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A B S T R A C T

Complex omics approaches and high-throughput phenotyping generate large, heterogeneous datasets that make
linking molecular signatures to plant traits challenging. To address this challenge, here we introduce panomiX, a
user-friendly toolbox for multi-omics integration, designed to enable non-experts to apply advanced computa-
tional methods with ease. PanomiX automates data preprocessing, variance analysis, multi-omics prediction, and
interaction modeling through machine learning, revealing meaningful molecular interactions and synergies. We
applied panomiX to a tomato heat-stress experiment combining image-based phenotyping, transcriptomics, and
Fourier-transform infrared spectroscopy data, with the aim of identification of condition-specific, cross-domain
relationships between gene expression, metabolite levels, and phenotypic traits. Our approach identified a
network of such connections, with those linking photosynthesis traits with stress-responsive kinases in elevated
temperatures among most significant ones. By simplifying complex analyses and improving interpretability,
panomiX offers a platform to accelerate the discovery of trait emergence in plants and select specific candidate
genes based on multi-omics analyses.

1. Introduction

Recent advances in high-throughput plant phenomics have greatly
expanded both the scale and depth of acquired data [1,2]. Phenomics
data are often combined with molecular profiling, including tran-
scriptomics and metabolomics [3–5], for instance in GWAS experiments
[6], time series [7], or genotype-contrast studies [8]. These combined
approaches provide valuable insights into the genetic and molecular
basis of trait emergence [9,10]. A prominent example is plant stress
resilience, which is shaped at multiple levels: from genetic variation,
through gene regulation, to metabolism and biophysical processes [11].
Several studies have shown that profiling these molecular layers (i.e.,
endophenotypes) can help explain the mechanisms of plant stress re-
sponses (summarized in Table 1). Nevertheless, integrating and inter-
preting such diverse datasets remains a major challenge.

Multi-omics deals with high-dimensional data [18] (Fig. 1A) that
vary in coverage, variance scales, and exhibit batch effects [19]

(Fig. 1B). Although many specialized tools exist for analyzing specific
omics data types (spanning network-based [20–22], correlation-based
[23], similarity-based [24–26], Bayesian [27–29], fusion-based [30],
and multivariate methods [31–33]; Fig. 1C), these often fail to integrate
different omics layers due to usability constraints, complex workflows,
or limited interfaces. Consequently, there is an urgent need for a flexible,
comprehensive, and user-friendly solution that can seamlessly integrate
diverse omics data types using advanced machine learning techniques.

To address this need, we introduce panomiX, a user-friendly, open-
source platform designed for implementing data integration using
eXtreme Gradient Boosting (XGBoost) for multi-omic data of varying
scales and quality [34]. PanomiX employs a harmonization and scaling
pipeline prior to data integration, and accommodates both quantitative
and categorical data utilizing cross-predictions between omics layers.
XGBoost's inherent ability to handle missing values eliminates the
requirement for explicit data imputation. PanomiX provides model
interpretability using “SHapley Additive exPlanations” (SHAP) [35],
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facilitating transparent feature selection, ranking, and visualization. A
key feature of panomiX is its capacity to apply user-defined constraints.
This enables researchers to test hypotheses on specific biological in-
teractions of interest. This capability extends its utility beyond data
integration, allowing for detailed exploration of potential molecular
mechanisms between pre-selected sets of phenotype, genotype, and
molecular features.

Importantly, panomiX extends beyond classical statistical inference
methods, such as ANOVA or correlation analyses, by leveraging
XGBoost's strengths in prediction, feature interaction, and ranking. This
enables the identification of robust, high-value features across omics
layers by capturing nonlinear relationships, which serve as starting
points for conventional approaches to address mechanistic questions,
such as identifying stress-responsive pathways. In this way, panomiX
bridges predictive machine learning with hypothesis-driven inference.

To demonstrate the power of panomiX, we applied it to study the
response of tomato seedlings (Solanum lycopersicum) to elevated tem-
peratures - an agriculturally relevant process affecting tomato yield both
in the greenhouse and field cultivation. Tomato plants are highly sen-
sitive to heat during early growth and later during pollen development,

leading to poor germination, inhibited growth, and reduced fruit set
[36–38]. At the molecular level, heat stress induces transient gene
reprogramming, triggering heat shock proteins (HSPs) and heat shock
factors (HSFs), often regulated by MAP kinases and Cysteine-rich
Receptor-like kinases (CRKs) [39–43]. Multi-omic approaches
capturing transcriptomic, metabolomic, and protein data were crucial to
unraveling some elements of these complex regulatory networks [13].

In this study, we analyzed the heat stress response and subsequent
recovery of young tomato seedlings under controlled conditions,
combining daily high-throughput phenomic profiling with tran-
scriptomics using RNA-seq analysis and biochemical fingerprinting
using Fourier-transform infrared spectroscopy (FTIR) at selected time
points. FTIR is used here as a proxy for metabolic profiling, a rapid, non-
destructive technique that measures the infrared absorbance spectrum
of a sample, which reflects the abundance of major functional groups
such as lipids, proteins, and carbohydrates. While it does not identify
individual metabolites, FTIR captures system-wide biochemical shifts
that, when integrated with other omics layers via panomiX, can be
linked to specific biological processes. This provided a rapid, global view
of metabolic changes that complemented our transcriptomic and

Table 1
Examples of recent multi-omic studies related to plant stress phenotypes.

Plant Omics Stress Trait predicted References

Zea mays L. Transcriptomics Ustilago maydis Control and Biotic
stress

Nazari et al. (2023) [12]

Solanum lycopersicum plants
(cv Micro-Tom)

Phenomics, Ionomics, Transcriptomics,
and Metabolomics

Salinity, Heat, and Salinity + Heat Stress treatment group Pardo-Hern�andez et al.
(2024) [13]

Solanum tuberosum Transcriptomic, Metabolomics, and
Proteomics

Heat, Drought, and Waterlogging Control and Abiotic
stress

Zagor�s�cak et al. (2025)
[14]

Arabidopsis thaliana Transcriptomics Botrytis cinerea, Sclerotinia sclerotiorum, and
Pseudomonas syringae

Disease severity Sia et al. (2025) [15]

Zea mays ssp. mays SNPs, Transcriptomics, and
Metabolomics

Salt Salt-tolerance-related
traits

Liu et al. (2025) [16]

Triticum aestivum Metaboolomics Drought High-throughput
phenotyping

Wonneberger et al. (2025)
[17]

Fig. 1. Multi-omic integration - challenges and methods. (A) Omic data sets usually differ in sample size, number of features and variance even if collected in the
frame of the same experiment. (B) Different challenges in multi-omics data integration (C) List of available multi-omics data integrative tools.
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phenomic datasets. We describe both common response patterns across
all data types and those unique to specific datasets and highlight key
interactions among transcripts, metabolic features, and phenotypes
uncovered by panomiX. Together, these demonstrate the functionality
and versatility of panomiX for multi-omics data integration and analysis.

2. Materials and methods

2.1. Data preprocessing and analysis

The panomiX platform integrates several specialized R libraries for
data harmonization, variance analysis, multi-omics prediction, interac-
tion, and visualization. We provide default data preprocessing methods
for transcriptomics and FTIR data. For transcriptomics, we provide a
‘DESeq2-based’ [44] approach, adjusting for factors like sequencing
depth and sample composition. For FTIR spectral data, the ‘baseline’ R
library [45] is employed to remove background noise, and the ‘signal’
library [46] for Savitzky-Golay smoothing [47] of spectral features
without loss of peak sharpness and spectral integrity. Variance analysis
is conducted using the ‘irlba’ R library and prcomp function [48],
including dimensionality reduction, clustering, and identification of
sources of variance. Multi-omics prediction workflows are facilitated by
‘caret’ R library [49], with the built-in framework for hyperparameter
tuning and model evaluation. XGBoost is used for predictive modeling,
and SHAP and Boruta-SHAP are employed for model interpretability and
feature selection [50].

2.2. Visualizing insights with interactive plots

The panomiX user interface (UI) uses ‘shinyjs’ [51] to create dynamic
interactions, allowing users to control UI element visibility based on
their actions, for a streamlined experience. Interactive plots are created
with ‘plotly’ [52], enabling users to zoom, pan, and hover over data
points for deeper exploration. The ‘DT’ package [53] enables interactive
data tables, facilitating sorting and exploration of large datasets. ‘shi-
nycssloaders’ [54] provides visual feedback on application progress
during data loading. Additionally, ‘bslib’ [55] offers advanced plot
formatting tools, and ‘bsicons’ [56] incorporates intuitive icons,
enhancing UI usability and aesthetics.

2.3. Source code availability and community collaboration

The panomiX toolbox is developed fully in R [57] and Shiny [58] and
deployed on Shinyapps. io https://www.shinyapps.io/. The source code
is managed with a GitHub repository connected to the Shinyapps. io via
‘rsconnect’ [59]: https://szymanskilab.shinyapps.io/panomiX/. The
source code for the platform is available on GitHub: https://github.com/
NAMlab/panomiX-tool. The repository contains all the necessary R
scripts for data processing, visualization, and machine learning
prediction.

2.4. Experimental data and design

Seeds of genotype Moneymaker were planted in well-watered soil
trays and kept under a plastic cover in a walk-in phytochamber with a
day/night cycle of 16/8h and temperatures of 24 ◦C and 20 ◦C respec-
tively. The seeds were kept without light for one day, then illumination
of 320 μmol per square meter per second (from Whitelux Plus metal
halide lamps, Venture Lighting Europe Ltd., Rickmansworth, Hertford-
shire, England) was added during the day phase. After a total of 7 days
after sowing, evenly germinated and healthy seedlings were trans-
planted into individual pots (10 cm diameter, 8 cm height) without
plastic covers at 60–70 % relative air humidity. After 9 further days of
establishment in the pot, the plants were exposed to heat stress at 37 ◦C/
28 ◦C (day/night) for 6 days followed by a recovery phase at 24 ◦C/

20 ◦C. Plants were watered once or twice daily by an automated system
replenishing evapotranspirated water by weight to ensure the plants do
not experience drought stress. All plants were phenotyped daily using an
imaging-based high-throughput system and the youngest fully formed
leaf pair was harvested (directly put in liquid nitrogen and then stored at
− 80 ◦C) for molecular measurements mid-day (between 13:00 and
14:00, light phase was from 06:00–22:00) from individual plants
directly before the temperature switch, each day during the heat stress
phase and after 1, 2, and 4 days of recovery. Control plants were grown
exactly the same way except that they stayed at 24 ◦C/20 ◦C throughout
the whole experiment. They were sampled at the same respective time
points as the heat-treated plants.

2.5. Data acquirement

During daily phenotyping, plants were photographed from the top
and three side angles in visible and in fluorescent light (excitation:
400–500 nm, emission: 520–750 nm). The images were then analyzed
using the Integrated Analysis Platform (IAP) software [60] to yield 138
phenotypic traits for each measurement, as described in Ref. [61]. Next
we reduced the 138 phenotypes into a smaller set of non-correlated
variables. Using hierarchical clustering, we grouped related pheno-
types together. The number of clusters was estimated using PCA,
determining the minimal set of clusters, for all of which the first PC
described at least 50 % of their variance (representing the cluster
co-linearity). Through this process, we narrowed the phenotypes down
to 27 key representatives, which we used for model training.

For the molecular assays, the frozen leaves were ground and aliquots
subjected to specific measurements: Total RNA was isolated from 70 mg
of the ground material using the RNAeasy Plant Mini Kit (QIAGEN)
according to the manufacturer's protocol. The construction of
sequencing libraries involved the Illumina strandedmRNA Prep Ligation
Kit (standard Illumina protocol; Illumina, San Diego, California, USA)
and 1 μg DNAse I digested total RNA. Sequencing of equimolar library
pools (average size: 332 bp) was performed on an Illumina NovaSeq
6000 device (IPK-Gatersleben), using the XP-workflow and a S2 flowcell
(Illumina, San Diego, California, USA). On average, 41 M reads (single
reads, 118 cycles) were generated per sample. Reads were then mapped
to the ITAG4.1 tomato reference genome (https://solgenomics.
net/ftp/tomato_genome/annotation/ITAG4.1_release/) using our
rnaseq-mapper pipeline built around kallisto [62], available at https
://github.com/NAMlab/rnaseq-mapper; [63].

FTIR analysis of freeze-dried leaf material was performed as in
Ref. [64]. Briefly, approximately 2 mg of freeze-dried material was used
per sample. Spectra were produced from ATR-FTIR measurements using
the INVENIO-S FTIR spectrometer (Bruker Optics, Ettlingen, Germany)
with a Globar light source under continuous purging with dry air. ATR
absorbance spectra were recorded in the spectral range of
4000-400 cm− 1 at a spectral resolution of 4 cm− 1. Each spectrum con-
sisted of 32 co-added scans. As a background reading, the spectrum of
the empty ATR crystal was collected prior to measurement and sub-
tracted automatically from each recorded spectrum using the OPUS
software (Bruker Optics).

3. Results

3.1. Data input

Our experiment provided 138 phenotypic variables reduced to 27
uncorrelated phenotype clusters (Fig. S1), 34,688 gene expression
values, and 2526 FTIR data points across 10 time points and 2 to 3
biological replicates in two experimental conditions: control growth,
and treatment with 6 days of heat stress treatment followed by 3 days
recovery phase (Fig. 2).
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3.1.1. Tool settings and recommendations
PanomiX works with continuous molecular data, such as normalized

RNA-seq counts, protein abundances, metabolite concentrations, or
FTIR spectra. Your data should be in a feature matrix format, where:
Columns represent biological samples (e.g., individuals or time points).
Rows represent molecular features (e.g., genes, proteins, metabolites, or
spectral variables). A continuous outcome variable (y) is needed for
regression tasks. PanomiX can handle large datasets with tens of thou-
sands of features, but pre-filtering your data is recommended for better
performance and computational efficiency. Here's how you can optimize
your dataset: filter low-variability features, remove features that show
little variation across samples, exclude low-count features for
sequencing data (like RNA-seq), and drop features with consistently low
counts, remove near-zero variance features which contribute little to the
model and can be safely excluded. These steps help reduce the size of
high-dimensional datasets, minimize overfitting, and improve the speed
of machine learning algorithms like XGBoost during model training and
hyperparameter tuning. Before using panomiX, ensure that your data-
sets are pre-processed and normalized according to the requirements of
the specific ‘omics platforms.

While methods such as XGBoost can accommodate p ≫ n settings,
omics datasets with fewer than ~50 observations should generally be
regarded as exploratory. The effective number of required samples for
panomiX depends on factors such as the signal-to-noise ratio, the cor-
relation structure among predictors, and the stability of cross-validation

performance. We recommend that readers first examine the variance
structure of their data using multivariate approaches (e.g., Principal
Component Analysis, PCA) to estimate how many principal components
explain the majority of variance. For example, if three PCs capture
~90 % of the biological variance, a relatively simple model with only a
few effective predictors may be sufficient, regardless of the initial
dimensionality. When sample size is limited, model robustness could
additionally be assessed using learning curves or resampling strategies.
Importantly, the number of predictive features retained by the model is
constrained by sample size and should remain considerably smaller than
n.

3.2. Data processing and filtering

The RNA-seq data processing with rnaseq-mapper [https://github.
com/NAMlab/rnaseq-mapper] provided a data matrix of estimated
TPM values (transcript per million, kallisto estimates; [62]) for 49
samples (both control and treatment), with columns representing sam-
ples and rows representing genes-aggregated transcript levels. We used
TPM counts without applying the data harmonization component for
further analysis. To filter out transcripts with consistently low TPM
counts, we retained only those transcripts that have at least one sample
with a count of 50 or higher, ensuring that transcripts with TPM counts
below 50 across all samples were removed. Ultimately, we used 5479
transcripts for further analysis. Similarly, for FTIR spectral data, we

Fig. 2. Flow diagram of the panomiX toolbox and the experimental design for the tomato heat stress case study.
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created a data matrix of absorbance values, containing 49 samples (both
control and treatment). We selected the absorbance values in the range
from 4000 to 400 cm− 1. We then applied FTIR normalization using the
data harmonization component in the panomiX toolbox. For illustration
Fig. 3A presents the raw FTIR spectra before preprocessing. After
baseline correction and Savitzky-Golay smoothing, the normalized
spectra are displayed in Fig. 3B, illustrating the improved signal quality.

3.2.1. Tool settings and recommendations
PanomiX provides standard methods for normalization of tran-

scriptomic data [44]. First, a natural log transformation is applied to (xij)
a raw expression count for gene i in sample j to stabilize variance and
improve comparability (Eq. (1)). Then, the transformed gene expression
data is used to determine the average estimation for each gene. Next,
non- and sparsely expressed genes are filtered out, allowing us to focus
only on stably expressed genes (G). The previously log-transformed
value of each gene is then subtracted from the respective average,
helping identify genes within each sample that have higher or lower
expression levels than the average. Subsequently, the
average-subtracted values are used to determine the median across
genes, which reduces the influence of high-value outliers. Finally, the
median values are transformed back from log to normal scale to obtain
the final scaling factor (Eq. (1)). The raw read counts are then divided by
these scaling factors (Eq. (2)). This log and median-based scaling
method effectively corrects batch effects and extreme variations. For

consistency, we recommend performing all steps of data normalization
from the raw counts within panomiX. However, the platform also ac-
cepts normalized transcriptomics data in TPM or CPM counts. For the
spectral data, such as those obtained by FTIR, panomiX utilizes the
baseline correction on the raw spectrum to remove artifacts and the
background noise. Following this, Savitzky-Golay smoothing can be
applied to each baseline-corrected spectrum. This step applies a poly-
nomial smoothing filter to reduce high-frequency noise while main-
taining essential spectral features.

The scaling factor for sample j, is calculated as:

sj = exp

(

medianiϵG

[

log
(
xij
)
−

1
n

∑n

k=1
log(xik)

])

(1)

where xij is the raw expression count for gene i in sample j, n is the
number of samples, and G is the set of genes with finite mean log-
expression.

The normalized expression values are then given by:

xnorm
ij =

xij

sj
(2)

3.3. Variance analysis

The exploratory analysis of the multi-omic data variance highlighted
both data type-specific, and shared patterns of changes driven by plant

Fig. 3. Data harmonization and variance estimation component (A) Raw FTIR spectra (B) Baseline corrected and smoothed FTIR spectra. Individual PCA for each
omics data (C) Transcriptome, (D) FTIR, and (E) Phenome. (F) An integrative PCA, where the multi-omic data matrix was combined to identify shared vari-
ance components.
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development and heat-stress treatment. In the transcriptome PCA
(Fig. 3C), PC1 (44 % variance) largely reflects time-dependent changes
in gene expression, while PC2 (18 % variance) highlights heat-stress
effects. Early-stage controls and T0 heat samples cluster together, indi-
cating minimal transcriptional differences at the start, whereas later-
stage heat treatments diverge, revealing progressive stress adaptation.
In FTIR absorbance data (Fig. 3D), PC1 (65 % variance) again captures
temporal shifts, and PC2 (16 % variance) distinguishes stress from
control conditions; notably, mid-stage heat-treated seedlings cluster
with recovery-stage controls, indicating partially overlapping metabolic
responses. Phenomic data (Fig. 3E) show stronger treatment separation
on PC1 (30 % variance) and time progression on PC2 (25 % variance),
where early-stage controls resemble T0 heat samples, and later stages

separate more distinctly. Integrating all omics layers (Fig. 3F) confirms
the interplay of time and treatment: PC1 (31 % variance) is dominated
by FTIR and transcriptome signals, clearly separating recovery-stage
heat-treated seedlings, while PC2 (24 % variance), driven by tran-
scriptional variation, further distinguishes controls from heat-stressed
plants at various stages. These results accentuate the distinct yet com-
plementary biological insights gained by analyzing temporal and stress
effects across transcriptomic, metabolic, and phenotypic data.

3.3.1. Tool settings and recommendations
PanomiX supports exploratory data analysis with PCA or ANOVA to

identify dominant sources of variance. Before PCA, all datasets are
standardized to a unit sum of squares, ensuring comparable total

Fig. 4. (A) Performance of control samples for transcripts predicting phenotypes, FTIR predicting phenotypes and combined transcripts + FTIR predicting phe-
notypes (B) Performance of treatment samples for transcripts predicting phenotypes, FTIR predicting phenotypes and combined transcripts and FTIR predicting
phenotypes (C) Gene ontology and expression profile for the features selected for Relative Fluorescence Area Change (side) from the control model (D) Gene ontology
and expression profile for the features selected for Relative Fluorescence Area Change (side) from the treatment model.
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deviations across different data types, but all the relevant dataset-
specific normalization steps should be performed beforehand. First,
PCA is performed separately on each omics dataset to capture dataset-
specific variance patterns. Second, the integrated PCA is conducted on
a combined dataset to reveal shared variance and global patterns. In this
case each block of omic data is first scaled to a unit sum of squares and
then concatenated into a single input. For PCA, the tool automatically
handles data centering and scaling. For the ANOVA and plotting the PCA
scores, the user needs to upload metadata with at least an ID column
(matching the omics data) and respective condition columns if experi-
mental factors are present. PanomiX often exposes differences in reso-
lution and variability among different omic datasets, demonstrating
how multi-omics integration can also provide insights into each indi-
vidual dataset. Notably, these differences should be carefully evaluated,
as differences in normalization, coverage and data filtering procedures
can confound their biological interpretation.

3.4. Multi-omics prediction components

Linking the high-throughput profiling of plant traits with molecular
assays such as RNA-seq or metabolomics, can yield valuable biological
insights into molecular mechanisms of trait emergence. To explore these
connections, we conducted cross-prediction on phenotypes using tran-
scriptomics alone, FTIR alone, and combined transcriptomics + FTIR
data, each trained separately on control and treatment samples. This
approach enabled identification of condition-specific molecular
markers. Model performance, assessed via mean R-squared values across
three replicate splits, showed generally higher accuracy in control
samples; however, some treatment-based models (e.g., Phenol–-
Chlorophyll Ratios (side), Mean Fluorescence Intensity (side)) out-
performed their control counterparts (Fig. 4A and B). Next, we
performed gene ontology (GO) enrichment using ‘topGO’ R package
[65] on transcripts with high SHAP values (i.e., highly predictive of
phenotype), focusing on models with R2 > 0.5 and replicate-model
R2 > 0.7. This criterion yielded 10 control and 7 treatment models
(Fig. S2A and S2B). Certain phenotypes had unique GO enrichments,
while others overlapped. For instance, a control model predicting
Relative Fluorescence Area Change (side) highlighted Glutamate
decarboxylase and Sugar transporter ERD6-like 6 both linked to
enhanced photosynthetic capacity [66] (Fig. 4C). Meanwhile, the cor-
responding treatment model identified cytochrome b559 subunit alpha,
part of the photosynthetic electron transport chain (Photosystem II), and
phylloplanin, which contributes to stress defense via type VI glandular
trichomes [67,68] (Fig. 4D). Next, we extended the analysis to FTIR and
combined transcriptomics + FTIR models, applying the same perfor-
mance thresholds (R2 > 0.5 overall and R2 > 0.7 for individual replicate
models). Within this subset, combined transcriptomics + FTIR models
improved predictive ability by an average of 10 % (up to 43 %)
compared to transcriptomics alone and average of 5 % (up to 24 %)
compared to FTIR alone under control conditions. Under treatment
conditions, integration yielded an average improvement of 12 % (up to
33 %) over transcriptomics alone and 12 % (up to 40 %) over FTIR alone
(Fig. 4A and B). This consistent performance gain demonstrates that
multi-omic fusion provides complementary information not captured by
single-omic models. Notably, several transcripts and FTIR features were
consistently identified as top predictors across all three omics-specific
models (Table S2). For example, in the Relative Fluorescence Area
Change (side) phenotype (Fig. S3), the transcript-only model pinpointed
cytochrome b559 subunit alpha and phylloplanin as key contributors
(Fig. S3A). In the FTIR-only model, spectra 2002 and 2003 showed
strong predictive power (Fig. S3B). The integrated model
(transcriptomics + FTIR) retained these same predictors, while also
incorporating additional predictors (Fig. S3C), confirming their impor-
tance. Further analysis of the transcript-to-FTIR prediction revealed that
phylloplanin significantly predicted the 2002 FTIR spectrum (Fig. S3D).

3.4.1. Tool settings and recommendations
Training the XGBoost model requires splitting the data into training

and test samples. Users can split datasets either randomly (using a
training size slider) or by replicate to ensure consistent grouping of the
same replicates, and hyperparameter tuning is automated via the caret
method. In the cloud version of panomiX, two main hyperparameters
(number of rounds, tree depth) can be configured, with others (learning
rate, gamma, subsample, etc.) preset to optimal ranges. The desktop
version provides greater flexibility, letting users adjust a wider range of
parameters (see the full documentation; https://github.com/NAMlab/
panomiX-tool). Model generalization is validated through cross-
validation (CV) or leave-one-out cross-validation (LOOCV), and per-
formance is reported using R2 and RMSE. A model performance plot (R2)
is displayed, alongside a feature-importance table that ranks predictors.
SHAP values further reveal how individual features positively or nega-
tively influence phenotype predictions, visualized via beeswarm plots
for intuitive interpretation. The Boruta-SHAP algorithm is also available
for alternative feature selection, with its results shown in a separate
beeswarm plot. For biological replicates, we recommend replicate-based
splitting (with metadata specifying sample names and replicate identi-
fiers) to improve model consistency and accuracy. Random splitting
with an adjustable training size can be used for general evaluation. In
the cloud version, tuning the number of rounds and tree depth is crucial
for better performance; the desktop version allows deeper parameter
control. CV is advisable for robust model generalization, while LOOCV
suits smaller datasets. For deeper insights, users can leverage SHAP
values and feature-importance rankings to interpret and prioritize key
predictors.

3.5. Multi-omics prediction with interaction constraints

PanomiX can analyze interactions of predictive features identified by
the model as well as “known” features provided by users - such as genes
of interest - by incorporating both sets into a single prediction frame-
work. It uses SHAP values to show how these features (positively or
negatively) influence a given outcome (e.g., a phenotype) and to set
constraints for the model (Fig. 5A). In our experiment, these constraints
relate to a predetermined list of literature- and annotation-based
candidate transcripts. We tested two scenarios: a) evaluation of data-
derived candidate transcript set; and b) evaluation of a predetermined
list of candidates.

In the first scenario, we tested 57 heat-stress-related transcripts (46
up-regulated, 11 down-regulated; Psaroudakis et al. [63]) alongside the
features previously identified by panomiX. Notably, several transcripts
showed positive interactions with both the predicted features and the
target phenotypes (Table S3). For instance, in a heat-treatment model
predicting Mean Fluorescence Intensity (side), GTP-binding nuclear
protein (down-regulated under heat stress) maintained its
down-regulation relative to controls, aligning with its predictive role.
Similarly, in a model predicting Hue Shifts in Visible Light (top), thio-
redoxin domain–containing protein interacted with splicing factor U2af
small subunit B-like, suggesting a joint effect on the phenotype under
heat stress (Fig. 5B and C).

In the second scenario, we explored whether stress responses extend
beyond heat shock proteins to include kinases and other signaling ele-
ments. Transcriptional regulators together with protein kinases consti-
tute key classes of regulatory proteins that govern plant growth,
development, and responses to both biotic and abiotic stimuli [69]. In
addition, enzymes such as guanylate cyclases, which catalyze the con-
version of GTP to cyclic GMP, act as important upstream regulators that
activate protein kinase–mediated signaling pathways during abiotic
stress responses [70–73]. For that purpose, we compiled 1531 candidate
genes (99 guanylate cyclases, 1038 other kinases, 394 heat-related
genes) from literature and databases [69,74,75]. We then trained
models using no constraints, random constraints, or monotonic con-
straints (Fig. 5D). Most cases showed improved performance with
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random constraints over no constraints, and an additional ~5 %
improvement under monotonic constraints. A representative example is
a model predicting Relative Fluorescence Area Change (side), where
random constraints boosted performance by 5 % compared to no con-
straints. Key transcripts (e.g., cytochrome b559 subunit alpha,
protein-serine/threonine phosphatase) interacted with MAP kinase and
DnaJ domain proteins (Table S4). Under monotonic constraints, per-
formance rose another 5 %, and cytochrome b559 subunit alpha was
linked to GDSL esterase/lipase and calcium-dependent protein kinase,
both implicated in stress response [76–78].

Overall, these findings highlight panomiX's capacity to reveal sig-
nificant interactions among user-specified and model-predicted fea-
tures, offering mechanistic insights into phenotype determination and
guiding further experimental validation.

3.5.1. Tool settings and recommendations
By including a user-provided list of relevant (or potentially impor-

tant) known features, panomiX can determine whether these inputs
significantly contribute to the model's outcome or interact with features
already identified by the model. The “already predicted features” are
those uncovered after training, together with their SHAP values, which
may be positive or negative in relation to the outcome. PanomiX uses
these SHAP values to set constraints, illustrating each feature's rela-
tionship with the predicted outcome. In ‘random constraints’ setting, the
direction (positive or negative) of feature-outcome relationships is not
predefined. In this case, users provide a table with two colum-
ns—“feature” and “final_association”—where “final_association” con-
tains only 0 (meaning the relationship is unknown). PanomiX then
applies random constraints using this information together with the
“predicted outcome.” In the ‘constrained’ setting, monotonic constraints
require a table with the same columns, but users assign 1 for a known
positive relationship, − 1 for a known negative relationship, or 0 if it is
unknown. PanomiX merges this information with the “predicted
outcome” from the trained model, ensuring predictions remain consis-
tent with domain knowledge.

3.6. Comparing panomiX with other tools of multi-omics data integration

To evaluate the efficiency, explainability, and stability of the pan-
omiX multi-omics cross-prediction functionality, we tested it against
mixOmics [32], a comparable state-of-art tool offering similar func-
tionalities. Specifically, we compared the statistical methods offered by
both tools as a main technique of data integration, namely the sparse
Projection to Latent Structures (sPLS) of mixOmics with the XGBoost
implemented in panomiX. We benchmarked both methods against
standard implementations of Random Forest (RF) and Support Vector
Machine (SVM) [49]. For that purpose, we conducted two
cross-prediction analyses: a) transcriptomics data was used to predict
phenotypic traits; b) the same phenotypic traits were predicted from the
FTIR data. For each phenotype prediction, models were trained using
four independent train-test splits (Fig. 6A and B).

To further investigate robustness, we compared panomiX and
mixOmics (sPLS) on transcriptomics subsets with varying correlation
coefficients (0.2–0.9), using one phenotype cluster (Leaf Curvature &
Fluorescence Intensity) as a test case. Despite sPLS's known strength
with highly collinear data, panomiX consistently outperformed it
(Fig. 6C). We also evaluated feature importance stability across the
correlation gradients by comparing the top 10 ranked features (Jaccard
index). PanomiX consistently identified common features (Fig. 6D),
indicating it effectively captures both linear and non-linear relationships
in transcript–phenotype data while maintaining high predictive
performance.

It is important to note that several tools exist for the integration of
multi-omic data, each with different primary focus: e.g. DIABLO (which
employs sPLS-DA from the mixOmics framework) [79] and MOGONET
are primarily designed for classification [80], while MOFA can be
applied to both classification and regression tasks [27]. While panomiX
primarily excels in regression problems, it might be also deployed for
classification. Thus to compare these methods, we performed a simple
benchmarking for a two class classification task (control and heat
treatment), using the default model parameters for both integration and

Fig. 5. Feature interaction. (A) Illustration of feature interaction as a flow diagram (B) Interaction between the heat stress related (scenario a) transcripts and
predictive features from trained model Mean Fluorescence Intensity (side) (C) Interaction between the heat stress related (scenario a) transcripts and predictive
features from trained model Hue shifts in Visible Light (top) (D) Performance of treatment samples for transcripts predicting phenotypes (scenario b). Black color bars
represent models trained without constraints, red color bars models with monotonic constraints, and orange color bars models with random constraints, respectively.
(E) Expression profile for the features selected from the constraints model of Relative Fluorescence Area Change (side) (scenario b). Orange colored features are
selected from the random constraints models and red colored features are selected from the monotonic constraints models.
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prediction. For the analysis, transcriptomics and FTIR data were jointly
used to predict treatment classes. Samples were grouped according to
biological time points: no-stress (days T0), early heat treatment (days
T1-T3), and recovery phase (days T8-T10). In each iteration, one time
point was held out for testing, while the remaining time points were
used for training. This leave-one-out procedure was repeated across all
grouped time points to assess temporal generalizability. Statistical
testing revealed no significant differences between panomiX and the
other methods. Thus, the results demonstrate that panomiX performs
comparably to existing approaches (Fig. S4).

3.7. Evaluating performance of panomiX across species and traits

To further validate and benchmark the performance of panomiX in
other experimental setups other than time series and treatment con-
trasts, we utilized two publicly available multi-omic datasets for genetic
diversity panels. The first dataset was obtained from Gemmer et al. [81]
comprised eight agronomically relevant traits obtained from multi-year
field trials and 128 metabolites profiled from the HEB-25 barley (Hor-
deum vulgare) nested association mapping (NAM) population, with 1307
individual lines. Using this metabolic dataset, we applied panomiX to
predict each trait, without accounting for population structure during
model training. panomiX outperformed the BayesB method for pre-
dicting the time to shooting (SHO) trait and showed comparable per-
formance to BayesB for time to heading (HEA), grain yield (YLD), grain
number per ear (GNE), and plant height (HEI). In contrast, BayesB had
better performance for time to maturity (MAT), ears per m2 (EAR), and
thousand grain weight (TGW) (Fig. S5A). These differences suggest that
while panomiX effectively captures polygenic signals, accurate predic-
tion for some traits in stratified populations (subgroups of related in-
dividuals with shared ancestry) may require explicit modeling of
population structure, as done in the BayesB method. Performance

differences may also arise from the underlying genome–trait relation-
ship. For example, Bayesian regression is expected to perform well when
the association between predictors and a trait is primarily linear or ad-
ditive, while XGBoost will capture non-linearities, thresholds and
interactions.

The second dataset Knoch et al. [10] features a large comprehensive
multi-omics panel of spring-type oilseed rape (Brassica napus) on a diverse
population with 477 lines. This dataset integrates high-throughput phe-
notyping, mRNA-Seq transcriptomics, and GC-MS-based metabolomics.
We selected six phenotypic traits for validation: the manually determined
plant biomass (fresh weight) and four image-derived traits — digital
biovolume, plant height, compactness, projected leaf area and a
color-related trait — measured at representative time points. For all six
traits, panomiX consistently outperformed the RF-based regression
models reported in the original study (Fig. S5B), achieving an average
improvement of 12 % in the predictive ability (R2). Notably, several of the
top-ranked transcripts identified in the original study were again detected
by panomiX among the features with the highest SHAP values (Table S5),
further supporting their relevance across different modeling approaches.
These include C07p48260.1_BnaDAR (PRL1), one of the prime candidate
genes reported to be associated with early vegetative biomass and
growth-related traits, but also A03p39940.1_BnaDAR, annotated as an
ethylene-responsive element binding protein, C07p57790.1_BnaDAR, a
homolog of the Arabidopsis xyloglucan endotransglucosylase/hydrolase
17, and the two homeologs A05p28550.1_BnaDAR and
C05p43970.1_BnaDAR, both encoding TRAF-like family proteins.
Furthermore, several additional promising candidate genes were reported
such as A10p28380.1_BnaDAR, showing homology to the Arabidopsis
Succinyl-CoA ligase alpha subunit, a key catalytic enzyme of the citric
acid cycle, as well as further putative xyloglucan endotransglucosylase-
s/hydrolases such as A01p07860.1_BnaDAR and C01p08760.1_BnaDAR

Fig. 6. Multi-omics integration in panomiX and other methods. (A) Performance for transcripts-phenotype prediction. (B) Performance for FTIR-phenotype pre-
diction. (C) Effect of multicollinearity on model performance (linear vs. non-linear method). (D) Robustness of feature selection for different thresholds of the feature
collinearity in the panomiX XGBoost implementation.
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with putative function in the cutting and rejoining xyloglucan chains,
which remodels the cell wall and allows cell expansion and growth.

4. Discussion

In this study we introduced panomiX, a user-friendly toolbox for
multi-omics data integration. We demonstrated the versatility and
robustness of panomiX on a unique multi-omic data set designed to
identify transcriptomic and metabolic features associated with pheno-
typic traits. By addressing key challenges in normalization, variance
analysis, and predictive modeling, we showed how panomiX enables
extracting biologically meaningful insights from such complex datasets.

Our tool provided a robust workflow for transcriptomics and FTIR
data, including tailored normalization and scaling of individual datasets.
As shown in Fig. 3, stepwise transformations - here, from raw FTIR
spectra to normalized outputs - improve data quality and interpretability
through baseline correction and smoothing. This mitigates biases in raw
datasets and ensures compatibility with downstream analyses such as
PCA. PanomiX's PCA and ANOVA functions further standardize and
visualize variance across separate and combined datasets, revealing
consistent clustering patterns driven by time points and treatment
conditions. These insights highlight the complementary nature of mul-
tiple omics layers, setting the stage for more targeted multi-omics
analyses.

PanomiX implementation of XGBoost consistently outperformed
sPLS, RF and SVM for the integration of our tomato heat stress datasets,
showing higher accuracy, robustness, and feature stability. Its XGBoost-
based framework effectively handles varying collinearity and identifies
non-linear relationships, a key limitation in linear models. High Jaccard
indices confirm feature stability across correlation gradients, while GO
enrichment validates the biological relevance of identified predictors.
Notably, the differential performance between control and treatment
models underscores condition-specific mechanisms, exemplified by
transcripts such as cytochrome b559 subunit alpha and phylloplanin in
our experiment. These results highlight panomiX's capacity to reveal
critical molecular interactions and support hypothesis-driven research.

By integrating transcriptomics, FTIR, and phenomics data, panomiX
uncovers shared predictors - such as cytochrome b559 subunit alpha and
specific FTIR spectra - indicating convergent biological mechanisms.
These cross-layer insights reinforce panomiX's ability to reveal broadly
relevant molecular features. Moreover, the option to add user-defined
elements (e.g., heat-stress genes) illustrates its versatility for
hypothesis-driven analyses. Identified interactions among kinases and
stress-response transcripts emphasize the tool's value for mapping
complex biological networks, and point to the need for evaluating both
positive and negative feature associations when predicting phenotypic
outcomes.

Compared to other multi-omics integration frameworks, panomiX is
distinct in its focus on regression-based prediction of continuous phe-
notypes, whereas many established tools such as DIABLO or MOGONET
are primarily for classification tasks. This feature expands its applica-
bility to quantitative traits such as growth rates or stress indices, which
are often more biologically informative than binary outcomes. It should
be emphasized, however, that while individual models trained with
panomiX are not directly transferable across experiments, the frame-
work can be readily retrained on new datasets. Additional bench-
marking on publicly available barley and oilseed rape population
datasets further demonstrates this adaptability and supports the broader
applicability of panomiX across different species, omics layers, and trait
types. Beyond the prediction of agronomic/phenotypic traits, the use of
SHAP values allows for the interpretation of model predictions by
quantifying the contribution of each feature, thereby allowing to iden-
tify key genetic drivers linked to biological processes. This approach was
exemplified in the oilseed rape dataset through the identification of
promising candidate genes, such as PLEIOTROPIC REGULATORY
LOCUS1 (PRL1), which has recently associated with actin microfilament

integrity and cell morphogenesis [82]. Furthermore, additional tran-
scripts with high SHAP values (Table S5) suggest biological relevance to
the trait under study. These include several xyloglucan endo-
transglucosylases/hydrolases, which are cell wall remodeling enzymes
involved in xyloglucan metabolism, and have found to be correlated
with growth-related traits, including the projected leaf area, compact-
ness, and early plant height [10].

As other statistical integration methods, generalization of the pan-
omiX models is limited to datasets with the same variables measured.
However, the applicability of the panomiX pipeline has been success-
fully demonstrated for various sources of variance; here complex time-
series/treatment experiment, as well as a large-scale genetic diversity
panel and a breeding population. While panomiX does not currently
adjust for population structure or relatedness, its predictions are com-
parable with e.g. BayesB regression that includes this information
explicitly in the model. In future implementations, incorporating a
kinship matrix or population structure could further improve predictive
performance in stratified populations. Additionally, environmental in-
formation could potentially be included as a monotonic constraint to
guide predictions.

While panomiX offers significant advancements, several future
challenges merit consideration. For example, in extending analyses to
proteomics and metabolomics, peptide/protein ambiguities and
metabolite identification uncertainties may affect the interpretation of
features. Potential platform-specific biases and incomplete or uncertain
annotations could influence pathway-level insights. Addressing these
challenges through improved data curation steps, incorporation of da-
tabases, robust handling of missing values, and careful interpretation of
predictive features will be important for broadening panomiX's appli-
cability across diverse omics datasets.

Code and data availability

The code for panomiX is freely available at https://github.com/
NAMlab/panomiX-tool under the terms of the MIT license (also
archived at Zenodo at time of publication: https://doi.org/10.5
281/zenodo.15193421). The sequence data for this study have been
deposited in the European Nucleotide Archive (ENA) at EMBL-EBI under
accession number PRJEB85881 (https://www.ebi.ac.uk/ena/brow
ser/view/PRJEB85881). Phenotyping and FTIR data as well as pre-
processed inputs for reproducing the results of this article with pan-
omiX are available at https://doi.org/10.5447/ipk/2025/3.
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