Carlson, R. A. Morton, D. N.
917 Linsenbardt, C. W. Shuttleworth, Repetitive spreading depolarization induces gene
918 expression changes related to synaptic plasticity and neuroprotective pathways. *Front.*
919 *Cell. Neurosci.* **17** (2023), doi:10.3389/fncel.2023.1292661.

920 48. O. Chever, S. Zerimech, P. Scalmani, L. Lemaire, L. Pizzamiglio, A. Loucif, M. Ayrault, M.
921 Krupa, M. Desroches, F. Duprat, I. Léna, S. Cestèle, M. Mantegazza, Initiation of
922 migraine-related cortical spreading depolarization by hyperactivity of GABAergic neurons
923 and NaV1.1 channels. *J. Clin. Invest.* **131**, 1–15 (2021).

924 49. N. Zhou, G. R. J. Gordon, D. Feighan, B. A. MacVicar, Transient swelling, acidification,

925 and mitochondrial depolarization occurs in neurons but not astrocytes during spreading
926 depression. *Cereb. Cortex.* **20**, 2614–2624 (2010).

927 50. C. W. Shuttleworth, R. D. Andrew, Y. Akbari, C. Ayata, R. Balu, K. C. Brennan, M.
928 Boutelle, A. P. Carlson, J. P. Dreier, M. Fabricius, E. Farkas, B. Foreman, R. Helbok, N.
929 Henninger, S. L. Jewell, S. C. Jones, S. A. Kirov, B. E. Lindquist, C. B. Maciel, D.
930 Okonkwo, K. M. Reinhart, R. M. Robertson, E. S. Rosenthal, T. Watanabe, J. A. Hartings,
931 Which Spreading Depolarizations Are deleterious To Brain Tissue? *Neurocrit. Care.* **32**,
932 317–322 (2020).

933 51. A. Gorji, E. J. Speckmann, Spreading depression enhances the spontaneous epileptiform
934 activity in human neocortical tissues. *Eur. J. Neurosci.* (2004), doi:10.1111/j.0953-
935 816X.2004.03436.x.

936 52. I. Tamim, D. Y. Chung, A. L. de Morais, I. C. M. Loonen, T. Qin, A. Misra, F. Schlunk, M.
937 Endres, S. J. Schiff, C. Ayata, Spreading depression as an innate antiseizure
938 mechanism. *Nat. Commun.* **12**, 1–15 (2021).

939 53. K. Heuser, C. G. Nome, K. H. Pettersen, K. S. Åbjørsbråten, V. Jensen, W. Tang, R.
940 Sprengel, E. Taubøll, E. A. Nagelhus, R. Enger, Ca 2+ Signals in Astrocytes Facilitate
941 Spread of Epileptiform Activity. *Cereb. Cortex.* **28**, 4036–4048 (2018).

942 54. R. Enger, K. Heuser, Astrocytes as critical players of the fine balance between inhibition
943 and excitation in the brain: spreading depolarization as a mechanism to curb epileptic
944 activity. *Front. Netw. Physiol.* **4**, 1–8 (2024).

945 55. J. E. Libbey, N. J. Kirkman, M. C. P. Smith, T. Tanaka, K. S. Wilcox, H. S. White, R. S.
946 Fujinami, Seizures following picornavirus infection. *Epilepsia.* **49**, 1066–1074 (2008).

947 56. L. J. Hirsch, M. W. K. Fong, M. Leitinger, S. M. LaRoche, S. Beniczky, N. S. Abend, J. W.
948 Lee, C. J. Wusthoff, C. D. Hahn, M. B. Westover, E. E. Gerard, S. T. Herman, H. A.
949 Haider, G. Osman, A. Rodriguez-Ruiz, C. B. Maciel, E. J. Gilmore, A. Fernandez, E. S.
950 Rosenthal, J. Claassen, A. M. Husain, J. Y. Yoo, E. L. So, P. W. Kaplan, M. R. Nuwer, M.

951 van Putten, R. Sutter, F. W. Drislane, E. Trinka, N. Gaspard, American Clinical
952 Neurophysiology Society's Standardized Critical Care EEG Terminology: 2021 Version. *J.*
953 *Clin. Neurophysiol.* **38**, 1–29 (2021).

954 57. R. Enger, W. Tang, G. F. Vindedal, V. Jensen, P. J. Helm, R. Sprengel, L. L. Looger, E.
955 A. Nagelhus, Dynamics of ionic shifts in cortical spreading depression. *Cereb. Cortex.* **25**,
956 4469–4476 (2015).

957 58. M. Wenzel, J. P. Hamm, D. S. Peterka, R. Yuste, Reliable and Elastic Propagation of
958 Cortical Seizures In Vivo. *Cell Rep.* **19**, 2681–2693 (2017).

959 59. M. Wenzel, J. P. Hamm, D. S. Peterka, R. Yuste, Acute Focal Seizures Start As Local
960 Synchronizations of Neuronal Ensembles. *J. Neurosci.* **39**, 8562–8575 (2019).

961 60. W. Truccolo, J. A. Donoghue, L. R. Hochberg, E. N. Eskandar, J. R. Madsen, W. S.
962 Anderson, E. N. Brown, E. Halgren, S. S. Cash, Single-neuron dynamics in human focal
963 epilepsy. *Nat Neurosci.* **14**, 635–641 (2011).

964 61. E. J. Henriksen, L. L. Colgin, C. A. Barnes, M. P. Witter, M. B. Moser, E. I. Moser, Spatial
965 representation along the proximodistal axis of CA1. *Neuron.* **68**, 127–137 (2010).

966 62. M. dal Maschio, J. C. Donovan, T. O. Helmbrecht, H. Baier, Linking Neurons to Network
967 Function and Behavior by Two-Photon Holographic Optogenetics and Volumetric
968 Imaging. *Neuron.* **94**, 774-789.e5 (2017).

969 63. B. K. Andrasfalvy, B. V. Zemelman, J. Tang, A. Vaziri, Two-photon single-cell optogenetic
970 control of neuronal activity by sculpted light. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 11981–
971 11986 (2010).

972 64. J. Couto, S. Musall, X. R. Sun, A. Khanal, S. Gluf, S. Saxena, I. Kinsella, T. Abe, J. P.
973 Cunningham, L. Paninski, A. K. Churchland, Chronic, cortex-wide imaging of specific cell
974 populations during behavior. *Nat. Protoc.* **16**, 3241–3263 (2021).

975 65. S. Musall, M. T. Kaufman, A. L. Juavinett, S. Gluf, A. K. Churchland, Single-trial neural
976 dynamics are dominated by richly varied movements. *Nat. Neurosci.* **22**, 1677–1686

977 (2019).

978 66. I. Orsolic, M. Rio, T. D. Mrsic-Flogel, P. Znamenskiy, Mesoscale cortical dynamics reflect
979 the interaction of sensory evidence and temporal expectation during perceptual decision-
980 making. *Neuron*. **109**, 1861-1875.e10 (2021).

981 67. M. E. Peltola, M. Leitinger, J. J. Halford, K. P. Vinayan, K. Kobayashi, R. M. Pressler, I.
982 Mindruta, L. C. Mayor, L. Lauronen, S. Beniczky, Routine and sleep EEG: Minimum
983 recording standards of the International Federation of Clinical Neurophysiology and the
984 International League Against Epilepsy. *Clin. Neurophysiol.* **147**, 108–120 (2023).

985 68. H. Kager, W. J. Wadman, G. G. Somjen, Conditions for the triggering of spreading
986 depression studied with computer simulations. *J. Neurophysiol.* **88**, 2700–2712 (2002).

987 69. S. A. Weiss, G. P. Banks, G. M. McKhann, R. R. Goodman, R. G. Emerson, A. J.
988 Trevelyan, C. A. Schevon, Ictal high frequency oscillations distinguish two types of
989 seizure territories in humans. *Brain*. **136**, 3796–3808 (2013).

990 70. H. S. Wortzel, L. A. Strom, A. C. Anderson, E. H. Maa, M. Spitz, Disrobing Associated
991 with Epileptic Seizures and Forensic Implications. *J. Forensic Sci.* **57**, 550–552 (2012).

992 71. R. Jung, Hirnelektrische Untersuchungen über den Elektrokrampf: Die Erregungsabläufe
993 in corticalen und subcorticalen Hirnregionen bei Katze und Hund. *Arch. F. Psychiatr. U.*
994 *Z. Neur.* **183**, 206–244 (1949).

995 72. P. Andersen, R. Morris, D. Amaral, T. Bliss, J. O'Keefe, *The Hippocampus Book* (Oxford
996 University Press, 2006; <https://doi.org/10.1093/acprof:oso/9780195100273.001.0001>).

997 73. D. A. Henze, L. Wittner, G. Buzsáki, Single granule cells reliably discharge targets in the
998 hippocampal CA3 network in vivo. *Nat. Neurosci.* **5**, 790–795 (2002).

999 74. H. E. Scharfman, Hyperexcitability in combined entorhinal/hippocampal slices of adult rat
1000 after exposure to brain-derived neurotrophic factor. *J. Neurophysiol.* **78**, 1082–1095
1001 (1997).

1002 75. K. Shaw, L. Bell, K. Boyd, D. M. Grijseels, D. Clarke, O. Bonnar, H. S. Crombag, C. N.

1003 Hall, Neurovascular coupling and oxygenation are decreased in hippocampus compared
1004 to neocortex because of microvascular differences. *Nat. Commun.* **12**, 1–16 (2021).

1005 76. C. Davolio, J. T. Greenamyre, Selective vulnerability of the CA1 region of hippocampus to
1006 the indirect excitotoxic effects of malonic acid. *Neurosci. Lett.* **192**, 29–32 (1995).

1007 77. R. Di Giacomo, R. Uribe-San-Martin, R. Mai, S. Francione, L. Nobili, I. Sartori, F. Gozzo,
1008 V. Pelliccia, M. Onofrj, G. Lo Russo, M. de Curtis, L. Tassi, Stereo-EEG ictal/interictal
1009 patterns and underlying pathologies. *Seizure.* **72**, 54–60 (2019).

1010 78. V. Chevaleyre, S. A. Siegelbaum, Strong CA2 pyramidal neuron synapses define a
1011 powerful disynaptic cortico-hippocampal loop. *Neuron.* **66**, 560–572 (2010).

1012 79. A. C. Whitebirch, J. J. LaFrancois, S. Jain, P. Leary, B. Santoro, S. A. Siegelbaum, H. E.
1013 Scharfman, Enhanced excitability of the hippocampal CA2 region and its contribution to
1014 seizure activity in a mouse model of temporal lobe epilepsy. *Neuron.* **110**, 3121–3138.e8
1015 (2022).

1016 80. O. Herreras, C. Largo, J. M. Ibarz, G. G. Somjen, R. M. Del Río, Role of neuronal
1017 synchronizing mechanisms in the propagation of spreading depression in the in vivo
1018 hippocampus. *J. Neurosci.* **14**, 7087–7098 (1994).

1019 81. V. Dzhala, I. Khalilov, Y. Ben-Ari, R. Khazipov, Neuronal mechanisms of the anoxia-
1020 induced network oscillations in the rat hippocampus in vitro. *J. Physiol.* **536**, 521–531
1021 (2001).

1022 82. A. J. Pernía-Andrade, N. Wenger, M. S. Esposito, P. Tovote, Circuits for State-
1023 Dependent Modulation of Locomotion. *Front. Hum. Neurosci.* **15**, 1–20 (2021).

1024 83. S. Arber, R. M. Costa, Networking brainstem and basal ganglia circuits for movement.
1025 *Nat. Rev. Neurosci.* **23**, 342–360 (2022).

1026 84. F. Fuhrmann, D. Justus, L. Sosulina, H. Kaneko, T. Beutel, D. Friedrichs, S. Schoch, M.
1027 K. Schwarz, M. Fuhrmann, S. Remy, Locomotion, Theta Oscillations, and the Speed-
1028 Correlated Firing of Hippocampal Neurons Are Controlled by a Medial Septal

1029 Glutamatergic Circuit. *Neuron*. **86**, 1253–1264 (2015).

1030 85. H. S. Wirtshafter, M. A. Wilson, Locomotor and Hippocampal Processing Converge in the
1031 Lateral Septum. *Curr. Biol.* **29**, 3177-3192.e3 (2019).

1032 86. P. Mocellin, O. Barnstedt, K. Luxem, H. Kaneko, S. Vieweg, J. U. Henschke, D. Dalügge,
1033 F. Fuhrmann, A. Karpova, J. M. P. Pakan, M. R. Kreutz, S. Mikulovic, S. Remy, A septal-
1034 ventral tegmental area circuit drives exploratory behavior. *Neuron*. **112**, 1020-1032.e7
1035 (2024).

1036 87. I. Aiba, Y. Ning, J. L. Noebels, A hyperthermic seizure unleashes a surge of spreading
1037 depolarizations in Scn1a-deficient mice. *JCI Insight*. **8** (2023),
1038 doi:10.1172/jci.insight.170399.

1039 88. Z. P. Rosenthal, J. B. Majeski, A. Somarowthu, D. K. Quinn, B. E. Lindquist, M. E. Putt,
1040 A. Karaj, C. G. Favilla, W. B. Baker, G. Hosseini, J. P. Rodriguez, M. A. Cristancho, Y. I.
1041 Sheline, C. W. Shuttleworth, C. C. Abbott, A. G. Yodh, E. M. Goldberg, Electroconvulsive
1042 therapy generates a postictal wave of spreading depolarization in mice and humans. *Nat.*
1043 *Commun.* **16** (2025), doi:10.1038/s41467-025-59900-1.

1044 89. A. K. J. Boyce, Y. Fouad, R. C. Gom, D. M. Ashby, C. Martins-Silva, L. Molina, T. Füzesi,
1045 C. Ens, W. Nicola, A. McGirr, G. C. Teskey, R. J. Thompson, Contralesional hippocampal
1046 spreading depolarization promotes functional recovery after stroke. *Nat. Commun.* **16**,
1047 1–20 (2025).

1048 90. A. Klass, R. Sánchez-Porras, E. Santos, Systematic review of the pharmacological
1049 agents that have been tested against spreading depolarizations. *J. Cereb. Blood Flow
1050 Metab.* **38**, 1149–1179 (2018).

1051 91. W. Danysz, U. Essmann, I. Bresink, R. Wilk, Glutamate antagonists have different effects
1052 on spontaneous locomotor activity in rats. *Pharmacol. Biochem. Behav.* **48**, 111–118
1053 (1994).

1054 92. A. Ikeda, K. Terada, N. Mikuni, R. C. Burgess, Y. Comair, W. Taki, T. Hamano, J. Kimura,

1055 H. O. Lüders, H. Shibasaki, Subdural recording of ictal DC shifts in neocortical seizures in
1056 humans. *Epilepsia*. **37**, 662–674 (1996).

1057 93. V. Gnatkovsky, M. De Curtis, C. Pastori, F. Cardinale, G. Lo Russo, R. Mai, L. Nobili, I.
1058 Sartori, L. Tassi, S. Francione, Biomarkers of epileptogenic zone defined by quantified
1059 stereo-EEG analysis. *Epilepsia*. **55**, 296–305 (2014).

1060 94. J. E. Chung, K. K. Sellers, M. K. Leonard, L. Gwilliams, D. Xu, M. E. Dougherty, V.
1061 Kharazia, S. L. Metzger, M. Welkenhuysen, B. Dutta, E. F. Chang, High-density single-
1062 unit human cortical recordings using the Neuropixels probe. *Neuron*. **110**, 2409-2421.e3
1063 (2022).

1064 95. A. C. Paultk, Y. Kfir, A. R. Khanna, M. L. Mustroph, E. M. Trautmann, D. J. Soper, S. D.
1065 Stavisky, M. Welkenhuysen, B. Dutta, K. V. Shenoy, L. R. Hochberg, R. M. Richardson,
1066 Z. M. Williams, S. S. Cash, *Large-scale neural recordings with single neuron resolution*
1067 *using Neuropixels probes in human cortex* (Springer US, 2022), vol. 25.

1068 96. K. K. Sellers, J. E. Chung, J. Zhou, M. G. Triplett, H. E. Dawes, R. Haque, E. F. Chang,
1069 Thin-film microfabrication and intraoperative testing of μeCoG and iEEG depth arrays for
1070 sense and stimulation. *J. Neural Eng.* **18** (2021), doi:10.1088/1741-2552/ac1984.

1071 97. K. Lee, A. C. Paultk, Y. G. Ro, D. R. Cleary, K. J. Tonsfeldt, Y. Kfir, J. S. Pezaris, Y.
1072 Tchoe, J. Lee, A. M. Bourhis, R. Vatsyayan, J. R. Martin, S. M. Russman, J. C. Yang, A.
1073 Baohan, R. M. Richardson, Z. M. Williams, S. I. Fried, U. Hoi Sang, A. M. Raslan, S. Ben-
1074 Haim, E. Halgren, S. S. Cash, S. A. Dayeh, Flexible, scalable, high channel count stereo-
1075 electrode for recording in the human brain. *Nat. Commun.* **15** (2024),
1076 doi:10.1038/s41467-023-43727-9.

1077 98. W. H. Theodore, R. J. Porter, J. K. Penry, Complex partial seizures: Clinical
1078 characteristics and differential diagnosis. *Neurology*. **33**, 1115–21 (1983).

1079 99. G. Bronsard, F. Bartolomei, Rhythms, rhythmicity and aggression. *J. Physiol. Paris*. **107**,
1080 327–334 (2013).

1081 100. H. Dana, T. W. Chen, A. Hu, B. C. Shields, C. Guo, L. L. Looger, D. S. Kim, K. Svoboda,
1082 Thy1-GCaMP6 transgenic mice for neuronal population imaging in vivo. *PLoS One.* **9**,
1083 e108697 (2014).

1084 101. N. Masala, M. Mittag, E. A. Giovannetti, D. A. O'Neil, F. Distler, P. Rupprecht, F.
1085 Helmchen, R. Yuste, M. Fuhrmann, H. Beck, M. Wenzel, T. Kelly, Aberrant hippocampal
1086 Ca²⁺ micro-waves following synapsin-dependent adeno-associated viral expression of
1087 Ca²⁺ indicators. *eLife* (2024), doi:<https://doi.org/10.7554/eLife.93804.1>.

1088 102. J. B. Wekselblatt, E. D. Flister, D. M. Piscopo, C. M. Niell, Large-scale imaging of cortical
1089 dynamics during sensory perception and behavior. *J. Neurophysiol.* **115**, 2852–2866
1090 (2016).

1091 103. J. E. Libbey, N. J. Kennett, K. S. Wilcox, H. S. White, R. S. Fujinami, Lack of Correlation
1092 of Central Nervous System Inflammation and Neuropathology with the Development of
1093 Seizures following Acute Virus Infection. *J. Virol.* **85**, 8149–8157 (2011).

1094 104. S. Bröer, C. Käufer, V. Haist, L. Li, I. Gerhauser, M. Anjum, M. Bankstahl, W.
1095 Baumgärtner, W. Löscher, Brain inflammation, neurodegeneration and seizure
1096 development following picornavirus infection markedly differ among virus and mouse
1097 strains and substrains. *Exp. Neurol.* **279**, 57–74 (2016).

1098 105. K. A. Stewart, K. S. Wilcox, R. S. Fujinami, H. S. White, Development of postinfection
1099 epilepsy after Theiler's virus infection of C57BL/6 mice. *J Neuropathol Exp Neurol.* **69**,
1100 1210–1219 (2010).

1101 106. A. B. DePaula-Silva, T. J. Hanak, J. E. Libbey, R. S. Fujinami, Theiler's murine
1102 encephalomyelitis virus infection of SJL/J and C57BL/6J mice: Models for multiple
1103 sclerosis and epilepsy. *J Neuroimmunol.* **308**, 30–42 (2017).

1104 107. E. S. Boyden, F. Zhang, E. Bamberger, G. Nagel, K. Deisseroth, Millisecond-timescale,
1105 genetically targeted optical control of neural activity. *Nat Neurosci.* **8**, 1263–1268 (2005).

1106 108. N. Masala, M. Pofahl, A. N. Haubrich, K. U. Sameen Islam, N. Nikbakht, M. Pasdarnavab,

1107 K. Bohmbach, K. Araki, F. Kamali, C. Henneberger, K. Golcuk, L. A. Ewell, S. Blaess, T.
1108 Kelly, H. Beck, Targeting aberrant dendritic integration to treat cognitive comorbidities of
1109 epilepsy. *Brain* (2022), doi:10.1093/brain/awac455.

1110 109. M. Pofahl, N. Nikbakht, A. N. Haubrich, T. Nguyen, N. Masala, F. Distler, O. Braganza, J.
1111 H. Macke, L. A. Ewell, K. Golcuk, H. Beck, Synchronous activity patterns in the dentate
1112 gyrus during immobility. *Elife*. **10**, 1–29 (2021).

1113 110. N. Nikbakht, M. Pofahl, A. Miguel-López, F. Kamali, T. Tchumatchenko, H. Beck, Efficient
1114 encoding of aversive location by CA3 long-range projections. *Cell Rep.* **43** (2024),
1115 doi:10.1016/j.celrep.2024.113957.

1116 111. M. Wenzel, S. Han, E. H. Smith, E. Hoel, B. Greger, P. A. House, R. Yuste, Reduced
1117 Repertoire of Cortical Microstates and Neuronal Ensembles in Medically Induced Loss of
1118 Consciousness. *Cell Syst.* **8**, 467–474 (2019).

1119 112. M. Wenzel, A. Leunig, S. Han, D. S. Peterka, R. Yuste, Prolonged anesthesia alters brain
1120 synaptic architecture. *Proc. Natl. Acad. Sci.* **118**, e2023676118 (2021).

1121 113. J. Pitsch, K. M. J. van Loo, M. Gallus, A. Dik, D. Kamalizade, A. K. Baumgart, V.
1122 Gnatkovsky, J. A. Müller, T. Opitz, G. Hicking, V. N. Naik, L. Wachsmuth, C. Faber, R.
1123 Surges, C. Kurts, S. Schoch, N. Melzer, A. J. Becker, CD8+ T-Lymphocyte–Driven Limbic
1124 Encephalitis Results in Temporal Lobe Epilepsy. *Ann. Neurol.* (2020),
1125 doi:10.1002/ana.26000.

1126 114. J. Pitsch, J. C. Kuehn, V. Gnatkovsky, J. A. Müller, K. M. J. van Loo, M. de Curtis, H.
1127 Vatter, S. Schoch, C. E. Elger, A. J. Becker, Anti-epileptogenic and Anti-convulsive
1128 Effects of Fingolimod in Experimental Temporal Lobe Epilepsy. *Mol. Neurobiol.* **56**, 1825–
1129 1840 (2019).

1130 115. M. S. Kehl, S. Mackay, K. Ohla, M. Schneider, V. Borger, R. Surges, M. Spehr, F.
1131 Mormann, Single-neuron representations of odours in the human brain. *Nature*. **634**,
1132 626–634 (2024).

1133 116. U. Topalovic, S. Barclay, C. Ling, A. Alzuhair, W. Yu, V. Hokhikyan, H. Chandrakumar, D.
1134 Rozgic, W. Jiang, S. Basir-Kazeruni, S. L. Maoz, C. S. Inman, M. Stangl, J. Gill, A. Bari,
1135 A. Fallah, D. Eliashiv, N. Pouratian, I. Fried, N. Suthana, D. Markovic, A wearable
1136 platform for closed-loop stimulation and recording of single-neuron and local field
1137 potential activity in freely moving humans. *Nat. Neurosci.* **26**, 517–527 (2023).

1138 117. A. Misra, J. F. Burke, A. G. Ramayya, J. Jacobs, M. R. Sperling, K. A. Moxon, M. J.
1139 Kahana, J. J. Evans, A. D. Sharan, Methods for implantation of micro-wire bundles and
1140 optimization of single/multi-unit recordings from human mesial temporal lobe. *J. Neural
1141 Eng.* **11** (2014), doi:10.1088/1741-2560/11/2/026013.

1142 118. J. C. Williams, R. L. Rennaker, D. R. Kipke, Long-term neural recording characteristics of
1143 wire microelectrode arrays implanted in cerebral cortex. *Brain Res. Protoc.* **4**, 303–313
1144 (1999).

1145 119. S. Smeijers, W. Coudyzer, E. Keirse, V. Bougou, T. Decramer, T. Theys, Direct
1146 visualization of microwires in hybrid depth electrodes using high-resolution photon-
1147 counting CT. *Epilepsia Open.* **9**, 2518–2521 (2024).

1148 120. Z. Fu, U. Rutishauser, in *Encyclopedia of the Human Brain* (Elsevier, 2025), pp. 42–58.

1149 121. A. A. Carlson, U. Rutishauser, A. N. Mamelak, Safety and utility of hybrid depth
1150 electrodes for seizure localization and single-unit neuronal recording. *Stereotact. Funct.
1151 Neurosurg.* **96**, 311–319 (2018).

1152 122. J. Niediek, J. Boström, C. E. Elger, F. Mormann, Reliable analysis of single-unit
1153 recordings from the human brain under noisy conditions: Tracking neurons over hours.
1154 *PLoS One.* **11**, e0166598 (2016).

1155 123. S. Musall, X. R. Sun, H. Mohan, X. An, S. Gluf, S. J. Li, R. Drewes, E. Cravo, I. Lenzi, C.
1156 Yin, B. M. Kampa, A. K. Churchland, Pyramidal cell types drive functionally distinct
1157 cortical activity patterns during decision-making. *Nat. Neurosci.* **26**, 495–505 (2023).

1158 124. W. E. Allen, I. V. Kauvar, M. Z. Chen, E. B. Richman, S. J. Yang, K. Chan, V. Gradinaru,

1159 B. E. Deverman, L. Luo, K. Deisseroth, Global Representations of Goal-Directed
1160 Behavior in Distinct Cell Types of Mouse Neocortex. *Neuron*. **94**, 891-907.e6 (2017).

1161

1162

1163 **Acknowledgements:** We sincerely thank Lea Adenauer and Nele Neumann for
1164 outstanding technical support, and Negar Nikbakth, Nicola Masala, and Martin Pofahl for
1165 technical advice. We appreciate Lisa Rottenfußer's support and input during her M.Sc.
1166 lab rotation. In general, we are grateful to members of the Wenzel, Beck, Ewell, and
1167 Mormann laboratories for comments. This work was supported by the BONFOR Program
1168 at University of Bonn (M.W.: #2019-2-04), the Hertie Network of Excellence in Clinical
1169 Neuroscience (M.W.: #P1200008), and the German Research Foundation (DFG;
1170 SFB1089 to M.W., L.E., H.B., and #504342801 to M.W.). The work was further supported
1171 by the iBehave network (M.W., S.M., H.B.), the Helmholtz association (S.M.: VH-NG-
1172 1611), and the European Research Council (M.W.: StG #101039945). We also
1173 acknowledge the support of the Viral Vector Service Core Facility, and the Imaging Core
1174 Facility of the Bonn Technology Campus Life Sciences funded by the Deutsche
1175 Forschungsgemeinschaft (DFG, German Research Foundation, project #388169927).

1176

1177 **Author contributions:** M.W. conceived the project. M.W. and B.M. wrote the paper with
1178 input from all authors. Experimental contributions: Multimodal 2-photon imaging
1179 experiments: B.M., M.W., M.K., M.B., T.T., T.O.. Multimodal 1-photon imaging
1180 experiments: N.B., S.M.. Tetrode recordings: A.N.H., M.K.. Wireless LFP recordings:
1181 A.B., J.P., M.W.. Optogenetics (combined with imaging/electrophysiology, via cranial
1182 window/cannulas): M.K., B.M., M.W., A.N.H., T.T., N.B., S.M.. Immunohistochemistry and
1183 confocal microscopy: L.K., M.B., Š.G., M.S-S., A.B., J.P.. TMEV was produced and
1184 provided by I.G. and W.B.. All murine data processing and analyses were carried out by
1185 B.M. and M.W., except: Multimodal 1-photon imaging experiments: S.M., N.B.. Tetrode
1186 recordings: A.N.H., L.E., A.G.G., M.K.. Immunohistochemistry and confocal microscopy:
1187 L.K., M.B., Š.G., M.S-S., A.B., J.P.. Processing and analysis of human recordings:

1188 A.G.G., M.W., F.M., H.B., R.S., and F.M. provided infrastructure, experimental, analytical,
1189 and clinical expertise.

1190 **Supplementary Materials:**

1191 Materials and Methods

1192 Figures S1 to S11

1193 Tables S1 to S3

1194 Movies S1 to S7