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SUMMARY

Switching between cognitive states is a natural tendency, even for trained experts. To test how cognitive
states impact neural activity and behavior, we measured cortex-wide neural activity during decision-making
in mice. During disengagement, neural activity was more variable across trials and could be better explained
by a linear encoding model. This increase in explained variance during disengagement was associated with
two changes: modestly stronger neural encoding of movements generally and an increase in task-indepen-
dent movements specifically. Surprisingly, behavioral videos showed similar motion energy in both cognitive
states. But while the overall amount of movements remained similar, movement alignment changed: as an-
imals slipped into disengagement, their movements became less stereotyped. These idiosyncratic move-
ments were a strong predictor of task performance and engagement. Taken together, our results suggest
that the temporal structure of movement patterns constitutes an embodied signature of the cognitive state

with a profound relationship to neural activity.

INTRODUCTION

Defining how neural circuits interpret sensations to guide deci-
sions is a key step in understanding brain function.”? Decisions
with uncertain sensory information are especially intriguing
because they rely on sophisticated computations such as accu-
mulating evidence, combining sensory information with prior
knowledge, and ultimately making inferences about the state
of the world.®>"® Understanding the neural mechanisms underly-
ing these computations has been challenging, in part because
the variability of cortical neurons makes single-trial measure-
ments hard to interpret.>’

Two approaches have been deployed to cope with the variability
of neural responses. The first approach aims to minimize sources
of variability by limiting the movements that experimental subjects
are permitted to make. Examples of this strategy include training
non-human primates to fixate on a visual target and training ro-
dents to hold their heads in the same position during the stimulus

presentation period.®'" Although this approach reduces the vari-
ability of neural activity, it leads to decision-making behaviors that
differ critically from most natural situations in which spontaneous
movements are frequent.'"'* Therefore, even basic questions,
such as whether spontaneous movements are associated with
good or bad decision-making performance, remain unanswered.

The second approach to cope with the variability of neural re-
sponses is to collect neural activity during many repeats of the
same decision and then to average these. This approach relies
on the assumption that the relationship between neural activity
and behavior remains stationary over an experimental session.
However, the relationship between neural activity and behavior
is often not stationary but instead state-dependent. For instance,
the activity of agouti-related peptide (AgRP)-expressing neurons
in the hypothalamus depends critically on an animal’s hunger
state,’® unselectively averaging AgRP activity collected during
hunger and satiated states would obscure the state-dependent
activity of these neurons. The ability to perform large-scale
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recordings partially circumvents this problem because analyses
can focus on single-trial activity from simultaneously recorded
neurons (and thus all from a given state).'®'® However, it is not
always clear when heterogeneous population responses are
due to innate circuit properties or instead are due to random
noise and variability across the population. Thus, the interpreta-
tion of such population activity and a consideration of how it
evolves trial-to-trial still benefit from understanding state-depen-
dent changes in the relationship between neural activity and
behavior.

For cognition, the assumption of a stationary relationship be-
tween neural activity and behavior has recently been challenged.
Behavioral modeling confirms what casual observation of exper-
imental data collection has suggested: animals fluctuate in and
out of engagement states over the course of a single experi-
mental session.'®?? However, the impact of these fluctuating
states on neural activity has only just begun to be studied, and
the cortex-wide impact of these states remains, like the impact
of movements on decision-making, an unanswered question.

We discovered an unexpected link between these two unan-
swered questions. We measured neural activity across the dor-
sal cortex while mice made perceptual decisions about uncer-
tain stimuli. We deployed a behavioral model to assign each
decision in the experimental session to either an engaged or
disengaged state'® and discovered changes in neural activity
across states. Disengagement is characterized by an increase
in the trial-to-trial variability of neural activity, while the cortical
activity during disengagement can be better explained by
spontaneous movements. These changes come with two ef-
fects on both the movement-neural activity relationship and
the movement pattern itself. First, the impact of spontaneous
movements on neural activity, though idiosyncratic, was overall
higher in the disengaged state. Second, a closer examination of
behavioral videos surprisingly uncovered that as animals
became disengaged, the rate and magnitude of movements re-
mained similar, but the movements became less stereotyped
and temporally uncoupled to task events. We defined a metric
of this temporal alignment to task events, task-independent
movement (TIM), and found it to be a strong predictor of task
performance, even more so than pupil diameter, an extensively
used arousal indicator.?*° Taken together, these results argue
that movements define cognitive states that are distinct from
arousal and explain state-dependent changes in cortical activ-
ity, indicating a deep connection between movement, behav-
ioral state, and cognition.

RESULTS

Mice occupy engaged and disengaged latent states
during auditory perceptual decisions

We trained four mice to perform an auditory discrimination task.
Mice were head-fixed to a behavioral apparatus with speakers
on the left and right sides of the animal’s head (Figure 1A, left).
Mice initiated trials by grabbing a set of handles in front of
them. The 0.5 s long window before the trial initiation defined
the baseline epoch. Poisson-distributed clicks were then played
through the left and right speakers at randomized times.'"'%2¢
After a variable delay epoch (0-0.5 s), two spouts moved in,
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and the mouse reported its decision by licking, and licks to the
side with the higher click rate were rewarded (Figure 1A, right;
STAR Methods, task 1). The mean rate of left vs. right
clicks was systematically varied to alter the difficulty of trials.
EMX-Cre-GCaMP6s was expressed in all pyramidal neurons, al-
lowing us to perform simultaneous wide-field imaging®® (STAR
Methods). Once mice were trained on all stimulus difficulties,
we computed the psychometric function for individual mice
(Figure 1B, light gray lines) and for all mice (Figure 1B, black
line). Psychometric function parameters for individual subjects
are shown in Figure S1.

To determine the latent behavioral states of mice, we fit a hid-
den Markov model with Bernoulli generalized linear model ob-
servations (GLM-HMM) to the behavioral data (Figure 1C). This
class of model extends HMMs, which are widely applied to
time-varying data to extract latent dynamics.'®**?"9 The
GLM-HMM uses stimulus sensitivity and response bias to assign
trials to discrete states that last tens to hundreds of trials. We
combined data from the four mice shown in Figure 1B to ensure
sufficient trial counts for training the model (STAR Methods).
Optimal training parameters, including the number of states,
were found via grid search with 10-fold cross-validation. Test
log-likelihood continuously increased with the addition of more
latent states and reached a saturation at ~0.25 bits/trial
(Figure S2A).

We chose a 3-state model because additional states provided
only marginal improvements to test log-likelihood, similar to pre-
vious studies.'®?? The 3-state model identified one engaged
state with high stimulus weight and two disengaged states (right
and left biased, Figure 1D). After fitting the GLM-HMM, we used
the forward-backward algorithm to compute the probability that
a mouse was in a particular state for a given trial. We then as-
signed trials to three groups, identified by their most likely state,
and computed the psychometric function for each group
(Figure 1E; STAR Methods). As expected, the engaged state
showed the lowest bias and the highest slope. Disengaged
states were marked by noticeable rightward or leftward bias
and a smaller slope. Fluctuating state probabilities for an
example session are shown in Figure 1F, demonstrating state
transitions that span tens to hundreds of trials. The total frac-
tional occupancies were highest for engaged and right-biased
states, with fewer trials being assigned to the left-biased state
(Figure S2B). For subsequent analyses, we grouped trials from
the 3-state model into either engaged or disengaged states
(where trials from left- and right-biased states were combined).
This ensured that any state-dependent changes in neural activity
that we observed were not simply due to the animal favoring one
choice over the other.

The mean, but not the variance, of cortical activity is
similar across states

We next tested whether these latent states might modulate neu-
ral activity. We imaged calcium signals through the intact,
cleared skull. Fluorescence data were spatially aligned to the Al-
len Mouse Common Coordinate Framework v3 (CCF).*° Data
were temporally aligned to task epochs (baseline, handle-grab,
stimulus, delay, and response) to compute individual trial re-
sponses and trial-averaged responses.
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Figure 1. A GLM-HMM identifies discrete behavioral states with distinct psychometric functions

(A) Head-fixed mice perform a spatial auditory discrimination task. Mice are instructed to lick to the high-rate side after a short delay period.

(B) Psychometric curves for 4 mice (gray lines) and average psychometric curve across all mice (black line).

(C) Example schematic of GLM-HMM. Each latent state has a distinct psychometric curve. Black arrows denote transitions between states.

(D) Parameters from the GLM-HMM fit to the four mice shown in (B). GLM weights for each of the 3 latent states are shown, revealing one engaged and two biased

states.

(E) Psychometric curves for each latent state identified by the GLM-HMM. Engaged state: bias = 0.131, slope = 1.73. Disengaged states: bias = 0.936 and —0.699,
slope = 0.617 and 1.49. Error bars indicate Wilson binomial confidence intervals. Same color conventions as in (D).
(F) Recovered state probabilities from an example session, revealing fluctuations in engagement throughout a session. Same color conventions as in (D).

To understand the impact of engagement on neural activity,
we first examined the neural responses of trials assigned to the
engaged or disengaged state (Figure 2A). In the somatosensory
cortex, upper limb area (Figure 2B), we found that in both states,
the trial-averaged neural activity fluctuated as mice initiated tri-
als, formed decisions, and obtained rewards (Figure 2B, thick
traces). As in previous work, these modulations likely reflect
the frequent, uninstructed movements that the animals make
during each of these task epochs. Considerable single-trial vari-
ability was also apparent (Figure 2B, thin traces). For this and
subsequent analyses, we matched the ratio of correct to incor-
rect outcomes for the trials that were studied in each state
(Figure 2C). This ensured that any state-dependent differences
we observed in neural activity were not due to a mismatch in
reward-related activity between the two states. Trials in the dis-
engaged state were often either right- or left-biased, and pooling
these ensured that both left- and right-choice trials were
included in the analysis.

We then compared mean neural activity across states for the
entire dorsal cortex (Figure 2D). We considered four epochs in
the trial: baseline, stimulus, delay, and response (see gray boxes
in Figure 2B). The mean activity for engaged (Figure 2D, top) and
disengaged (Figure 2D, middle) trials was similar at most
timepoints, with only transient differences between the two
(Figure 2D, bottom). A closer look at the temporal dynamics of
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mean activity in somatosensory and visual cortices showed
that trial-averaged neural activity on engaged trials was slightly
elevated during the delay epoch (Figure 2E, red trace above
blue trace during “delay”).

Having observed only modest state-dependent differences in
the trial-averaged response (Figures 2D and 2E), we then
computed the across-trial variance. This analysis is important
because features that modulate neural activity at different mo-
ments in each trial will be obscured when many trials are aver-
aged together.®"*? Interestingly, the cross-trial variance on dis-
engaged trials was reliably higher in some areas (Figure 2F). This
means that single-trial activity is more variable in the disengaged
state than in the engaged state, a feature that is evident in single-
trial responses (Figure 2B, compare thin blue/red traces). This
state-dependent difference was evident across multiple task
epochs. Differences were most pronounced in the primary motor
cortex (MOp) and somatosensory cortex (the upper limb area,
lower limb area, and barrel cortex, Figure 2G) and were primarily
due to increased variance along the first latent dimension of neu-
ral activity (Figure S3).

Our counterbalancing correct and incorrect trials ensures that
these findings are not due to reward rate differences (Figure 2C).
These findings were also not explained by state-dependent left/
right-choice imbalances: when equalizing left and right-choice
trials within each state, the engaged state was again associated
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Figure 2. Trial-average responses measured with wide-field imaging are similar, but single-trial variability is altered during engagement vs.

disengagement

(A) Estimated states from the GLM-HMM were used to group trials into engaged and disengaged states.
(B) Calcium activity from somatosensory cortex-upper limb area (SSp-ul) aligned to task events for an example session. Red lines denote engaged trials, and blue
lines denote disengaged trials. Thick lines: mean trial-averaged activity. Thin lines: individual trials.

(legend continued on next page)

Neuron 713, 3048-3063, September 17, 2025 3051




¢? CellPress

OPEN ACCESS

with less trial-to-trial variability (Figure S4). On a smaller subset of
sessions that contained a high number of left-choice trials, we
computed across-trial variance for each state using only left-
choice trials. Again, we observed increased trial-to-trial variance
in the disengaged state, indicating this effect is not due to pool-
ing left-biased and right-biased states (Figures S5A and S5B).
Taken together, these results show that cortical activity is less
variable during the engaged, high-performance state, indepen-
dent of the state-related task performance differences.

Encoding of movements, but not task variables, is
altered during disengagement

To uncover what factors contributed to increased variability dur-
ing disengagement, we built a linear encoding model.'? This
model was designed to reconstruct neural activity with many
regressors, allowing opportunities to uncover differences be-
tween the engaged and disengaged states. These regressors
included task variables, discrete movements, and video data
(see Table S1 for a detailed breakdown of regressor groups).
We trained separate models on trials that the GLM-HMM as-
signed to each state (Figure 3A). Engaged- and disengaged-
state models were matched within sessions to have equal
amounts of training data. Using these models, we could
reliably reconstruct single-trial activity across the dorsal cortex
(Figure 3B). To assess overall model performance in each state,
we determined the match between the model’s prediction and
the actual neural data, using data held out from training (cross-
validated R2, Figure 3C). Surprisingly, cvR%? was higher for
models trained on disengaged trials (Figure 3C, left, blue line
above red line; Figure 3D, two right columns), meaning that the
model could account for more single-trial variance in neural ac-
tivity when animals were disengaged.

To assess the unique contribution of state, we then assessed
the performance of a modified encoding model trained on all tri-
als that included behavioral state as a regressor. Model perfor-
mance was indistinguishable from a model without a state re-
gressor (Figure 3D, two left columns; see also Figure S5C).
This is unlike previous studies using more compact models in
which the inclusion of behavioral state improved model fits
dramatically compared with models with only sensory inputs.**
Here, the similar performance on models with vs. without a state
regressor demonstrates that state-dependent differences (e.qg.,
Figure 3C) must be driven by other regressors, such as task vari-
ables or movements.

We set out to determine which regressors drove the observed
state-dependent differences (Figure 3C). Simplified, task-vari-
able-only models performed similarly for the two states
(Figure 3E, left; note that the modest values for unique explained
variance of task variables are in keeping with previous re-

Neuron

sults'>?%). By contrast, uninstructed-movement-only models

performed differently for the two states (Figure 3E, right, blue
line above red). This indicates that uninstructed movements
(i.e., movements not required for task performance, e.g., whisk-
ing) contribute to the state-dependent differences observed in
the full model (Figure 3C). Observing state-dependent differ-
ences for the uninstructed-movement-only but not the task-var-
iable-only model (Figure 3E) also argues against the possibility
that motion-induced imaging artifacts were larger during disen-
gagement. If motion artifacts were larger during disengagement,
the explained variance of task and movement variables would
both have changed.

Previous work demonstrated that movements can contribute
to both single-trial and trial-averaged activity because the space
of all movements includes task-aligned and task-independent
components (Figure 3F, compare top vs. bottom rows).'> We
therefore wondered if the observed state-dependent differences
were driven primarily by task-aligned movements (i.e., neural
variance that can be explained by task variables or movements
due to correlation between the two) or movements independent
of task (i.e., neural variance that can only be explained by move-
ments, which are uncorrelated to task variables). Existing
methods'? can distinguish the variance accounted for by these
two types of movements: when movements and task variables
are correlated, they account for overlapping cortical variance
in linear models (STAR Methods). This correlation can be ex-
ploited by comparing the performance of task-variable-only
models with task-variable-plus-movement models. The addi-
tional variance explained when including movements represents
task-independent variance (variance due to movements that
was not accounted for in task-variable-only models). Because
movement-driven variance must be either task-aligned or task-
independent, the task-aligned variance is computed by sub-
tracting task-independent variance from the total variance ex-
plained by movements.

Task-aligned movements explained small, equal amounts
of cortical variance in engaged and disengaged states
(Figure 3G, top row; compare red/blue dashed traces; see
STAR Methods). However, when we compared model perfor-
mance on the movements that could not be accounted for by
task variables, we found a consistent difference between the
two states (Figure 3G, bottom row, blue line above red line).

We extended our analyses to another cohort of five mice with
pyramidal tract (PT) neurons genetically labeled by Fezf2-CreER
(key resources table).”® PT neurons are a subset of EMX-ex-
pressing pyramidal neurons. They project to subcortical struc-
tures, such as the pons and thalamus.?®** Similar to EMX-ex-
pressing neurons described above, the variance and cvR? of
PT neurons were higher during disengagement (Figure S7). The

(C) Trial numbers for the analyses shown in (D)-(G). Rewarded/unrewarded trials are counterbalanced to ensure state-dependent differences are not driven by

reward.

(D) Heatmaps of average activity during each trial epoch, averaged over 19 sessions from 4 mice. Top row: engaged trials. Middle row: disengaged trials. Bottom
row: difference (engaged activity minus disengaged activity). Purple indicates more activity during the engaged state, and green indicates more activity during the

disengaged state.

(E) Average activity over time for two example regions. Error: +SEM across sessions.
(F) Heatmaps of average variance across trials. Higher values denote more trial-to-trial differences in neural activity. Row conventions are the same as in (E).
(G) Across-trial variance plotted for two example regions. Error: £SEM across sessions.
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cell bodies of PT neurons are primarily located in layer 5b, indi-
cating that the results reported above remain consistent in the
deep cortical layers.**

This analysis suggests that the impact of engagement on neu-
ral activity is related to the movements independent of the task.
Two mechanisms could underlie this effect: (1) the same move-
ment is associated with a stronger neural response during disen-
gagement, or (2) the movement pattern itself changes across
engaged and disengaged states. We tested these two possibil-
ities in the following analyses.

The relationship between movements and cortical
activity changes modestly with disengagement

Our encoding models, trained separately on engaged and
disengaged states, generated time-varying beta weights for
each regressor (a.k.a., the kernels) within each state. These
beta weights specify the relationship between cortical activity
and movements. We examined the kernels for movement regres-
sors by computing the L1-norm of the kernel over time.

The kernels of a subset of event-based regressors were signif-
icantly (but modestly) larger during disengagement (Figure S6).
We also tested the kernels of behavior video data, and the ker-
nels of some singular value decomposition (SVD) components
differed across states (Figure S6D). To summarize these differ-
ences, we calculated the L1-norm of the 200 component kernels
and again found that the kernels during disengagement were
modestly larger (Figure S6E). Overall, our findings suggest that
some movements are associated with slightly stronger cortical
activity during disengagement, though the changes are idiosyn-
cratic and modest at the individual regressor level.

Overall movement magnitude is consistent across
states

To better understand movements in the engaged vs. disengaged
states, we developed a new analysis based on the movement
of individual body parts. We employed DeeplLabCut, a
neural-network-based movement tracking software,*® to track
the movements of 27 body parts (Figure 4A). We used
DeeplLabCut instead of dimensionality-reduced videos or raw
pixel values because these latter methods are difficult to relate
to specific animal movements.*® The movement trajectories of

Neuron

DeepLabCut-tracked body parts varied over trials and time,
though velocities are unchanged across states (Figure 4B, two
example body parts).

To ensure that DeepLabCut tracking captured similar move-
ment information to our video-based approach, we again trained
task-variable-only and uninstructed-movement-only models,
this time using DeeplLabCut tracking data as regressors
(Figure S8). As before, uninstructed movement explained more
neural variance during disengagement, while the neural variance
associated with task variables remained the same across both
states. This test reinforces the robustness of our findings and
confirms that DeeplLabCut tracking captures key movement
information.

To test whether mice move more during disengagement, we
quantified the motion energy (cumulative position change across
frames) of all labeled body parts in the stimulus and delay
epochs. To prevent the total motion energy from being domi-
nated by body parts that naturally have longer moving distances,
such as the forelimbs, we standardized (Z score) the motion en-
ergy of different body parts separately before averaging them. In
most trials, standardized motion energy tended to increase
gradually from the beginning of the trial to the moment when
the water spouts came in and the mouse reported its choice
(Figure 4C). Interestingly, motion energy was very similar during
engagement and disengagement (Figure 4D, left). The probabil-
ity of being in the engaged state (P(engaged)) and motion
energy were uncorrelated (Figure 4D, right). This argues that
the increase in explained variance during disengagement
(Figures 3C and 3E, right) did not arise because disengaged an-
imals move more.

Stereotyped movement patterns are disrupted during
disengagement

Although motion energy is unchanged across states, we noticed
that the trajectories of labeled body parts were more stereotyped
trial-to-trial during engagement compared with disengagement
(Figure 4B, top; red traces are more similar to each other than
blue traces). This could occur if, for instance, movements
became desynchronized to task events during disengagement.
Indeed, our analysis of neural data hinted that the movements in-
dependent of task change during disengagement (Figure 3G).

Figure 3. More single-trial variance can be explained in the disengaged state, primarily because of variance due to task-independent, unin-
structed movements

(A) Schematic describing the modeling approach. Trials were identified as engaged or disengaged with a GLM-HMM. Linear models used video, movements, and
task variables to predict neural activity for engaged and disengaged states. Cortical heatmaps on the right denote instantaneous AF/F to be predicted by the
model. Red indicates positive AF/F, and blue indicates negative AF/F. Sessions with fewer than 50 trials per state were excluded from analysis.

(B) Example traces from SSp-ul (yellow highlighted region from A) and model predictions for engaged and disengaged trials from one session. Gray vertical lines
denote trial starts.

(C) Total variance explained across-trial epochs for engaged and disengaged states. Variance explained was computed for the “full model,” including task
variables, instructed movements, and uninstructed movements.

(D) Left two columns, total variance explained by linear encoding models trained on all trials, with and without a state regressor. Including a state regressor in the
model does not increase variance explained. Error bars denote mean + SEM. Scatter points denote individual sessions, with colors denoting mice. Linear mixed-
effects model with mouse identity as a random effect, p = 0.81. Right two columns: linear encoding models trained on engaged or disengaged trials from matched
sessions. Linear mixed-effects model with mouse identity as a random effect, p < 0.001.

(E) Left, variance explained for a model containing only task variables. Right, variance explained for a model containing only uninstructed movements. Data were
combined across sessions with mean + SEM plotted.

(F) Diagram demonstrating how movements can be viewed as instructed vs. uninstructed or task-aligned vs. task-independent.

(G) Same as (C) and (E), but variance explained is shown for task-dependent (top) vs. task-independent (bottom) movements.
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Figure 4. Animals move the same amount in the engaged and disengaged states

(A) The movements of 27 body parts were tracked with DeepLabCut. Footage from two camera angles was used. Colored dots: points tracked by DeepLabCut.
(B) The standardized x, y coordinates and averaged velocity at each video frame of two example DeeplLabCut labels (50 randomly selected engaged and
disengaged trials). The shade in the velocity plot denotes the standard deviation.

(C) The motion energy of DeepLabCut labels for an example animal in engaged and disengaged trials. Each row is one trial. Trials are sorted based on when the
water spouts moved in, allowing the mouse to report a choice (“spouts in”). The trials with the top 20% P(engaged) are designated as “engaged trials,” while the
bottom 20% of trials are selected as “disengaged trials.”

(D) The motion energy is similar across engaged and disengaged states. Left: the distribution of motion energy (averaged over the stimulus and delay epochs for
each trial). The red/blue bars denote the mean motion energy of engaged/disengaged states, respectively. Standardized motion energy of engaged trials =
0.0033 (mean) + 0.3062 (standard deviation), standardized motion energy of disengaged trials = 0.0166 + 0.3953. 3,836 trials from 4 animals were included. A
linear mixed-effects model was fitted to the motion energy with engagement state as a fixed effect and mouse identity as a random effect. No significant dif-
ference was detected (p = 0.6456). Right: the correlation coefficient between motion energy and P(engaged) was calculated separately for individual sessions.
The 4 colors represent the 4 mice from which the sessions were recorded (same color conventions as in Figure 3D). The horizontal bar and error bar denote the
mean coefficient (—0.0206) and standard deviation (+0.3553) across sessions. A linear mixed-effects model was fitted to the correlation coefficients with mouse
identity as a random effect. The correlation coefficients are not significantly different from zero (p = 0.7788).

We previously observed that in trained experts (but not novices),  dict the trajectories of the DeepLabCut labels (STAR Methods).
animals make well-timed whisks following stimulus onset and Some movement patterns depend on task variables: as an illus-
reward delivery.'? To quantify the extent to which movements  tration, in advance of the choice, trial-averaged forearm move-
are aligned in time to task events, we built a model that used  ments might differ between trials that end in left vs. right choices
task variables (e.g., stimulus strength, upcoming choice) to pre-  (Figure 5A, thick gray traces). Other movements are independent
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Figure 5. A novel behavioral metric demonstrates a strong relationship between the alignment of movements and the animal’s latent state
(A) Schematic example: movements of the hand differ for left and right choices. TIM measures the mismatch between model-predicted stereotyped trajectories
(thick traces) and actual single-trial movements (thin traces). TIM is low when spontaneous movements are more stereotyped trial-to-trial.

(B) Distributions of trial-averaged TIM values (stimulus and delay epochs) in the engaged/disengaged states. The red/blue dashed lines: means of the distri-
butions. Standardized TIM of engaged trials = —0.0538 (mean) + 0.3293 (standard deviation), standardized TIM of disengaged trials = 0.1072 + 0.4638, 3,836 trials
(4 animals). A linear mixed-effects model was fitted to TIM with engagement state as a fixed effect and mouse identity as a random effect. TIM is significantly
higher in the disengaged state (p = 0.0045).

(C) Smoothed TIM and P(engaged) are negatively correlated (r = —0.7163, p = 3.3286e—66, one example session).

(D) Correlation coefficients of TIM and P(engaged) were calculated separately for individual sessions after TIM and P(engaged) were smoothed (50-trial-long
Gaussian filter). Colors represent individual mice (same color conventions as Figure 4D). Horizontal bar and error bar denote the mean coefficient (—0.2508) and

(legend continued on next page)
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of task events. For instance, a hand flexion that is unique to each
trial, regardless of choice (Figure 5A, thin orange and green
traces). We refer to the difference between the model-predicted
trajectories and the actual trajectories as “task-independent
movements” (TIMs). TIMs were averaged across all labeled
body parts over the stimulus and delay epochs to obtain one
value for each trial, capturing the extent to which, on that trial,
movements were uncoupled from stereotyped trajectories
dependent on task events (STAR Methods; see also Figures 9A).
We then tested whether TIM depended on the engagement
states of animals. TIM was overall higher during disengaged tri-
als (Figure 5B). Moreover, when we compared fluctuations in TIM
with P(engaged), we found them to be inversely correlated
(Figures 5C and 5D). Periods of low TIM, when movements
tend to be better aligned to task events, are associated with
engagement. Accordingly, the spatial distribution of body labels
occupies a larger area in high-TIM trials (Figure S9C). This indi-
cates that body label positions are more variable across trials
during disengagement. Given that engagement states were
modeled on the animals’ choices, we also tested the relationship
between task performance, TIM, and P(engaged). All these met-
rics are correlated (Figure 5E). The engaged state is character-
ized by both high task performance and low TIM (Figure 5E,
red points at the right). We further confirmed the relationship of
TIM and task performance with another nine animals that are
not included in the GLM-HMM. These mice were used in optoge-
netic inactivation experiments, which could interrupt continuous
HMM state, or had cells labeled other than EMX-expression
neurons. The negative correlation is significant and robust
(Figure S10). Moreover, we computed the cross-correlation be-
tween TIM and animal state by shifting TIM over time (sessions
from the same animal were merged). The negative correlations
of all four animals peaked around 0, implying that there is a
near-zero time lag between TIM and engagement (Figure 5F).
We performed three additional analyses to ensure that the
negative correlation between TIM and P(engaged) did not occur
by chance.®” One concern is that the fluctuations of TIM and P
(engaged) within each session might have fixed patterns. For
instance, TIM might always be higher at the beginning and the
end of each session, and P(engaged) might have an opposite
pattern. If so, the correlation between TIM and P(engaged) might
not reflect a meaningful association. To address this, we calcu-
lated the cross-session correlations of TIM and P(engaged)
respectively after adjusting all sessions to the same length with
1-dimensional interpolation (e.g., if we had three sessions from
one mouse, we calculated the TIM correlation of all three
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possible session pairs: 1-2, 1-3, and 2-3). If TIM fluctuations fol-
lowed a fixed pattern, the correlation coefficients of most pairs
would be high. The same analysis was applied to P(engaged).
Only TIM showed high cross-session correlation (averaged r =
0.59). The cross-session correlation of P(engaged) was minimal
(averaged r = —0.03) (Figure 5G). This result argues against the
possibility that TIM-state correlation emerged from the fixed pat-
terns of both TIM and P(engaged).

A second concern is that, because the linear regression
models used to predict the body part positions included
outcome-related regressors, the negative TIM-state correlation
merely reflects the fluctuation of model-fitting quality with
specific outcome-related regressors (e.g., rewarded vs. unre-
warded). To address this concern, we recalculated TIM
after excluding all outcome-related regressors and repeated
the correlation analyses. The correlation structure between
task performance, TIM, and P(engaged) was preserved
(Figures S11A-S11C).

A third concern is that the increase in TIM may not indicate the
animal’s engagement in the current trial but instead reflect that
the animal experienced an omitted reward and time-out punish-
ment in the previous trial. In this case, TIM would be higher in the
disengaged state simply because the disengaged state had
more incorrect previous trials. However, we observed that TIM
was higher for disengaged than for engaged trials even when
the outcome of the previous trial was matched (Figure S11D).

TIM is more tightly linked to engagement state than
pupil diameter

Pupil diameter has previously been used to estimate the arousal
of subjects across species. Previous studies have reported pos-
itive or inverted-U-shaped correlations between arousal level
and pupil diameter.??38% We tested whether TIM and pupil
diameter contain overlapping state-related information or
whether TIM reveals distinct aspects of behavioral states. We
extracted the mean pupil diameter in the baseline and stimulus
epochs from videos (Figure 6A), then smoothed and down-
sampled the data with a 50-trial window. The pupil diameter in
neither the baseline nor the stimulus epochs correlated with
task performance or P(engaged) (Figure 6B). We further tested
the correlation between pupil dilation (the pupil diameter differ-
ence between the stimulus and the baseline epochs), task per-
formance, and P(engaged). No significant correlations were
found either (Figure S12). Our results argue that the states
defined by TIM are distinct from the states defined by pupil
diameter.

standard deviation (£0.3411) across sessions. A linear mixed-effects model was fitted to the correlation coefficients with mouse identity as a random effect.
Correlation coefficients are significantly below zero (p = 0.0015).

(E) Scatter plot shows the correct rate and TIM calculated in an independent 50-trial window. The color grade indicates the P(engaged) value of trials. TIM is
negatively correlated with both engagement and task performance (TIM-correct rate correlation: r = —0.3315, p = 2.6445e—6; TIM-P(engaged) correlation: r =
—0.2799, p = 8.4443e-5).

(F) Trial shift test shows that there is a near-zero time lag in the negative TIM-engagement correlation. Each curve indicates, for a single mouse, the correlation
between TIM and P(engaged) when they were offset in time (same color conventions as in D). The negative correlation is at its strongest level when the offset is
near zero.

(G) Points: the correlation coefficient of a pair of sessions from the same mouse (same color conventions as in D). Marginal histograms: distribution of cross-
session correlation of TIM (right) or P(engaged) (top). Red dashed lines: mean of each distribution. The cross-session correlation of TIM is non-zero (0.5988 +
0.1431, linear mixed-effects model p = 5.8325e—45). The cross-session correlation of P(engaged) is not significantly different from 0 (—0.0316 + 0.3208, linear
mixed-effects model p = 0.2886).
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Figure 6. Latent states are correlated to TIM but not pupil diameter

(A) Pupil diameter was measured based on the lateral videos with customized code.?® The standardized pupil diameters of 4 example trials are shown.

(B) No correlation exists between pupil diameter, task performance, and P(engaged) (baseline epoch: r = —0.0881, p = 0.2257; stimulus epoch: r= —0.1325, p =
0.0663). The data from 23 sessions of 4 animals were used. Each point denotes one trial. The color grade indicates the P(engaged) value of trials. Pupil diameter
and correct rate were smoothed with a 50-trial-long Gaussian filter and downsampled every 50 trials.

(C) Top left: the pupil diameter was extracted from the lateral videos of head-fixed mice performing a visual task. Pupil diameter was estimated using customized
software.”" Bottom left: filtered pupil diameter (area shown as circles) and eye position (crosshairs represent the center of the eye). Right: 30 body parts in the new
dataset were tracked with DeepLabCut for motion energy and TIM calculation. The colored dots show the DeepLabCut labels on two example frames from the
videos.

(D) Relationship between correct rate and standardized pupil diameter for 6 mice (colors) that comprise the dataset described in (C). Correct rate and pupil
diameter were smoothed with a 50-trial-long Gaussian filter and downsampled every 50 trials to generate the points shown. Pupil diameter and correct rate were
not significantly correlated (r = —0.0505, p = 0.3862).

(E) The correlation coefficients of task performance and pupil diameter/standardized motion energy/standardized TIM are plotted for each animal. Bars indicate
the averaged correlation coefficients across animals. Only TIM shows significant correlation with task performance. Pupil-correct rate correlation coefficients =
—0.1534 (mean) + 0.3926 (standard deviation), one-sample t test, p = 0.3825; motion energy-correct rate correlation coefficients = 0.1640 + 0.3301, one-sample t
test, p = 0.2781; TIM-correct rate correlation coefficients = —0.6743 + 0.1147, one-sample t test, p = 2.9174e—5. The data from 6 animals was used.

To further test our findings, we examined a second dataset The significant relationship between TIM and task perfor-
collected in the context of a different visual decision-making mance suggests that movements might be an alternative to pupil
task (STAR Methods, task 2). Again, we tracked the movement diameter to identify internal states that are linked to task engage-
trajectories of 30 body parts with DeepLabCut and extracted ment. To test the generality of these observations, we applied
the pupil diameter in the 0.5 s long window before visual stimuli ~ TIM-performance analysis to data from freely moving rats trained
were displayed (Figure 6C). We avoided using the stimulus to distinguish the rate of a 1.0 s long multisensory stimulus
epoch in this dataset because pupil diameter may fluctuate inde-  sequence (Figure S13A; STAR Methods, task 3). We calculated
pendently of task engagement when visual stimuli were pre- TIM and motion energy of 19 DeeplLabCut-labeled body parts
sented. We again observed no correlation between the pupil (Figure S13B). Again, we observed a significant negative correla-
diameter and task performance (Figure 6D). We further tested tion between TIM and task performance (Figures S13C-S13E),
the TIM-performance correlation and found that, as before confirming that our findings are not limited to head-fixed mice,
(Figure 5), TIM was inversely correlated with task performance whose movements during disengagement might be influenced
(Figure BE). by restraint.
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Figure 7. The correlation coefficients between TIM and task perfor-
mance are plotted for three experimental conditions

Each point denotes the coefficient of one animal. Bars indicate the averaged
correlation coefficient across animals. TIM and correct rate are negatively
correlated in all 3 datasets that span different task paradigms and species.
Correlation coefficients of 4 mice performing the auditory task (task 1) =
—0.2463 (mean) + 0.0743 (standard deviation), one-sample t test, p = 0.0070;
correlation coefficients of 6 mice performing the visual task (task 2) =
—0.6743 £ 0.1147, p = 2.9174e—5; correlation coefficients of 5 rats performing
the multisensory task (task 3) = —0.4734 + 0.1254, p = 0.0011.

Combining the results from three datasets, we consistently
observed that TIM is a stable indicator of an animal’s perfor-
mance on cognitive tasks (Figure 7). The consistency of this ef-
fect argues that spontaneous movements can be used to infer
the animal’s engagement across species and contexts.

DISCUSSION

Previous studies have shown that discrete, latent states can
govern decision-making dynamics.'®?> However, the neural
and behavioral correlates underlying these states remain poorly
understood. In this study, we observed that trial-to-trial neural
activity had heightened variability during disengagement. An en-
coding model accounted for more neural variability during disen-
gagement due to the increased explanatory power of the move-
ment regressors independent of the task (Figure 3). This effect
was associated with two neural activity and behavioral changes.
First, some uninstructed movements had a modestly larger
impact on neural activity during disengagement (Figure S6). Sec-
ond, although animals moved frequently in both states
(Figure 4D), many movements became less stereotyped during
disengagement (Figures 5B-5D). Our findings demonstrate that
changes in engagement are associated with changes in the
movement-neural activity relationship and the temporal struc-
ture of spontaneous movements that impact neural activity.
They also suggest that movement stereotypy can be used as a
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powerful, versatile indicator of latent states in diverse experi-
mental conditions, pointing to a surprisingly strong link between
movements and cognition.

Existing work has shown that spontaneous movements can
have a widespread impact on neural activity during cognitively
demanding tasks'?*?*® and that movements and cognitive
functions can be modulated by shared neural circuits.** For
example, dopaminergic projections from mouse ventral
tegmental area and substantia nigra control both movement
sequences and cognitive functions (e.g., reward-related
learning®®™*"). Correlations between movement and learning
were also observed at the behavioral level.*®*° These findings
suggest connections between movement, neural encoding,
and cognition but leave the nature of these connections
unclear.

Evidence that movements can enhance neural coding comes
from locomotion, which is associated with more precise stimulus
representations in mouse visual cortex.**~>? Our work relates to
these studies: the decreased neural variability during engage-
ment that we observed could lead to more precise stimulus rep-
resentations. However, we also found that non-stereotyped,
spontaneous movements are associated with disengagement
and low task performance. Our results suggest that the relation-
ship between movements and information encoding depends on
the nature of the movements. Temporally aligned movements,
including rhythmic locomotion, may enhance sensory encoding
(or at least leave it undisturbed), but temporally unaligned move-
ments may do the opposite. In our encoding model analysis, only
TIMs are associated with stronger neural responses during
disengagement, further suggesting the relationships between
movement, cognition, and neural encoding can be movement-
specific. One potential mechanism is that temporally unaligned
movements hinder performance by allowing crosstalk between
movement and task-related neural subspaces, driving a con-
founding overlap between signals.®®>°

Previous work has uncovered “slow drift” signals that shift the
baseline activity, thereby affecting task performance in multiple
ways,>® such as altering the impulsivity level in visual detection.®”
However, our analyses show that a linearly additive “state
signal” shared by a large neural population need not be the
driving factor underlying engagement state fluctuations
(Figure 3D). Instead, engagement state may be largely reflected
in trial-to-trial neural variability.

The change in neural variability we observed is reminiscent of
prior work reporting state-dependent changes in trial-to-trial
variability on multiple timescales: during the seconds before a
learned movement,”® during the minutes while attention is
directed to a spatial location,’®®° and during the weeks-long
transition from novice to expert.®’ It is possible that the drop in
trial-to-trial variability in those studies is also movement-related.
However, a change in movements is likely not the sole explana-
tion because, at least for primate early visual areas, movement
modulation of neural activity is weak.®%>®° Therefore, the vari-
ability drop likely arises, at least partially, from another source.
One hypothesis is that neural activity fluctuations, linked with
bespoke weights to individual neurons, change with internal
state.®"°° An appealing idea is that these shared fluctuations
are present in many species and areas, but the link between
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the fluctuations and movements is species/area-specific. Inter-
estingly, recent efforts examined neural variability from another
state-related perspective: the covariance of neural activity
across brain areas is informative about behavioral states.®®°”

Our approach identified novel latent states that are distinct
from those associated with pupil diameter. Pupil diameter,
arousal, and task performance have been reported to be posi-
tively correlated with each other®®°°:5-70 or sometimes exhibit
an inverted-U-shaped correlation.?®?*2>7".72 pypil diameter
fluctuations are sensitive to many factors: experimental setup
(e.g., the light levels in the behavioral rig), behavioral task design
(e.g., task difficulty), and physiological factors (e.g., heart rate,
locomotion).”>”* A possible explanation for why we did not
observe a pupil-performance correlation is that our mice were
placed on a platform instead of a running wheel, limiting the
occurrence of high arousal states seen with locomotion.?®*°
Low arousal states may have likewise been limited by our
approach: our inter-trial intervals were 1-2 s, instead of 3-7 s
(typical of other studies). Longer inter-trial intervals allow pupil
diameter to recover from reward-induced pupil dilations and
for arousal to decrease before the next trial. By eliminating
very high and very low arousal states, our approach may have
unmasked movement signatures of novel cognitive states.
Moreover, several recent studies have reported that sponta-
neous movement may be a better indicator of cortical excitation
level than pupil size. Spontaneous facial movement and locomo-
tion are coupled with high variance in cholinergic and noradren-
ergic signals in the dorsal cortex.”>’® Together with our results,
these findings raise the possibility that movement is informative
about different axes of latent state.

More work is needed to understand the relationship be-
tween movements, internal states, and neural activity. First,
one limitation of this study is that isolating sensory responses
within the auditory cortex is difficult with our wide-field imag-
ing preparation. Future work that examines state-dependent
responses in the primary visual cortex during visual decisions
will definitively determine whether disengagement alters sen-
sory encoding. Second, single-cell recordings would address
whether the change in the variability of neural activity is uni-
form across neurons and further dissect the underlying
neuronal mechanisms more precisely. Third, the relatively
low neural variance explained by task variables (Figure 3E,
left) limits detecting task-variable-related neural differences
across engagement states. A small difference might go unde-
tected given the minimal variance captured by the model. Sin-
gle-cell recording may also help to address this issue by iden-
tifying the single neurons with higher task-variable-related
cvR? and testing whether this cvR? fluctuates with engage-
ment. Fourth, our analyses focused on superficial structures
accessible to wide-field imaging. Previous studies reported
that deeper structures (e.g., basal forebrain, thalamus, locus
coeruleus) are implicated in state-related regulation of neural
activity through subcortical-cortical projections or neuromo-
dulation.”"”"®" An appealing idea is that the same modula-
tory inputs drive the movement pattern changes we observed.
Future work on these structures could provide a mechanistic
explanation for the observations we report here. Fifth, a
manipulation experiment could establish a causal link be-
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tween movements and internal state. Our approach cannot
resolve whether TIM drives the animal to disengagement or
instead reflects a disengaged state that was already initiated.
However, this is a challenge given the difficulty of physically
manipulating animals’ movements and interpreting resulting
changes in decision-making. As an alternative, targeted
manipulation of state-modulating regions, such as the
basal forebrain,”®° thalamus,®'*** or locus coeruleus,”’:**
could be used to promote an engaged or disengaged state.
We could then observe if TIM reflects such artificial state
changes. Cell-type-specific measurements and manipulation
are also needed and perhaps should extend to astrocytes
as well as neurons.®*""-84°87

Previous observations demonstrated that the majority of neu-
ral activity is associated with movements but left unclear how
such movements were related to cognition.'***>* Our work un-
covers that movements and cognition are intertwined: when an-
imals become engaged in a task, movement patterns change, as
does the trial-to-trial variability in neural activity. This points to a
close link between movements and cognition and calls for new
studies to understand how this link differs across species, areas,
and behaviors.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Experimental models: Organisms/strains

Mouse: Emx1-IRES-Cre: Emx1tm1(cres The Jackson Laboratory JAX#005628
(Task 1, Figures 1, 2, 3, 4, 5, 6, and 7)

Mouse: Fezf2-2A-CreER: Fezf2!m1-1(Cre/ERT2)Zjh The Jackson Laboratory JAX#036296
(Task 1, Figures S7 and S10)

Mouse: Ai162(TIT2L-GC6s-ICL-tTA2)-D (Ai162D): H. Zeng, Allen Institute for Brain Science ~ JAX#031562
Igs7tm1 62.1(tetO-GCaMP6s,CAG-tTA2)Hze (Task 9 Figure S1 0)

Mouse: PlexinD1-2A-CreER: Plxnd1tm2-1(ipozin The Jackson Laboratory JAX#036295
(Task 1, Figure S10)

Mouse: B6.Cg-Tg(Camk2a-tTA)1Mmay/DboJ The Jackson Laboratory JAX#007004
(Task 2, Figures 6 and 7)

Mouse: C57BL/6J (Task 2, Figures 6 and 7) The Jackson Laboratory JAX#000664
Mouse: B6;DBA-Tg(tetO-GCaMP6s)2Niell/J The Jackson Laboratory JAX#024742
(Task 2, Figures 6 and 7)

Long-Evans rat Charles River Laboratories 006

(Task 3, Figures 7 and S13)

Software and algorithms

MATLAB R2018a/R2021b MathWorks SCR_001622
Python 3.9.13 Python Software Foundation SCR_008394
DeeplLabCut 2.1.5.2/2.3.4 Mathis Group & Mathis Lab at EPFL SCR_021391

SSM 0.0.1
Customized MATLAB & Python code

Scott Linderman Lab, Stanford University
Authors of this paper

https://github.com/lindermanlab/ssm
https://doi.org/10.5281/zenodo.15557838

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animal information

All surgical and behavioral procedures adhered to the guidelines established by the National Institutes of Health and were approved
by the Institutional Animal Care and Use Committee of Cold Spring Harbor Laboratory and the University of California, Los Angeles
David Geffen School of Medicine. We used 8-25 week old male and female mice and 23-62 week old male Long-Evans rats. Detailed
information on the animal source is provided in the key resources table. No statistical methods were used to pre-determine sample
sizes. Sample sizes are similar to previous publications. Mouse strains were acquired from the Jackson Laboratory, Allen Brain Insti-
tute, or generated at Cold Spring Harbor Laboratory. The mouse room had a relative humidity of 30-70%, and room temperature
ranging from 69-78°F. To avoid potential aberrant cortical activity patterns, EMX mice were on a doxycycline (DOX)-containing
diet, preventing GCaMP6s expression until they were 6 weeks or older.

General surgical procedures

Surgeries were performed under 1-2% isoflurane in oxygen anesthesia. After induction of anesthesia, 1.2 mg/kg meloxicam was in-
jected subcutaneously and sterile lidocaine ointment was applied topically to the skin incision site. After making a midline cranial
incision, the skin was retracted laterally and fixed in position with tissue adhesive (Vetbond, 3M). We then built an outer wall using
dental cement (C&B Metabond, Parkell; Ortho-Jet, Lang Dental) along the lateral edge of the dorsal cranium (frontal and parietal
bones). A custom titanium skull post was then attached to the dental cement. For skull clearing, the skull was thoroughly cleaned
followed by the application of a thin layer of cyanoacrylate (Zap-A-Gap CA+, Pacer technology). Mice were allowed to recover for
5-7 days after the skull clearing before starting the data collection.
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METHOD DETAILS

Auditory task for the mice used in widefield imaging (Task 1)

Data used here are from a previously published study.?® The behavioral setup was controlled with a microcontroller-based (Arduino
Due) finite state machine (Bpod r0.5, Sanworks) using custom Matlab code (2015b, Mathworks) running on a Linux PC. Servo motors
(Turnigy TGY-306G-HV) and touch sensors were controlled by microcontrollers (Teensy 3.2, PJRC) running custom code. Mice were
trained on a delayed, spatial discrimination task. Mice initiated trials by placing their hands on at least one of the two handles, which
were mounted on servo motors that rotated out of reach during the inter-trial period. To initiate trials, animals placed their hands on
the handles and, after a variable duration of 0.25-0.75s of continuous contact, the auditory stimulus was presented. Auditory stimuli
consisted of a sequence of Poisson-distributed, 3-ms long auditory click sounds, presented from either a left and/or right speaker for
a variable duration between 1 and 2 s. The stimulus epoch was followed by a variable delay (0 to 0.5 s), after which servo motors
moved two lick spouts close to the animal’s mouth. If the animal licked twice on the side where more sensory events were presented,
a drop of water reward was dispensed. After a spout was licked twice, the contralateral spout moved out of reach to force the animal
to commit to its decision. The water volume rewarded per trial (typically 1.5 to 3 pL) was constant within a single session but was
sometimes adjusted daily based on the animal’s body weight. 5 mice (out of 9) in Figure S10 were used in an optogenetic inactivation
experiment based on the same task.”® To ensure the inactivation always covered the same time window, the durations of stimulus
and delay epochs for these mice were fixed to 1.0s and 0.5s respectively. All optogenetic inactivation trials were removed before
calculating TIM in case optogenetic manipulation changes the movement pattern.

Data was collected from multiple sensors in the behavioral setup. Touch sensors using a grounding circuit on handles and lick
spouts detected contact with the animal’s hands and tongue, respectively. A piezo sensor (1740, Adafruit LLC) below the animal’s
trunk was used for monitoring body and hindlimb movements. Two webcams (C920 and B920, Logitech) were positioned to capture
the animal’s face/upper body (lateral view) and the ventral surface of the body (bottom view). The frame rate of both cameras was
30 Hz. The pupil diameter data in Figures 6A and 6C was extracted from the lateral videos with customized MATLAB code.

Trained mice were housed in groups of two or more under reverse light cycle (12-hour dark and 12-hour light) and trained during
their active dark cycle. Animals were trained over the course of approximately 30-60 days.

Visual task for the mice used in pupil-engagement analysis (Task 2)

Mice were trained in a visual spatial-temporal discrimination decision making task to monitor pupil dynamics during task engage-
ment. Visual stimuli timing was equivalent to Task 1, described above.?® Stimuli were presented in a screen (LG LP097QX1, Adafruit)
placed 10cm in front of the mouse covering 55 to -55 degrees, calibrated to approximately 50 lux. The eye was recorded through a
camera placed at 70 degrees, in the mouse visual field, and 14cm away. The pupil was illuminated with an 850nm LED (IR30, CMVi-
sion) and recorded at 30-60Hz using a monochrome camera (CM3-U3-13Y3M-CS, FLIR) equipped with a 12mm lens (NVM-12M23,
Navitar) and spacer (ACC-01-5004, FLIR). Custom hardware and software controlled the behavioral task and synchronization with
the camera. A micro-controller (Teensy 4.0, PJRC) recorded task events and mouse licking, controlled task timing and emitted a
TTL pulse on stimulus presentation that was connected to the general purpose pins of the camera. The status of GPIO was recorded
for each frame to recover the precise timing of the stimulus. Data was compressed online using an Nvidia hardware video encoder
(through FFMPEG) and stored to disk with custom software (https://github.com/jcouto/labcams).

Rat behavioral training (Task 3)

Freely moving rats were trained to do a 2-choice auditory/visual decision task based on a task developed previously.'® Experiments
took place in dark, sound-proof rigs (Industrial Acoustics, Bronx, NY). Trials with visual, auditory, and multisensory stimuli were inter-
leaved. In the behavior setup (composed of one speaker, one LED board, and three ports), the rat initiated the trial by putting its nose
in the central port. Next, the speaker and/or LED board started to play the stimulus sequence (sound clicks, white light flashes, or
both). The number of stimulus events, presented over 1000 ms, ranged from 7 to 17. The decision boundary (12 click/flash stimuli)
was abstract and learned with experience by the animal. When the number of stimulus events was above 12, right choices were re-
warded; when the number was below 12, left choices were rewarded. The rewarded sides of the trials with exactly 12 stimuli were
assigned randomly. The duration of the inter-event interval followed a Poisson distribution. The stimulus window was followed by a
short delay period. The duration of the delay period was randomly assigned from an exponential distribution (mean = 0.12 s). After this
delay period, an auditory go cue informed the animal that it could leave the central port and make the choice. After the rat poked its
nose into the left or right port to report the choice, a reward (24 pL water) or a punishing sound (2.0s long sharp noise) was delivered
based on whether the choice was correct. A 2.0 s long white noise sound was delivered if the rat left the central port too early (i.e.,
during the stimulus or delay period). A webcam (CM3-U3-13Y3M-CS 1/2" Chameleon®3 Monochrome Camera) was used to monitor
animal movements. The camera was positioned above the animal and its frame rate was 80Hz.

DeeplLabCut tracking and motion energy measurement

To quantify the movement of different body parts, we employed DeeplLabCut (version 2.1.5.2 and 2.3.4), a neural-network-based
motion tracking software, to track the movement of 27 body parts of the head-fixed mice performing the auditory decision-making
task.>® 14 body parts from the lateral videos and 13 parts from the bottom videos were labeled and tracked (Figure 4A). We trained
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two DeepLabCut models (one for the lateral videos, and the other one for the bottom videos) for each of the mice. In each model,
about 80-150 frames were extracted and labeled as the training input. The sample frames were selected from different sessions
to make the tracking more robust across sessions. After training, we generated labeled videos to test the tracking quality, and
kept retraining with new sample frames/refined labels until the tracking quality was visually acceptable (Videos S1 and S2). To further
remove the outliers with poor tracking, we replaced all the values that are > 5 standard deviations away from their mean positions
with NaNs.

We next measured the motion energy of DeepLabCut-tracked body parts in the stimulus and delay epochs. Motion energy
was defined as the cumulative position change of each body part over frames. Because the lengths of stimulus and delay
epochs are variable, the number of trials with the longest stimulus/delay epochs may be small. We omitted all frames that
were longer than 70% of the longest stimulus/delay epoch to reduce the noise induced by low trial number. For trials that
were shorter than this duration, timepoints after the trial ended were represented with NaNs. We standardized the motion en-
ergy of different body parts separately and then averaged all the frames and body parts in each trial together to get a single
motion energy value for each trial.

To directly compare the motion energy of engaged and disengaged states, the trials with the highest 20% P(engaged) values of
each animal were designated as “engaged trials”. Similarly, the trials with the lowest 20% P(engaged) values were designated as
“disengaged trials”. To relate P(engaged) to other behavioral metrics, we first smoothed both P(engaged) with a 50-trial long
Gaussian-weighted moving average filter. We then calculated Pearson’s correlation coefficient between the smoothed P(engaged)
and the other behavioral metric using the MATLAB function corrcoef.m.

Widefield imaging

Widefield imaging was done as reported previously.'??%% |n brief, we used an inverted tandem-lens macroscope and an sCMOS
camera (Edge 5.5, PCO). Imaging resolution was 640 x 540 pixels after data were spatially binned at 4x. This resulted in a spatial
resolution of about 20 micrometers per pixel. A 525 nm band-pass filter (#86-963, Edmund optics) was used to isolate fluorescence
signal. Data were acquired at a framerate of 30 Hz, with alternating blue (470 nm, M470L3, Thorlabs) and violet light (405 nm, M405L3,
Thorlabs) delivered along the same excitation path. This enabled isolation of calcium-dependent signals from intrinsic signals, such
as hemodynamic responses. The 405 nm violet excitation captures non-calcium dependent GCaMP fluorescence, which can thus be
subtracted from the signal obtained with blue (470 nm) excitation. All subsequent analyses were based on this subtracted signal. All
frames were rigidly aligned to the Allen CCF (Common Coordinate Framework) using four anatomical landmarks on the surface of
the skull.

Preprocessing of neural data
Neural data were preprocessed as described previously.*® Briefly, rigid-body registration was used to register frames to the median
of the first trial. We then used singular value decomposition (SVD) to compute the top 200 spatial and temporal components of the
imaging data. These components comprised at least 95% of the total variance over each recording, and this was done to reduce
computational requirements for subsequent analyses.

Imaging data was then aligned to five trial periods: pre-trial, handle grab (trial initiation), stimulus, delay, and outcome. Alignment
was required because the duration of trial epochs was randomized to reduce temporal correlation between variables.

QUANTIFICATION AND STATISTICAL ANALYSIS

GLM-HMM model selection and state inference

To assess the correlation between TIM and states of engagement, we fit a 3-state hidden Markov model with Bernoulli generalized
linear model observations (GLM-HMM)."® The model is described by a KxK transition matrix (where K represents the number of
states) and a set of weights for each state (W™, where c represents the corresponding Bernouli GLM input parameter and k repre-
sents the state). We used two input parameters to the model, stimulus and bias, in order to predict choice behavior. The model was
trained using expectation-maximization (EM). Model hyperparameters were selected with a grid search, where hyperparameter per-
formance was assessed via 10-fold cross validation. The parameters included in this grid search were n_states =[1,2,3,4,5,6], alpha =
[1,2], and sigma = [.25, 0.5, 0.75, 1], for a total of 48 parameter combinations. Because EM is not guaranteed to converge at a global
maximum likelihood, we ran EM 10 times for each fold of cross-validation and picked the model with the highest cross-validated per-
formance. The EM fitting was performed as previously described'® using the SSM Python package.®® We used maximum a posterior
(MAP) estimation to estimate the HMM transition matrix and GLM weights. Models were fit to the combined data from all mice
because some mice lacked enough data to train individual models. Posterior state probabilities were then inferred via the for-
ward-backward algorithm, also implemented within the SSM package. Trials were assigned to disengaged or engaged states by
applying a probability threshold of 0.8. Thus, if the probability of a trial being from a particular state was greater than 0.8, then
that trial was assigned to the corresponding state (Figure 2A). Within sessions, we sampled equal numbers of trials from each state.
Sessions with fewer than 25 trials in either state were excluded from analysis.
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Psychometric function fitting
Psychometric functions were modeled with a four-parameter cumulative Gaussian:

w(X; u,0,7,4) = dGu,0)(1 — 4 —y)+y

Where x describes the stimulus evidence (negative indicates more leftward evidence, positive indicates more rightward evidence), ¢
describes the inverse slope, u describes the bias, y and 4 define the low and high lapse rates respectively. ¢ is the cumulative normal
function.

These parameters were estimated using Nelder-Mead Optimization. Psychometric curves were computed from the same trials that
were used to train the GLM-HMM. When fitting psychometric curves for the GLM-HMM states, data from all mice were pooled.

Analysis of single trial latents

To measure variability in single-trial neural latents, we reduced the dimensionality of population activity using the singular value
decomposition (SVD). We then computed the average variance across time in engaged or disengaged trials (Figures S3A and
S3B), the variance across all engaged and disengaged timepoints (Figure S3C), and the variance across trials (Figure S3D) for the
top 3 SVD dimensions.

Linear encoding model

The linear encoding model was implemented as previously described.'? In brief, the linear encoding model included task- and move-
ment-related variables. These variables were assembled into a design matrix containing analog and kernel-based regressors
(Figure 3A; Table S1). After assembling the design matrix, the model was fit using ridge regression (with MLE-based estimation of
the ridge parameters).

Encoding models were fit to data within single sessions. We fit the encoding model twice for every session: first for trials assigned
by the GLM-HMM to the engaged state and then for trials assigned by the GLM-HMM to the disengaged state. Because there were
typically more trials in the engaged state, these were randomly downsampled so that the trial numbers in each state for a session
were always matched. Sessions with fewer than 50 engaged and 50 disengaged trials were discarded to eliminate models fit to insuf-
ficient data.

To assess the task-aligned and task-independent contributions of uninstructed movements (Figure 3G), the task-independent
contribution was calculated as the increase in explained variance when movement variables were added to the task-variable-only
model, representing the unique, task-independent influence of the uninstructed movement regressors. The task-aligned contribution
was then determined by subtracting the task-independent component from the total explained variance of a model containing only
uninstructed movements.

Task-Independent Movement (TIM) calculation

Our new metric, TIM, quantifies the magnitude of movements that are independent of task events. This process requires 2 steps.
First, we took 7 task variables: current trial’s stimulus strength (Vssim(n), choice (Venoice(n)), OUtcome (Vieward(m), an interaction term
of choice and outcome (Vinteraction(n)); the previous trial’s choice (Vepoice(n — 1)), OUtCOME (Viewara(n — 1)), @nd an interaction term of choice
and outcome (Vipteraction(n —1))- These 7 variables were used as regressors in a linear model trained to predict the position of each
labeled body part (Equation 1; Figure S9A). At each video frame (t), regressions were performed to predict the x and y values of
all body parts (X(t) or ¥ (t)). Given the association between engagement and task performance, we balanced the number of correct
and incorrect trials before performing the regression to avoid inducing regression quality bias to our analysis. Linear regression was
next performed with customized MATLAB code. The R2 values of regressions were highly variable across mice, indicating that there
are significant individual differences in the level of moving stereotypically (Figure S9B).

X (t) = ﬂuvstim(n) +ﬂ21vchoice(n) +ﬁ3tvreward(n) +ﬂ4zvinteraction(n) +ﬂ5tvchoice(n -1) +ﬁ6tvreward(n -1)

+ ﬂ7tVinteraction(n —-1) +ﬁ0t (Equation 1)

y(t) was calculated in the same way. Next, we obtained TIM by calculating the Euclidean distance between model-predicted po-
sitions and actual positions (Equation 2).

TIM(t) = +/(x(t) — ROP+(y () — 7)) (Equation 2)

Similar to the motion energy calculation, we restricted calculations of TIM to the stimulus and delay epochs for each body part, and
omitted all frames that were longer than 70% of the longest stimulus/delay epoch. The trials with shorter stimulus/delay epochs were
filled with NaNs. TIM from each body part was then standardized (z-scored) to avoid the result being dominated by few body parts.
We then averaged TIM across all body parts and frames to get a single value for each trial (Figure 5B).
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Pupil diameter measurement

The pupil diameter of the mice from which we collected widefield imaging data (Figure 6A) was extracted from the lateral videos with
customized MATLAB code.'? We first binarized all the frames and selected the continuous areas bigger than 10 pixels. These areas
are considered potential pupil areas. The whiskers sometimes cut the pupil area into multiple pieces in the binarized images. Discon-
nected areas were merged together to remove this effect. We next used MATLAB function regionprops.m to detect the centroids in
the merged areas and computed their diameters. Missing values (e.g. due to poor image processing and failed centroid detection)
were then extrapolated using forward and reverse autoregressive fits from the remaining samples. Individual pupil diameter traces
were then smoothed with a 10-frame long averaging filter. Additionally, data outside six standard deviations were assigned zero
weight in smoothing.

For data presented in Figure 6C, pupil diameter was extracted using customized software (https://bitbucket.org/jpcouto/
mptracker) based on OpenCV.*" In brief, a region of interest around the pupil was manually selected and used to convert pixels
to mm, assuming an eye diameter of 6mm from which ~80% is visible. The contrast of individual frames was equalized using adaptive
histogram equalization. Opening and/or closing morphological operations were done to minimize whisker artifacts and a threshold
was applied to the image. Blobs resembling an ellipse with center in the eye were then extracted and the contours fit with an ellipse.
The diameter is taken as the diameter of a circle with the same area as the ellipse.

For all the analyses presented in Figure 6, the pupil was smoothed with a gaussian filter (50 trials long).
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