001050197 001__ 1050197
001050197 005__ 20260105202601.0
001050197 0247_ $$2doi$$a10.1109/ACCESS.2025.3646592
001050197 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-00015
001050197 037__ $$aFZJ-2026-00015
001050197 082__ $$a621.3
001050197 1001_ $$00009-0008-7483-854X$$aDande, Chandra Sekhar Charan$$b0$$eCorresponding author
001050197 245__ $$aAn IEEE 2030.5-Based Legacy Protocol Converter for Interoperable DER Integration
001050197 260__ $$aNew York, NY$$bIEEE$$c2025
001050197 3367_ $$2DRIVER$$aarticle
001050197 3367_ $$2DataCite$$aOutput Types/Journal article
001050197 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767619837_4813
001050197 3367_ $$2BibTeX$$aARTICLE
001050197 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001050197 3367_ $$00$$2EndNote$$aJournal Article
001050197 520__ $$aInteroperability among diverse devices, from traditional substation control rooms to modern inverters managing components like Distributed Energy Resources (DERs), is a primary challenge in modern power systems. It is essential for streamlining decision-making and control processes through effective communication, ultimately enhancing energy management efficiency. This paper introduces the open-source Legacy Protocol Converter (LPC) grounded in the IEEE 2030.5 standard, which incorporates advanced features for improved adaptability. The LPC bridges legacy equipment using standard protocols such as Message Queuing Telemetry Transport (MQTT) and Modbus with a light-weight asynchronous Neural Autonomic Transport System (NATS) communication system. In light of the limitations inherent in traditional synchronous RESTful systems—specifically those compliant with IEEE 2030.5 that are incapable of facilitating multiple endpoints—the adoption of asynchronous NATS is implemented. This approach can notably enhance communication flexibility and performance. The implementation is containerized for efficient service orchestration and supports the reusability of solutions. The LPC is engineered for seamless integration of DERs with Energy Management System (EMS), aggregation platforms, and Hardware-in-the-loop (HIL) testing environments. In this paper, the LPC has been tested and further developed in various use cases such as multi-physics optimization involving HIL and fast frequency services, e.g., virtual inertia and load shedding, each in a different architectural setup. The findings validate the applicability of LPC not only for devices within modern power systems, but also for heat pumps in the thermal energy sector, facilitating sector coupling. Moreover, the paper provides additional insights into LPC’s functionality, reaffirming its efficacy as a scalable, robust, and user-friendly solution for bridging legacy systems through the enhanced IEEE 2030.5 standard designed for the monitoring and control of DERs.
001050197 536__ $$0G:(DE-HGF)POF4-1121$$a1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)$$cPOF4-112$$fPOF IV$$x0
001050197 536__ $$0G:(DE-HGF)POF4-1122$$a1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)$$cPOF4-112$$fPOF IV$$x1
001050197 536__ $$0G:(DE-HGF)POF4-1123$$a1123 - Smart Areas and Research Platforms (POF4-112)$$cPOF4-112$$fPOF IV$$x2
001050197 536__ $$0G:(EU-Grant)101096511$$aINTERSTORE - Interoperable opeN-source Tools to Enable hybRidisation, utiliSation, and moneTisation of stORage flExibility (101096511)$$c101096511$$fHORIZON-CL5-2022-D3-01$$x3
001050197 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001050197 7001_ $$0P:(DE-Juel1)186779$$aCarta, Daniele$$b1
001050197 7001_ $$0P:(DE-Juel1)204284$$aGümrükcü, Erdem$$b2$$ufzj
001050197 7001_ $$0P:(DE-HGF)0$$aRakhshani, Elyas$$b3
001050197 7001_ $$00000-0003-3066-8354$$aAcosta Gil, Andres$$b4
001050197 7001_ $$0P:(DE-HGF)0$$aManuel, Nithin$$b5
001050197 7001_ $$00000-0002-6381-965X$$aLucas, Alexandre$$b6
001050197 7001_ $$0P:(DE-Juel1)179029$$aBenigni, Andrea$$b7
001050197 7001_ $$00000-0003-1914-9801$$aMonti, Antonello$$b8
001050197 773__ $$0PERI:(DE-600)2687964-5$$a10.1109/ACCESS.2025.3646592$$gVol. 13, p. 214889 - 214903$$p214889 - 214903$$tIEEE access$$v13$$x2169-3536$$y2025
001050197 8564_ $$uhttps://juser.fz-juelich.de/record/1050197/files/An_IEEE_2030.5-Based_Legacy_Protocol_Converter_for_Interoperable_DER_Integration.pdf$$yOpenAccess
001050197 909CO $$ooai:juser.fz-juelich.de:1050197$$popenaire$$popen_access$$pdriver$$pVDB$$pec_fundedresources$$pdnbdelivery
001050197 9101_ $$0I:(DE-588b)36225-6$$60009-0008-7483-854X$$aRWTH Aachen$$b0$$kRWTH
001050197 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186779$$aForschungszentrum Jülich$$b1$$kFZJ
001050197 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)204284$$aExternal Institute$$b2$$kExtern
001050197 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
001050197 9101_ $$0I:(DE-588b)36225-6$$60000-0003-3066-8354$$aRWTH Aachen$$b4$$kRWTH
001050197 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b5$$kRWTH
001050197 9101_ $$0I:(DE-HGF)0$$60000-0002-6381-965X$$aExternal Institute$$b6$$kExtern
001050197 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179029$$aForschungszentrum Jülich$$b7$$kFZJ
001050197 9101_ $$0I:(DE-588b)36225-6$$60000-0003-1914-9801$$aRWTH Aachen$$b8$$kRWTH
001050197 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1121$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
001050197 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1122$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x1
001050197 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1123$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x2
001050197 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001050197 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
001050197 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-02
001050197 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001050197 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE ACCESS : 2022$$d2025-01-02
001050197 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-03T10:39:05Z
001050197 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-03T10:39:05Z
001050197 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
001050197 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-02
001050197 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001050197 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-02
001050197 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001050197 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-03T10:39:05Z
001050197 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-02
001050197 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2025-01-02
001050197 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001050197 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001050197 920__ $$lno
001050197 9201_ $$0I:(DE-Juel1)ICE-1-20170217$$kICE-1$$lModellierung von Energiesystemen$$x0
001050197 980__ $$ajournal
001050197 980__ $$aVDB
001050197 980__ $$aUNRESTRICTED
001050197 980__ $$aI:(DE-Juel1)ICE-1-20170217
001050197 9801_ $$aFullTexts