000010502 001__ 10502
000010502 005__ 20180208223432.0
000010502 0247_ $$2DOI$$a10.1016/S0022-0728(02)01472-9
000010502 0247_ $$2WOS$$aWOS:000184724600013
000010502 037__ $$aPreJuSER-10502
000010502 041__ $$aeng
000010502 082__ $$a540
000010502 084__ $$2WoS$$aChemistry, Analytical
000010502 084__ $$2WoS$$aElectrochemistry
000010502 1001_ $$0P:(DE-Juel1)VDB10936$$aPron'kin, S.$$b0$$uFZJ
000010502 245__ $$aTime-resolved in-situ ATR-SEIRAS Study of Adsorption and Phase Formation of Uracil on Gold Electrodes
000010502 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2003
000010502 300__ $$a131 - 147
000010502 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000010502 3367_ $$2DataCite$$aOutput Types/Journal article
000010502 3367_ $$00$$2EndNote$$aJournal Article
000010502 3367_ $$2BibTeX$$aARTICLE
000010502 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000010502 3367_ $$2DRIVER$$aarticle
000010502 440_0 $$03261$$aJournal of Electroanalytical Chemistry$$v550-551$$x0022-0728
000010502 500__ $$aRecord converted from VDB: 12.11.2012
000010502 520__ $$aThe adsorption and phase formation of uracil on massive Au[n(111)-(110)] single crystal and Au(111-20 nm) film electrodes in 0.1 M H2SO4 was studied by electrochemical measurements and ATR surface enhanced infrared reflection absorption spectroscopy (ATR-SEIRAS). At E < 0.15 V uracil molecules are disordered and planar oriented, co-adsorbed with weakly hydrogen-bonded interfacial water (region I). Around the potential of zero charge a 2D condensed, physisorbed film of planar oriented molecules, interconnected by directional hydrogen bonds is formed (region II). At more positive potentials the carbonyl combination bands, upsilon(C2O) and upsilon(C4O) increase significantly in intensity and exhibit a large negative shift, characteristic to uracil co-ordinated to metal ions (region III). Band intensities and peak positions reach rather constant values at E > 0.80 V (region IV). Uracil undergoes an orientational change from planar to perpendicular accompanied by the formation of a chemisorbed adlayer composed of molecular islands. The organic molecule is co-ordinated to the positively charged electrode surface via O2-N3-O4. The chemisorbed uracil adlayer (first layer) facilitates also the co-adsorption of hydrogen bonded water and sulphate species in the second layer. The kinetics of dissolution of uracil chemisorbed on Au[n(111)-(110)] or Au(111-20 nm) electrodes (region IV) was studied by chronoamperometry and time-resolved ATR-SEIRAS employing either the rapid-scan or the step-scan regime. The macrokinetics of the i-t transients could be described by two processes: (i) hole nucleation according to an exponential law coupled with detachment-controlled growth (final potentials in region III) or surface diffusion controlled growth (final potentials in region II) and (ii) Langmuir-type desorption of disordered species from defect sites. Time-resolved ATR-SEIRAS experiments demonstrate that the transformation of chemisorbed uracil into lower coverage adlayers proceeds according to the following scenario: (i) Perpendicularly oriented uracil molecules change their orientation toward a tilted or planar arrangement depending on the final potential. (ii) Desorption of strongly hydrogen-bonded second-layer water and sulphate species. (iii) Adsorption of weakly hydrogen-bonded water. The spectroscopic transient responses of these three processes can be approximated by first order rate equations. Macroscopic signals, such as i, q(M) or C, do not reflect the entire complexity of the phase formation kinetics of the system investigated. Simultaneously recorded structure-sensitive transient data are of ultimate importance to develop a 'real system understanding'. (C) 2003 Elsevier Science B.V. All rights reserved.
000010502 536__ $$0G:(DE-Juel1)FUEK252$$2G:(DE-HGF)$$aMaterialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik$$cI01$$x0
000010502 588__ $$aDataset connected to Web of Science
000010502 650_7 $$2WoSType$$aJ
000010502 65320 $$2Author$$auracil
000010502 65320 $$2Author$$a2D phase formation kinetics
000010502 65320 $$2Author$$aAu[n(111)-(110)], Au(111-20 nm) film electrodes
000010502 65320 $$2Author$$atime-resolved SEIRAS
000010502 65320 $$2Author$$arapid-scan
000010502 65320 $$2Author$$astep-scan
000010502 7001_ $$0P:(DE-Juel1)VDB9859$$aWandlowski, Th.$$b1$$uFZJ
000010502 773__ $$0PERI:(DE-600)1491150-4$$a10.1016/S0022-0728(02)01472-9$$gVol. 550-551, p. 131 - 147$$p131 - 147$$q550-551<131 - 147$$tJournal of electroanalytical chemistry$$v550-551$$x0022-0728$$y2003
000010502 8567_ $$uhttp://dx.doi.org/10.1016/S0022-0728(02)01472-9
000010502 909CO $$ooai:juser.fz-juelich.de:10502$$pVDB
000010502 9131_ $$0G:(DE-Juel1)FUEK252$$bInformation$$kI01$$lInformationstechnologie mit nanoelektronischen Systemen$$vMaterialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik$$x0
000010502 9141_ $$y2003
000010502 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000010502 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0
000010502 970__ $$aVDB:(DE-Juel1)12085
000010502 980__ $$aVDB
000010502 980__ $$aConvertedRecord
000010502 980__ $$ajournal
000010502 980__ $$aI:(DE-Juel1)PGI-3-20110106
000010502 980__ $$aUNRESTRICTED
000010502 981__ $$aI:(DE-Juel1)PGI-3-20110106