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 a b s t r a c t

The EU project interTwin, co-designed and implemented the prototype of an interdisciplinary Digital Twin Engine 
(DTE), an open-source platform that provides generic and domain-specific software components for modelling 
and simulation to integrate application-specific Digital Twins (DTs). The DTE is built upon a co-designed con-
ceptual model - the DTE blueprint architecture - guided by open standards and interoperability principles. The 
ambition is to develop a unified approach to the implementation of DTs that is applicable across diverse sci-
entific disciplines to foster collaborations and facilitate developments. Co-design involved DT use cases from 
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high-energy physics, radio astronomy, astroparticle physics, climate research, and environmental monitoring, 
which drove advancements in modelling and simulation by leveraging heterogeneous distributed digital infras-
tructures, enabling dynamic workflow composition, real-time data management and processing, quality and 
uncertainty tracing of models, and multi-source data fusion.

1.  Introduction

Scientific Digital Twins (DTs) face unique challenges that set them 
apart from industrial ones. They must integrate diverse data streams 
from multiple locations, support complex simulations across hybrid 
computing resources, and combine outputs from different scientific 
fields with varying data formats, computing needs, and research meth-
ods. Unlike industrial DTs operating in controlled environments with es-
tablished protocols, scientific DTs have only recently been prototyped by 
diverse research communities spanning high-energy physics to climate 
science. Each field maintains distinct computing systems, data manage-
ment practices, and simulation processes [1].

Current digital twin platforms mostly focus on single-domain appli-
cations or depend on centralized computing systems. These systems can-
not support the federated, multi-institutional aspect of modern scientific 
research. Existing solutions do not have the necessary frameworks for in-
teroperability, which hinders collaboration across disciplines. They also 
fail to deliver the scalable, distributed computing power needed for com-
plex scientific simulations [2]. This limitation has created a significant 
gap. Even though the scientific community is starting to see the transfor-
mative potential of digital twins, researchers still do not have a unified 
platform that can handle the complex, collaborative, and computation-
heavy nature of scientific digital twins.

To address these challenges, we introduce the Digital Twin Engine 
(DTE), a collaborative computing framework aimed at scientific appli-
cations. Unlike other platforms, the DTE allows smooth integration of 
high-performance computers, cloud services, and data storage spread 
across different locations. It features a modular design that supports real-
time data updates, flexible computing, and standard interfaces across 
various fields. Prototyped through the European interTwin projec1 the 
DTE marks a shift from centralized to distributed digital twin platforms. 
This change allows scientific communities to use distributed comput-
ing resources while keeping a strong link between physical and digital 
systems, which is vital for effective digital twins.

The main contributions of the DTE are: (1) a federated architecture 
that allows seamless integration of distributed computing and storage 
resources across various institutions, (2) standardized interfaces and 
protocols that support interoperability among different scientific fields, 
(3) a co-design approach that includes requirements from high-energy 
physics, radio astronomy, gravitational-wave astrophysics, climate re-
search, and environmental monitoring, and (4) strong methods for as-
sessing model quality, traceability, and uncertainty measurement in fed-
erated settings. These contributions tackle significant limitations in cur-
rent digital twin platforms and offer the scientific community a scalable, 
interoperable base for future digital twins.

We validate the DTE by using real-world cases across various scien-
tific fields. This shows its ability to support complex, multi-institutional 
research workflows. It also meets the performance and reliability stan-
dards needed for scientific applications.

The paper is organised as follows. Section 2 reviews related scientific 
Digital Twin initiatives and establishes the research gap. Section 3 intro-
duces the diverse use cases that drove DTE development requirements. 
Section 4 presents the DTE architecture and core design principles. 
Section 5 details the system implementation and federated testbed de-
ployment. Section 6 describes two representative use cases demonstrat-
ing DTE capabilities. Section 7 discusses interoperability with Destina-
tion Earth (DestinE). Section 8 concludes with contributions and future
directions.

1 https://intertwin.eu

2.  Related work

2.1.  Scientific digital twin initiatives

Several recent initiatives have established the foundation for scien-
tific digital twins. The European Commission’s Destination Earth (Des-
tinE) program develops a high-precision digital twin of the Earth system 
for climate change adaptation and disaster risk management [3]. The 
Biodiversity Digital Twin (BioDT) project creates a prototype for bio-
diversity conservation, integrating various data sources and ecological 
models[4].2

The DT-GEO project develops Digital Twin Components (DTCs) for 
geophysical extremes as virtual labs for analyzing natural hazards in 
near real-time [5,6]. The European Digital Twin of the Ocean (EDITO) 
provides ocean knowledge through innovative visualization tools3 ,4 
while the UK’s TWINE programme demonstrates digital twinning across 
ocean monitoring, climate projections, and flood forecasting.5

In healthcare, the European Virtual Human Twins Initiative ad-
vances personalized medicine through digital representations of human 
health states.6 NASA’s Earth System Digital Twin improves Earth system 
modeling7 ,8 while the NSF FDT-BioTech program advances biomedical 
digital twins.9 International collaboration includes the NSF-Japan part-
nership on Disaster Digital Twins for urban resilience.10 Marine applica-
tions include DTOceanPlus and the Digital Twin Ocean Initiative.11 ,12 ,13

2.2.  Digital twin platform initiatives

2.2.1.  Research and development platforms
The DIGITbrain project14,15 involved 73 European partners devel-

oping “Digital Product Brain” (DPB) concepts with cognitive functions 
and lifecycle memory storage [7]. Using a “Manufacturing as a Service” 
model, it has facilitated 21 application experiments across many manu-
facturing sectors.

The Open Digital Twin Platform (ODTP) project provides an open-
source framework for creating digital twins through modular architec-
tures.16 However, while ODTP demonstrates effective tools for digital 
twin creation, its architecture is not designed for federated module de-
ployment or resource reutilization across multiple digital twin instances 
or platforms.

2 https://biodt.eu/
3 https://www.edito.eu/
4 https://research-and-innovation.ec.europa.eu/funding/

funding-opportunities/funding-programmes-and-open-calls/
horizon-europe/eu-missions-horizon-europe/restore-our-ocean-and-waters/
european-digital-twin-ocean-european-dto_en
5 https://www.ukri.org/news/digital-twin-projects-to-transform-

environmental-science/
6 https://digital-strategy.ec.europa.eu/en/policies/virtual-human-twins
7 https://esto.nasa.gov/earth-system-digital-twin/
8 https://science.nasa.gov/biological-physical/why-does-the-world-and-

nasa-need-digital-twins/
9 https://new.nsf.gov/funding/opportunities/foundations-digital-twins-

catalyzers-biomedical/nsf24-561/solicitation
10 https://www.bu.edu/igs/research/projects/digital-twins/
11 https://www.dtoceanplus.eu/
12 https://ec.europa.eu/digital-ocean
13 https://iliadproject.eu/
14 Grant Agreement 952071
15 https://www.digitbrain.eu/
16 https://github.com/odtp-org/odtp
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NIST has initiated a study to identify opportunities in measurement 
science and standards for Digital Twin systems across manufacturing, 
construction, smart Cities, Healthcare, and Energy.17

2.3.  Technological approaches and architectures

2.3.1.  Cognitive digital twins
Cognitive Digital Twins (CDTs) enhance traditional digital twins 

with AI functions and self-learning capabilities [8]. CDTs integrate data, 
information, and knowledge throughout system lifecycles, providing ad-
vanced representations using machine learning for predictive mainte-
nance and remaining useful life estimation across manufacturing, con-
struction, and healthcare [9].18

2.3.2.  Data integration architectures
Modern data architectures address integration challenges through 

decentralized approaches. Data mesh transfers data ownership to 
domain-focused teams19 while data fabric provides unified technolog-
ical frameworks for consistent data views.20 These architectures sup-
port digital twin implementations by enabling real-time data access and 
cross-domain integration.21,22

Polystore systems address multi-database querying challenges [10]. 
The BigDAWG system demonstrates multiple storage engine integration 
[11], while CloudMdsQL enables parallel processing across distributed 
stores [12]. The HKPoly architecture uses knowledge graphs for dis-
tributed heterogeneous data queries [13]. The ESCAPE project provides 
insights on federated data management across astrophysics and particle 
physics.23

2.4.  Commercial cloud platforms

2.4.1.  Major cloud provider offerings
Major cloud providers offer dedicated digital twin platforms. MS 

Azure Digital Twins provides PaaS solutions using Digital Twins Defini-
tion Language (DTDL) with ecosystem integration.24,25 AWS IoT Twin-
Maker combines existing IoT and enterprise data, automatically gen-
erating knowledge graphs with 3D visualization and Grafana support. 
26,27,28 Google Cloud Platform focuses on data analytics and machine 
learning services for digital twin projects.29

2.4.2.  Differentiation from traditional cloud data platforms
Digital twin engines differ from traditional cloud platforms by pro-

viding specialized capabilities for bidirectional physical-virtual connec-
tions, real-time synchronization, and domain-specific workflows [14]. 
They incorporate physics-based simulation integration, temporal data 

17 https://www.nist.gov/news-events/news/2024/01/
nist-launches-exploratory-digital-twins-study
18 https://www.nibs.org/events/cognitive-digital-twins-roadmap-evolving-
operations-and-maintenance-age-ai
19 https://www.eckerson.com/articles/data-fabric-and-data-mesh-
complementary-frameworks-for-a-unified-data-architecture
20 https://www.precisely.com/blog/data-integrity/
modern-data-architecture-data-mesh-and-data-fabric-101
21 https://www.pwc.com/gx/en/issues/technology/
tech-translated-data-mesh-data-fabric.{html}
22 https://blog.purestorage.com/purely-educational/
data-mesh-vs-data-fabric-whats-the-difference/
23 https://projectescape.eu/
24 https://learn.microsoft.com/en-us/azure/digital-twins/overview
25 https://azure.microsoft.com/en-us/blog/azure-digital-twins-now-
generally-available-create-iot-solutions-that-model-the-real-world/
26 https://aws.amazon.com/iot-twinmaker/
27 https://www.infoq.com/news/2022/05/aws-iot-twinmaker-ga/
28 https://medium.com/globant/modeling-digital-twins-8b758dc4b4d6
29 https://cloud.google.com/docs/get-started/aws-azure-gcp-service-
comparison

management, and specialized modeling languages absent in general-
purpose platforms [15].

2.5.  Evolution and conceptual foundations

DTs have evolved significantly from Grieves and Vickers’ original 
concept [16], now integrating real-time data with simulations and ma-
chine learning for monitoring, prediction, and optimization. Applica-
tions extend beyond traditional scientific domains into healthcare for 
personalized medicine [17], smart cities for utility monitoring, and man-
ufacturing for predictive maintenance.

2.6.  Comparative analysis and positioning

Current digital twin implementations fall into three categories: 
domain-specific scientific initiatives, general-purpose cloud platforms, 
and emerging architectural models. Domain-specific initiatives like Des-
tinE and BioDT effectively address specific needs which are tailored to 
specific communities and domains. Commercial platforms offer scala-
bility but face vendor lock-in and centralized designs conflicting with 
scientific research needs. Emerging architectures like data mesh and 
polystore systems address distributed data challenges but lack compre-
hensive scientific digital twin solutions.

This analysis reveals a critical gap: no existing platform adequately 
addresses scientific digital twin requirements including federated archi-
tecture, domain-agnostic design, HPC integration, FAIR data principles, 
and specialized scientific workflows. The interTwin Digital Twin En-
gine addresses these limitations through its federated, multi-scientific 
approach, providing a unified platform supporting multiple disciplines 
while maintaining domain-specific capabilities. Unlike existing solu-
tions, the DTE offers an open-source, vendor-neutral platform embrac-
ing distributed scientific computing infrastructure, representing a fun-
damental shift toward scalable, interoperable scientific research foun-
dations.

3.  Use cases and design challenges

The interTwin project encompasses ten diverse use case scenar-
ios that drove the development requirements for the Digital Twin En-
gine (DTE). These applications span environmental and climate science, 
high-energy physics, radio astronomy, and gravitational-wave astro-
physics, each presenting unique computational, data management, and 
integration challenges. This section presents the use cases and analy-
ses the common challenges that arise from their requirements, which 
inform the architectural design of DTE discussed in Section 4. Detailed 
descriptions of each use case can be found on the project website.30

3.1.  Use case overview

3.1.1.  Environmental and climate science applications
The environmental domain focuses on real-time monitoring and pre-

diction systems for climate-related phenomena. Six applications address 
critical environmental challenges:

Climate Extremes and Weather Events: Generic detection of cli-
mate extremes uses CVAE-based anomaly detection. Tropical cyclone 
detection combines machine learning with deterministic tracking for 
climate projection analysis while wildfire prediction integrates satellite 
imagery with machine learning for global-scale burned area estimation.

Flood Adaptation and Early Warning: Two flood-related applica-
tions provide early warning systems and climate impact assessment for 
coastal and inland regions, incorporating real-time alert mechanisms 
and interactive scenario modelling.

Drought Monitoring: The Alpine drought early warning system em-
ploys surrogate models trained on hydrological simulations across seven 

30 https://www.intertwin.eu
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river basins, integrating ECMWF seasonal forecasts for predictive anal-
ysis.

3.1.2.  Physics domain applications
Four physics applications demonstrate the DTE’s capability to handle 

large-scale simulations and real-time data processing:
High Energy Physics: Lattice QCD simulations developed normaliz-

ing flows for quantum field theory studies. Fast particle detector simula-
tions employ generative AI to create synthetic datasets, reducing compu-
tational overhead while maintaining accuracy compared to Monte Carlo 
workflows.

Radio Astronomy and Gravitational Wave Astrophysics: Radio 
astronomy noise simulation develops digital twins of telescope systems 
for training machine learning classification tools. Gravitational wave as-
trophysics creates digital twins of interferometers using GAN to simulate 
transient noise for real-time filtering applications.

3.2.  Cross-domain challenges and requirements

Analysis of these diverse applications reveals four fundamental chal-
lenges that must be addressed by the DTE architecture:

3.2.1.  Heterogeneous data integration
Digital twins require seamless integration of diverse data sources 

with varying formats, standards, and temporal characteristics. Envi-
ronmental applications combine real-time sensor streams (climate sta-
tions, satellite data) with historical datasets (wildfire records, flood 
events) and model outputs (hydrological simulations, climate projec-
tions). Physics applications integrate observational data (gravitational 
wave strain, telescope signals) with simulation results (Monte Carlo cal-
culations, detector responses) and auxiliary monitoring channels.

This heterogeneity creates significant interoperability challenges, 
particularly when adhering to FAIR (Findable, Accessible, Interopera-
ble, Reusable) data principles. The challenge intensifies when integrat-
ing with external services like ECMWF forecasts or when collaborating 
across scientific domains with different data standards and metadata 
schemas.

3.2.2.  Real-time processing and low-latency requirements
Several applications demand immediate data processing and rapid 

response capabilities with varying latency constraints. Environmental 
early warning systems require near real-time processing for flood alerts 
and drought monitoring, while physics applications need ultra-low la-
tency (microseconds to milliseconds) for gravitational wave and radio 
astronomy experiments.

These requirements necessitate sophisticated middleware capable 
of handling event-driven workflows, dynamic resource allocation, and 
seamless integration between high-performance computing (HPC) and 
cloud infrastructures. The challenge is compounded by the need to main-
tain computational accuracy while meeting strict temporal constraints.

3.2.3.  Dynamic scalability and resource management
The computational demands vary dramatically across applications 

and operational phases. Resource requirements range from computa-
tionally intensive batch processing (lattice QCD simulations, climate 
model training) to distributed real-time streaming (radio astronomy, 
gravitational wave monitoring) and geographically distributed process-
ing (Alpine drought monitoring across seven basins).

Effective scalability requires dynamic resource provisioning that can 
adapt to workload variations, seamlessly transition between HPC and 
cloud environments, and optimize resource utilization while maintain-
ing cost efficiency. This challenge is particularly acute for applications 
that experience unpredictable computational spikes, such as extreme 
weather event detection.

3.2.4.  Domain-specific workflow requirements
Each scientific domain presents unique computational patterns and 

quality assurance needs. Physics applications emphasize high-precision 
computations, reproducible research workflows, and comprehensive 
data provenance tracking. Environmental applications prioritize user-
friendly interfaces, scenario analysis capabilities, and integration with 
decision-support systems for policy makers and emergency responders.

These domain-specific requirements must be supported within a uni-
fied framework while maintaining interoperability and enabling cross-
domain collaboration. The challenge lies in providing sufficient flexibil-
ity to accommodate specialized needs without compromising the coher-
ence and maintainability of the overall system.

3.3.  Derived architectural requirements

The challenges identified above translate into five core capabilities 
that the DTE must provide:

1. Federated Data Integration: Standardized interfaces and protocols 
supporting diverse data formats, real-time streams, and external ser-
vice integration while ensuring FAIR compliance and cross-domain 
interoperability.

2. Adaptive Workflow Orchestration: Advanced orchestration capa-
bilities supporting both batch and streaming workflows, with auto-
mated resource provisioning and standards-based workflow compo-
sition using standards like Common Workflow Language (CWL).

3. Multi-Modal Processing Infrastructure: Unified middleware sup-
porting ultra-low latency requirements for physics applications and 
near real-time processing for environmental monitoring, with seam-
less HPC-cloud integration.

4. Elastic Resource Management: Container-based deployment with 
dynamic scaling capabilities, supporting diverse computational pat-
terns from intensive simulations to distributed streaming applica-
tions while optimizing resource utilization.

5. Comprehensive Quality Assurance: Integrated validation, prove-
nance tracking, and uncertainty quantification tools ensuring repro-
ducible research and transparent operations across all scientific do-
mains.

These requirements form the foundation for the DTE architecture 
presented in Section 4, which provides a modular, federated framework 
capable of supporting the diverse needs of scientific digital twin appli-
cations while promoting interoperability and collaboration across do-
mains.

4.  Requirements and architectural principles

This chapter offers a clear and detailed overview of the DTE archi-
tecture, outlining its essential components and discussing important se-
curity considerations.

4.1.  High-level architecture

The DTE is designed to enable scientists and developers to create, 
deploy, and operate complex DTs in a federated environment. At a high 
level, its architecture outlines how the platform coordinates comput-
ing power, orchestrates data flows, and supports specialized thematic 
modules that address diverse scientific needs. Fig. 1 (adapted from the 
project blueprint [18]) provides a conceptual overview of the engine.

Two primary user roles have been defined for the platform: scientists 
(end users) and developers. While both interact with DTs, each group 
has different needs and objectives.

• Scientists (End Users): Focus on running existing DT applications 
and analysing results to derive insights. Typically, they do not modify 
low-level infrastructure but rather: launch or schedule simulations 
with minimal configuration; monitor and interpret outputs, either in 
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Fig. 1. High-level diagram of the DTE.

real time or offline; adjust basic model parameters as needed, with-
out delving into complex setup details.

• Developers: Responsible for creating and maintaining DT applica-
tions, as well as the specialized modules that power them. Their 
tasks may include: integrating new data sources or external APIs; de-
signing and optimising advanced workflows or simulation pipelines; 
extending analytic libraries or simulation models to meet domain-
specific requirements; managing containers, code repositories, and 
overall platform configuration.

At the infrastructure level, a federated framework unifies comput-
ing and data resources – from HPC and High Throughput Computing 
(HTC) systems to cloud services – into a single operational model. This 
layer also integrates components for orchestration, federated comput-
ing, and federated data management, enabling the dynamic allocation 
of resources based on workload demands.

At the heart of the DTE, a series of core capabilities work together 
to streamline the creation and operation of DTs. These include workflow 
composition, which orchestrates complex data pipelines and computa-
tional tasks; real-time data acquisition and preprocessing, essential for in-
tegrating up-to-date sensor streams; and advanced AI/ML and big data 
analytics tools that derive insights from large, diverse datasets. To ensure 
results remain accurate and reliable, a quality verification mechanism 
continuously evaluates model performance and data integrity. Mean-
while, data fusion techniques unify information from varied sources into 
a consistent environment.

The DTE also includes domain-specific components – referred to as 
thematic modules – which target particular scientific disciplines. These 
modules may comprise complete toolsets, specialised models, or dedi-
cated libraries that ensure a DT operates effectively within its specific 
field. For instance, an environmental monitoring module could integrate 
climate models and geospatial analytics, while a high-energy physics 
module might bundle simulation frameworks tailored to particle colli-
sions. By offering these focused add-ons, the DTE accommodates a broad 
range of scientific challenges and fosters deeper customisation for spe-
cialised use cases.

Beyond its core capabilities and thematic modules, the DTE provides 
dedicated repositories for storing and managing the various artifacts es-
sential for building and running DT applications. These repositories im-
plement a mandatory open licensing framework prioritizing Creative 
Commons-compatible licenses for shared artifacts. These artifacts in-
clude container images, executable programs, domain-specific libraries, 
and configuration files that can be shared or reused across multiple 
projects. By centralizing these resources, the platform streamlines the 

process of assembling new DTs, ensures version control, and promotes 
consistent deployment practices throughout different scientific domains.

The DTE employs a robust Authentication and Authorization Infras-
tructure (AAI) based on industry-recognized protocols such as OpenID 
Connect (OIDC) and OAuth 2.0. This framework handles user identifi-
cation, ensures appropriate access rights, and enforces security policies 
across different services within the platform.

Each DT application interacts with these components through well-
defined APIs or specialised interfaces that expose the platform’s capabil-
ities. This design allows applications to seamlessly integrate advanced 
data processing, orchestration services, and security features without di-
rectly handling the underlying infrastructure details. As a result, devel-
opers can focus on domain-specific logic while relying on a consistent, 
standardised framework provided by the DTE.

4.2.  DTE infrastructure

The DTE addresses the challenge of unifying computing resources 
and data management across diverse scientific communities, while re-
maining flexible enough to support specialized requirements. At a broad 
level, the platform is organized around three main pillars–Federated 
Computation, Federated Data Management, and Intelligent Re-
source Orchestration–forming a cohesive ecosystem that can accom-
modate a wide range of DT applications.

Federated Computation. A key goal is to provide seamless access to com-
puting power, whether it comes from commercial Cloud services, HPC 
clusters, or HTC systems. To achieve this, the DTE relies on a feder-
ated compute framework that abstracts away provider-specific details, 
allowing developers and scientists to tap into the most suitable type of 
resources (i.e. local Cloud vs possibly remote HPC/HTC) without dealing 
with incompatibility or workflow issues. This approach fosters scalabil-
ity and responsiveness, letting DT applications scale up or down in real 
time based on actual demand.

Federated Data Management. Because most DT use cases involve sub-
stantial amounts of data, the platform includes robust data services 
aligned with its federated compute architecture. Using a unified data 
model and advanced federation technologies, the DTE integrates his-
torical data, streams and external datasets into a shared Data Lake. This 
design addresses differences in data formats and protocols, ensuring that 
applications can securely locate, retrieve, and manipulate the informa-
tion they need, regardless of its physical location.

Intelligent Resource Orchestration. An intelligent orchestration layer 
leverages Machine Learning (ML) and predictive analytics to monitor 
Cloud resource usage and adjust resource allocation.

4.3.  Core capabilities

The core capabilities enable the creation and operation of DTs sup-
porting diverse scientific domains. Building on the federated infrastruc-
ture, they provide essential services such as workflow composition, real-
time data handling, and AI/ML. They also include quality checks to keep 
simulations accurate and consistent.

Workflow Composition and Management. Researchers can design, sched-
ule, and track workflows without having to configure each environment 
manually. The platform connects multiple data sources, databases, and 
sensor feeds–into orchestrated pipelines that can run on HPC, HTC, or 
cloud resources. This automation allows scientists to focus on extracting 
insights rather than handling infrastructure details.
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Real-Time Processing. The real-time data acquisition and processing 
framework supports event-triggered execution of workflow engines, de-
tecting when new data that requires processing is made available. It per-
forms data staging and pre-processing (e.g. to perform data cleansing or 
data quality assessment) and delegates the complex data processing to 
external workflow management systems which are in charge of execut-
ing applications on resources that can be dynamically provisioned from 
a Cloud-based infrastructure.

Machine Learning and Predictive Analytics. The AI/ML subsystem focuses 
on developing data-driven models for DTs. This subsystem is primar-
ily concerned with training and deploying ML models, which enhance 
DTs’ capabilities with advanced data insights. The characteristics of 
ML/AI subsystem includes model training, Hyper Parameter Optimiza-
tion (HPO) and inference.

Quality Verification. A dedicated process ensures that the outputs of the 
DTs remain reliable and consistent. It checks data integrity, assesses 
model performance, and ensures workflows stay aligned with real-world 
conditions.

4.4.  Security

The platform employs an AAI that governs who can access data 
or run specific workflows. By using industry-standard protocols, the 
DTE enforces detailed permissions for launching simulations, retrieving 
datasets, or performing sensitive tasks.

5.  DTE system design and implementation

The DTE forms the backbone of the interTwin project, supporting 
the integration and operation of complex DT applications across various 
scientific domains. This section presents the system design and imple-
mentation approach following a progression from requirements through 
technology selection to deployment results. The section begins by estab-
lishing the implementation requirements for federated computing, data 
management, and workflow orchestration. It then details the technol-
ogy selection rationale and specific implementation choices made for 
each core component, including authentication infrastructure, compute 
federation, data lake management, AI orchestration, workflow com-
position, real-time processing, and machine learning support. Finally, 
Section 5.8 presents the practical deployment results through the DTE 
testbed, demonstrating the integration of multiple European computing 
centers. The new developments performed in the project are available 
in the interTwin organization31 in GitHub.

5.1.  Authentication and authorization infrastructure

Security is a fundamental concern in any distributed computing en-
vironment, and the DTE infrastructure includes a comprehensive secu-
rity framework to protect data and resources. The security framework 
is built around a federated identity management system that provides 
authentication and authorization services for users and applications ac-
cessing the DTE. The project has adopted the EGI Check-in32 service 
based on Keycloak and, in particular, OIDC and OAuth 2.0.

In addition, a new service named the Account LInking SErvice 
(ALISE), has been developed that provides a layer where identities, en-
rolment, group membership and other attributes and authorization poli-
cies on distributed resources can be managed in an homogeneous way. 
These activities may be achieved without requiring admin intervention: 
users of a facility will typically follow an enrol process once. Various ser-
vices, typically local to a facility, may then query ALISE to map a user’s 

31 https://github.com/interTwin-eu
32 https://www.egi.eu/service/check-in/

federated identity to their corresponding facility-local identity. This in 
turn allows the services to process such requests while honouring site 
policies on authorisation, accounting and traceability.

5.2.  Federated compute resources

The main purpose of the compute federation is to enable seamlessly 
integration of highly heterogeneous and disparate providers such as 
Clouds, world-class HPC and HTC centers. In order to achieve this ob-
jective the strategy defined was to implement a model based on trans-
parent payload offloading. Given a workflow (pipeline) the goal is to 
cherry-pick a step and execute it over the most suitable type of comput-
ing resource available within the federation. As an example, assuming 
a multi-step workflow managed by cloud-native framework, this could 
benefit from executing specific steps, such as a GPU-accelerated statis-
tical data analysis, on GPU equipped nodes available on an Exascale 
EuroHPC centre. The cherry-picking mechanism is based on Kubernetes 
(K8s) native match-making feature. From the start of the project, one 
of the goal that we set was transparency for the end user and for the 
target provider. To implement such a model, we decided to rely on a de 
facto Cloud standard API like K8s and to define a lightweight solution to 
exploit a heterogeneous provider exposing the very same experience of 
running a pod on the Cloud resources. As a result, we developed inter-
Link.33 interLink provides an abstraction for the execution of a K8s pod 
on any remote resource capable of managing a container execution life-
cycle. From a technical perspective the interLink project is based on the 
Virtual Kubelet (VK) interface, a project in the CNCF Sandbox program 
that creates virtual K8s nodes capable of managing the payload exe-
cution in a custom fashion, therefore abstracting the actual container 
execution from the native API layer offered by K8s itself. The primary 
scenario for VK is to allow K8s to interact with serverless container plat-
forms such as Azure Container Instances and AWS Fargate. Serverless 
platforms allow users to run containers without having to manage the 
underlying infrastructure. interLink project consists of two main com-
ponents:

• A K8s Virtual Node: based on the VK technology. It translates re-
quests for a K8s pod execution into a remote call to the interLink 
API server.

• The interLink API server: a modular and pluggable REST server 
where to create specific interfaces to dedicated resources, or simply 
to use the existing ones. The plugins currently available are: SLURM; 
HTCondor, UNICORE, Kueue and Docker

VK features a pluggable architecture integrated with K8s primitives, 
which makes it fully compatible with any workflow based on that plat-
form. The latter is extremely valuable, as the overall architecture is ex-
pected to support a wide range of scientific and non scientific use cases. 
The key feature of the VK is to masquerade as a K8s Kubelet which en-
ables K8s to be connected to other APIs. With the use of an interTwin 
API layer, deployed at the edge of any resource provider, we can trans-
parently extend a K8s cluster running on a Cloud system to any remote 
resource, being either cloud or batch based. As such, the interLink layer 
represents the actual mean of the compute federation. The user applica-
tion only access K8s and the related APIs while, at the same time, the tar-
get site is unaware of the K8s cluster and does not need to interact with 
it. In summary, the proposed solution follows a plug-and-play approach. 
The interLink API services comprises several independent processes that 
communicate via REST interfaces. The process exposed to the K8s clus-
ter is an OAuth2 proxy that verifies incoming requests against an OIDC 
identity provider before forwarding the request to the final stage of the 
translation process. This component is the one that gives the name to 
interLink because it is responsible for the final request retouches that 
guarantee uniformity for all the plugins that are going to be contacted 

33 https://interlink-project.dev
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on an HTTP call. As stated above, the interLink API server is based on a 
plugin model and this represents a key feature in order to build a flexible 
model. First of all, each plugin is independent and separately talks to the 
interLink layer which translate the request and execute the actual job, or 
set of actions needed to manage the execution, on the provider. A plugin 
represents the only piece of the system where the backend specific con-
figuration will be implemented. As a consequence, if a site has specific 
needs, custom modules can be implemented and configured in the site 
itself without affecting the overall architecture and implementation.

5.3.  Federated data management and the data lake

When considering a distributed environment, where DTs workflows 
may take place at different geographical locations, easy and effective 
management of data becomes an important consideration. The data 
needed for training the models part of DTs in interTwin is varied in 
nature, including scientific datasets, real-time sensor data and simula-
tion outputs. As a consequence, any common solution will need to be 
flexible enough to support these different data types.

The data models training takes considerable computing resources, 
often taking advantage of the benefits from using GPUs. In interTwin, 
these activities take place within HPC facilities. Therefore, one of the key 
goals is to allow easy data ingress into and egress from HPC facilities.

As inspiration, the project took the Data Lake concept from the ES-
CAPE34 project as a starting point. This storage concept, originally com-
ing from the High-Energy Particle Physics (HEP) community, includes 
Rucio35 as a central component that allows for the management of large 
volumes of data, File Transfer Service (FTS)36 as a service that manages, 
at scale, the transfer of individual files and various storage endpoints 
that offer one of the supported protocols. The data is made available to 
HPC worker nodes through the standard POSIX interface; i.e., a normal 
mounted filesystem. This allows software to load training data using 
standard I/O operations and without linking against specialist data ac-
cess libraries. Such POSIX-based interactions are a common way for HPC 
jobs to accept data and HPC facilities provide such a distributed filesys-
tem. Some HPC centres already offer a storage solution compatible with 
the interTwin data lake. For other HPC centres, a solution that allowed 
data transfers was needed: an edge service that follows the Data Lake 
model. An important requirement is that this edge service must integrate 
with the existing storage solutions without requiring that the storage is 
modified and while honouring the file system permissions. A new stor-
age solution was also developed: teapot.37 Unlike other solutions, teapot 
enables user-specific access to existing storage while honouring the file 
system’s permissions. All file operations are undertaken with the au-
thenticated user’s identity at that facility. The interTwin data lake has 
been deployed by federating five different storage technologies (Ceph 
S3, dCache, Teapot, Onedata S3, StoRM WebDAV) from ten data cen-
tres in eight countries (DESY, CESGA, INFN, EODC, Cyfronet, DZA, Uni 
Vilnius, KBFI, Julich, PSNC).

5.4.  AI orchestrator

The AI orchestrator is based on the INDIGO - PaaS Orchestrator com-
ponent38 the core component of the INDIGO PaaS layer. It collects high-
level deployment requests and translates them into actions to coordi-
nate resources interacting with the underlying cloud infrastructures. It 
allows the provisioning of virtualized compute and storage resources 
on different Cloud Management Frameworks like OpenStack, OpenNeb-
ula, AWS, MS Azure, Google Cloud, etc., by using the Infrastructure 
Manager [19]. The PaaS orchestrator features advanced federation and 

34 https://projectescape.eu/
35 https://www.intertwin.eu/article/infrastructure-component-rucio
36 https://www.intertwin.eu/article/infrastructure-component-fts3
37 https://www.intertwin.eu/article/infrastructure-component-teapot
38 https://github.com/indigo-dc/orchestrator

scheduling capabilities. It ensures transparent access to heterogeneous 
cloud environments and the selection of resource providers based on cri-
teria like user’s SLAs, services availability, special hardware availability 
and data location. It manages deployment requests, expressed through 
templates written in TOSCA, the standard language for describing appli-
cation topologies in cloud, and coordinates the deployment on the most 
suitable cloud site. To achieve this it gathers SLAs, monitoring data and 
additional information from other platform services and it asks the cloud 
provider ranker for a list of the best cloud sites. The new ranker uses a 
proper set of metrics and AI algorithms, to provide the Orchestrator 
with a list of ranked providers that aims to minimize deployment errors 
and the time required to create a deployment. A dedicated component 
takes care of two main actions: to training ML models and storing them 
in an MLflow registry and to perform inference using the trained mod-
els retrieved from the registry. Currently a classification model is used 
for predicting the success or failure of a deployment while a regression 
model is used for estimating deployment creation or failure time. The 
inference outcome is used to make predictions for a give cloud provider

5.5.  Workflow composition

A critical feature of the DTE is its advanced workflow orchestration 
and management capabilities. The DTE supports the composition, exe-
cution, and monitoring of complex scientific workflows that can span 
multiple computational environments.

By using the Common Workflow Language (CWL) as the standard 
for workflow definition, the DTE ensures interoperability with existing 
workflow management systems. The project has extended the Ophidia 
module to support the standard through its Python bindings [20]. The 
Ophidia framework is an open-source solution for the analysis of sci-
entific multi-dimensional data, joining HPC paradigms and Big Data 
approaches [21,22]. It provides an environment targeting High Perfor-
mance Data Analytics through parallel and in-memory data processing, 
data-driven task scheduling and server-side analysis. The framework 
supports the execution of complex analytics workflows in the form of 
Directed Acyclic Graphs (DAGs) of Ophidia operators [23].

In addition, for specific Earth Observation use cases, openEO39 ap-
plication programming interface (API) has been selected. openEO is an 
API that supports i) the management of workflows, ii) job handling, 
and iii) linking to data sources and processing capabilities on compat-
ible cloud platform providers in a standardised way. openEO has been 
also extended to support execution of containerized software packages 
as execution of specific processes following the OGC API processes ap-
proach.

5.5.1.  Provenance in workflow and AI
Workflows and provenance are two faces of the same medal. Track-

ing provenance in scientific workflows has twofold benefits: (i) it en-
ables a better understanding and reproducibility of the results of a 
computational process, and (ii) it fosters trust, transparency and inter-
pretability, by documenting in detail how a specific output has been gen-
erated. In this respect, the interTwin project has delivered a fully-fledged 
provenance solution supporting provenance management (yProv service 
[24]), exploration (yProvExplorer40) and tracking in (i) workflows [25], 
(ii) software quality assurance [26] and (iii) AI training processes [27]. 
The integrated ecosystem approach has enabled the implementation of 
an end-to-end traceability solution in the interTwin DTs, exploiting the 
yProv4WFs library to generate provenance documents at runtime dur-
ing the DT workflow execution (as in the case of openEO [28]) and the 
yProv4ML library to address provenance tracking in the training phase 
of an AI model. Provenance documents have been persistently managed 
by the yProv service, which exposes a CRUD API for consumer appli-
cations (i.e., yProvExplorer). From an interoperability perspective, the 

39 https://www.intertwin.eu/article/core-dte-module-openeo/
40 https://explorer.yprov.disi.unitn.it/
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yProv components leverage the W3C PROV family of standards, PROV-
JSON serialization and RESTful interfaces. The yProv ecosystem sup-
ports the multi-level provenance implementation. It enables scientists to 
navigate within the provenance space across different dimensions (e.g., 
horizontal & vertical), which means both over computational tasks and 
across different levels of granularity. Although the project’s main case 
studies have come from the climate change domain, the proposed so-
lution is domain-agnostic having also been applied to interTwin DTs in 
earth observation and high-energy physics domains [29].

5.5.2.  Quality assurance
To ensure the reliability and accuracy of DT applications, the DTE 

incorporates Quality Assurance (QA) mechanisms into workflow com-
positions. These QA components validate the results of simulations 
and analyses by comparing them against established benchmarks and 
known data. The model validation architecture relies on the usage of 
the Software/Service Quality Assurance as a Service (SQAaaS) [26]
platform.

The SQAaaS is a platform for quality assessment and awarding of 
multiple digital objects (source code, services, data). Data quality as-
surance is technically a challenging process which needs to involve 
community-specific aspects such as data integrity, accuracy complete-
ness or consistency. The SQAaaS platform provides researchers with 
ready-to use CI/CD pipelines that cross-check the relevant quality crite-
ria of any software project. In intertwin the SQAaaS platform has been 
expanded to embed data quality assessment. The platform can program-
matically incorporate quality criteria in the CI/CD framework and pro-
duce automated data verification flows analogous to those we will have 
for the software in git repositories.

In order to do so, Data as Code principles have been applied to the 
development of CI/CD pipelines to evaluate metadata conformance and 
FAIR principles covering all the data quality dimensions. In particular 
DataOps technologies are applied to support data pipelines execution. 
Our approach relies on existing/proven standards for metadata (digi-
tal objects) and description workflows with data provenance support. 
For instance, we build on the pyOphidia capability to automatically tag 
workflows with metadata and plug it to the SQAaaS library in an anal-
ogous way as to how software is evaluated, and embedded in the DTE 
architecture.

The QA module high level capabilities includes:
• Automated testing of workflow components to detect errors and in-
consistencies.

• Integration with validation datasets to ensure that workflow outputs 
meet the required standards.

• Continuous monitoring of workflows to track their performance and 
detect anomalies.
We implemented two possibilities in terms of technology to make 

possible the custom assessments needed by DT developers to per-
form model validation: triggering customs assessments from GitHub, 
relying on GitHub actions, and alternatively, triggering them from 
a workflow step document. This strategy allows embedding from 
the start in the development process the data quality checks. There-
fore we follow general trends towards developing services produc-
ing FAIR data by design, which implies embedding the FAIR per-
spective at early enough stages of the development processes, so 
that the digital objects inherit properties related to FAIR such as
reproducibility, provenance, etc.

The validation process is further automated by exploiting git ac-
tions technology. We make available two GitHub actions that enable 
the automated assessment of source code, including workflow and 
model code, by triggering the SQAaaS platform. A summary contain-
ing the quality criteria being analysed is provided, and, in the event 
that a certain level of these criteria has been fulfilled, the correspond-
ing digital badge that recognizes those achievements. As a comple-

ment, the step actionadds the capability to define customized steps 
as part of the evaluation of a quality criterion within the SQAaaS 
source code assessment. This is required, for instance, for the test-
ing criteria, where diverse testing frameworks might be used (e.g.,
Python pytest).

5.6.  Real-time data processing

The ability to process real-time data is a key requirement for many 
DT applications, especially those in fields such as environmental moni-
toring. The DTE infrastructure includes a robust real-time data process-
ing and streaming framework that allows DTs to continuously ingest, 
analyse, and respond to incoming data streams.

This real-time processing capability is made possible through event-
driven architectures and streaming data pipelines, which enable the DTE 
to react to changes in data as they occur. For example, in a climate sim-
ulation, the DTE can process sensor data from weather stations in real-
time, adjusting the simulation parameters as new data becomes avail-
able.

The serverless event-processing system is in charge of receiving data 
pre-processing requests from the event-ingestion system to perform ad-
ditional data transformations that may not be performed within the 
event-ingestion system itself. This can be due to a lack of support for 
certain operations or the dependency on external tools that may be pack-
aged as Docker images, which may not be able to run directly within the 
event-ingestion system.

To address the challenges and limitations of the event-ingestion sys-
tems, we adopted the OSCAR [30] serverless event-driven processing 
platform. OSCAR is deployed on top of elastic Kubernetes clusters, pro-
visioned via the Infrastructure Manager (IM), and provides efficient ex-
ecution of data-processing requests by executing user-defined scripts 
in dynamically provisioned containers that are triggered in response 
to events. In addition, it supports low-latency synchronous requests 
through Knative, the offloading of the workload to HPC through inter-
Link, and the seamless execution of JupyterHub environments, ensuring 
the development and operation of DTs.

OSCAR supports several storage providers like MinIO, Amazon S3, 
OneData, dCache, and WebDAV storage providers (e.g. NextCloud). In 
addition, support for Rucio events allows OSCAR to process data stored 
in the data lake.

The event-ingestion system is responsible for receiving the notifica-
tion events from the file/object-storage system and provides the ability 
to execute simple transformation data flows using the built-in compo-
nents supported by the system. Apache NiFi is employed to create ver-
satile data flows that enrich and route data from diverse sources, effec-
tively decoupling file uploads from data processing. The event-ingestion 
system is integrated with multiple sources, including Amazon S3 and 
dCache, enhancing its capabilities. Additionally, Apache Kafka is used 
for high-throughput event streaming, buffering data for processing, and 
triggering OSCAR services in near real-time.

This multi-source approach not only diversifies the data intake but 
also increases the flexibility of the platform, handling a wide range 
of use cases and adapt to various data environments. DCNiOS41 fa-
cilitates the deployment of dataflows to achieve integration between 
a source of events like a storage system such as Kafka or dCache, 
and OSCAR Services. This tool allows users to set up dataflows us-
ing simple YAML configuration files. These files detail data sources 
and destination endpoints together with intermediate steps processes. 
DCNiOS also comes with a CLI. This feature enables us to deploy 
and adjust the NiFi flows at runtime, for example, by changing 
the data processing rate, making our system adaptable to varying
needs.

41 https://github.com/intertwin-eu/dcnios
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5.7.  AI and machine learning support within the DTE

itwinai42,43 is an open-source Python library that streamlines 
the deployment and scaling of ML workflows for scientific applica-
tions, with a particular focus on DTs. DTs rely heavily on AI and 
ML to enable advanced analysis, predictive modelling, and decision-
making capabilities, often necessitating seamless integration with HPC 
resources. itwinai addresses this need by providing a user-friendly 
toolkit that abstracts much of the complexity associated with de-
ploying and managing ML workflows on large-scale computing in-
frastructures. By employing a configuration-based approach, users 
can define, execute, and manage modular workflows that include 
tasks such as data preprocessing, distributed training, HPO, and in-
ference, all while maintaining compatibility with widely-used ML
frameworks like PyTorch and TensorFlow.

A distinguishing feature of itwinai is its support for distributed 
ML training, allowing researchers to scale their models across multiple 
GPUs or nodes without extensive code modifications. This functionality 
is powered by industry standard backends such as PyTorch Distributed 
Data Parallel (DDP), TensorFlow distributed strategies, and Horovod, 
ensuring efficient utilisation of HPC resources. Furthermore,  itwinai
includes advanced HPO capabilities, facilitated by Ray Tune, which al-
low users to explore large parameter spaces systematically and improve 
model performance with minimal manual intervention. These features 
are complemented by integration with popular ML logging tools, includ-
ing MLflow, Weights&Biases, and TensorBoard, to provide experiment 
tracking and visualisation.

Beyond its technical capabilities, itwinai is designed to empower 
domain experts, such as scientists and engineers, to independently de-
ploy and scale AI solutions. This reduces the need for specialised ML 
engineers, enabling researchers to focus on advancing their scientific 
objectives. The library also includes the possibility to connect to a ML 
model registry, allowing to store, version, and reuse trained models, 
thereby fostering reproducibility and efficiency in AI-driven research 
workflows. Furthermore, the extensible architecture of itwinai sup-
ports the integration of third-party plugins, allowing developers to tailor 
the toolkit to the unique requirements of specific scientific domains or 
applications.

In the context of DTs, itwinai aims at enabling scalable, AI-driven 
research while minimising the engineering overhead associated with 
HPC integration. By bridging the gap between domain expertise and 
scalable ML workflows, itwinai facilitates the development of robust 
and efficient AI solutions, addressing the challenges inherent in man-
aging large-scale distributed computational resources for scientific DT 
applications.

5.7.1.  Big data analytics
The Big Data Analytics deployment layer provides a set of topology 

templates and recipes for general-purpose data analytic environments 
to be deployed on demand on top of the cloud resources.

The cloud topology templates have been created using the TOSCA 
standard specification. They describe the virtualized resources and the 
software components required to deploy the final application. Further-
more, they provide the user with a set of input parameters, enabling 
them to customise the application configuration.

This layer enables the users to access the needed set of tools in a re-
producible manner, in minutes, with the ability to deploy the amount of 
resources needed to process their data, and grow or shrink the resources 
if the initial set of resources was not correctly estimated, thanks to the 
capabilities provided by the IM.

42 https://itwinai.readthedocs.io
43 https://github.com/interTwin-eu/itwinai

Fig. 2. DTE testbed showing the federated infrastructure with distributed HPC 
and Cloud sites.

5.8.  DTE testbed

The practical implementation of the DTE is materialized through a 
federated infrastructure that integrates multiple specialized European 
computing centers, as illustrated in Fig. 2. The deployed architecture in-
cludes high-performance HPC sites (EuroHPC VEGA in Slovenia, JÜLICH 
in Germany, and PSNC in Poland) that provide supercomputing capa-
bilities with advanced GPU architectures, integrated via interLink to 
High Level services. The AI-based orchestrator dynamically optimizes 
resource allocation over Clouds (GRNET, UKRI and EODC Openstack) 
where Kubernetes clusters are deployed to execute containerized work-
loads, while data management federates repositories with intelligent 
data placement optimized by computational proximity. The ecosystem 
integrates specialized tools such as MLflow for ML model management, 
JupyterHub for interactive development, all unified under a Common 
AAI authentication system. Other sites part of the testbed are INFN, 
CESGA, and DESY.

6.  Use cases functionalities and integrations with DTE

This section highlights two specific DTs from environmental and 
physics domain and details their implementation and integration with 
the DTE.

6.1.  Gravitational waves detection and noise simulation

The Virgo DT aims at realistically simulate transient noise artifacts, 
called glitches, which appear in the main observation channel of the de-
tector, termed strain channel. In order to achieve this goal, the GNN 
needs to learn the non-linear transfer function to map the glitches 
present in a subset of control channels, which are uncorrelated to the as-
trophysical signal, to the strain channel. The control channels are called 
auxiliary channels, and contain time series measurements of the inter-
ferometer control systems and environmental sensors, tracking condi-
tions such as seismic activity, acoustic noise, and electromagnetic in-
terference. Since the data used as input for the model does not contain 
any information on gravitational waves by design, any transient signal 
present in the simulated strain output can be identified as a glitch. The 
DT is organised as a pipeline operating in quasi real-time, with the goal 
of identifying a glitch in the incoming data and passing the information 
to downstream low-latency pipelines that search for transient astrophys-
ical signals. The expression low-latency, in this context, indicates a lag 
in time of the order of tens of seconds. In the first phase, the information 
will be passed as a veto decision not to process the data if they contain 
a glitch. In a second phase, also in view of future detectors such as the 
Einstein Telescope, the DT will output data in which the glitch has been 
removed, to be further processed by the search pipelines. The removal 
of the glitches from the strain channel is referred to as de-noising and it 
consists in subtracting the generated strain data from the real one. The 
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Fig. 3. A schematic representation of the training and inference subsystems 
which make up the DT. The diagram shows the involvement of the developer 
and the user in the different parts of the workflow, as well as the flow of data 
among the different modules. Both the vetoing and de-noising pipelines have 
similar structures, the main difference being the final module in the inference 
subsystem.

high accuracy of the generated data will ensure that only noise artifacts 
are removed.

The implementation of the DT consists of a train and inference sub-
system, sketched in Fig. 3.

The three main modules which make up the training subsystem are
ANNALISA (Advanced Non-linear transient-Noise Analyser of Laser Inter-
ferometer Sensor Arrays), PreprocessAPI, and GlitchFlow. The infer-
ence subsystem, on the other hand, comprises the same PreprocessAPI
module, so that the inputs are processed in the same way as the training 
data, and a GenerativeAPI module which carries out the inference.

ANNALISA is a tool for identifying the relevant auxiliary channels 
which the GNN will use as input, i.e. those which do not contain any 
astrophysical information. It makes use of time-frequency domain anal-
ysis of the data, namely the Q-transform [31],to evaluate correlations 
among the main and auxiliary channels. This is achieved by counting 
the number of temporally coincident spikes in the energetic content of 
the signals above a critical threshold and dividing it by the total number 
of spikes in the main channel. The current version of ANNALISA employs 
a PyTorch-implemented [32] Q-transform which was developed in or-
der to run the whole analysis on GPU. Our version of the Q-transform 
is equivalent to the one implemented in the standard package GWPy 
[33] up to some border effects which can be easily eliminated after the 
transformation; this development makes it possible to speed up the cor-
relation analysis by two orders of magnitude. PreprocessAPI is used 
for data preprocessing and dataset creation, while GlitchFlow is the 
module which contains the GNN for generating the glitches. The cur-
rent GNN model architecture is a U-Net [34] inspired encoder-decoder 
that also incorporates attention gates and residual blocks.

The training subsystem is maintained and operated by a DT devel-
oper, who performs the data pre-processing and the training of the 
model. The DT developer monitors the operations of the DT by using 
a monitoring system that collects and displays metrics on training con-
vergence and inference accuracy. Once the training is over, the model 
is passed to the Training Logger and then stored in the Model Registry. 
The training of the model is repeated periodically at regular intervals, 
for example every month, or when there have been significant changes 
to the state of the detector. The most clear example of such changes, 
albeit not the only possible one, is the necessary recalibration at every 
new observation run, during which the auxiliary channels can undergo 
significant modifications and the background noise is expected to be

different. After the initial set-up, the role of the developer can be per-
formed by an automated procedure.

The DT user shown in Fig. 3 is the person using the pipeline for 
low-latency data analysis; they can process the data with the same
PreprocessAPI and then pass it to the GenerativeAPI, which calls the 
most recent pre-trained model in the Model Registry and uses it to per-
form the inference, i.e. fast generation of glitches. The last module of the 
Inference subsystem is either the vetoing or de-noising one, depending 
on the operation being performed.

All modules within both subsystems are implemented as itwinai plu-
gins. Itwinai is a DTE core module that offers several key features that 
are beneficial to the DT, including distributed training capabilities, a 
robust logging and model catalogue system, enhanced code reusability, 
and a user-friendly configuration interface for pipelines.

The current accuracy for the de-noising pipeline is over 90% for a 
Signal-to-noise-Ratio (SNR) of 6, which represent a realistic lower bound 
for the glitches seen in the Virgo detector [35].

6.2.  Tropical cyclones (TCs) detection and wildfires prediction on climate 
projections

In recent years, climate change has been leading to an exacerbation 
of extreme events, including tropical storms and wildfires, raising ma-
jor concerns in terms of their increase of their intensity, frequency and 
duration as found by [36] and [37].

Advances in ML can provide cutting-edge modelling techniques to 
deal with extreme events detection and prediction tasks, offering cost-
effective and fast-computing approaches. Solutions based on ML could 
support study and analysis of such events, providing scientists and policy 
makers with innovative data-driven tools. However, from an infrastruc-
tural point of view, supporting these applications requires multiple in-
tegrated software components including data gathering, pre-processing 
and augmentation pipelines, computing platforms for model training, 
results visualization tools, etc.

In particular, DT applications for the analysis of extreme events, fo-
cusing on: (i) detection and tracking of TCs and (ii) prediction of wildfire 
on a global scale in terms of extent of burned areas, are being devel-
oped relying on ML models as their core components. Different types of 
Deep Neural Networks (DNNs) models are being adopted as modelling 
tools for learning the mapping between environmental drivers and oc-
currences from past data and generalizing it to future projection data. 
The two DTs applications on TCs and wildfires are supported, respec-
tively, by the ML TC detection and ML4Fires thematic modules.

The DT application on TCs relies on a “hybrid” ML approach that 
links a data-driven model, which detects and localizes TC centers, with 
a deterministic tracker [38]. ML models, such as VGG-like Convolu-
tional Neural Networks (CNNs) [39] and Graph CNNs, are used to learn 
the non-linear relationships between input weather fields and TC oc-
currence in large climate datasets. The models are trained with ERA5 
reanalysis data [40] joined with observed TC records from the Interna-
tional Best Track Archive for Climate Stewardship (IBTrACS) [41].

The second DT application is related to wildfires. It exploits the U-
Net++ model [42], based on CNNs, for learning the relationships be-
tween different weather and vegetation variables for predicting wildfires 
occurrences in terms of burned areas on historical data. The SeasFire 
Cube dataset [43], a multivariate harmonised dataset designed for sea-
sonal wildfires modelling, is used for training the ML model.

The trained models, from both the applications, can then be applied 
for detecting TCs and predicting wildfires under future climate scenar-
ios, exploiting CMIP6 data (e.g., from ScenarioMIP [44] or HighResMIP 
[45] projects), available from the Earth System Grid Federation [46].

Although the two DTs have different scientific goals and exploit di-
verse data and ML model architectures, from a high-level perspective 
their workflows are similar. Fig. 4 provides an overview of the steps 
envisioned by the two DT applications.
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Fig. 4. High-level design of the workflows of the DT applications for tropical 
cyclones detection and wildfires prediction on climate scenarios. The DT devel-
oper and DT user workflows are depicted in the figure, as well as the links with 
the different component from the interTwin DTE.

Two distinct workflows are supported: the first for users with techni-
cal expertise that need to configure and train a ML models for extreme 
events detection and prediction (i.e., the DT developers), and the sec-
ond one for end-users that need to apply the ML models for analysing 
changes in the events on climate data (i.e., DT users).

In the former, the DT developer exploits the thematic components 
(i.e., ML TC detection or ML4Fires) for building a new ML model using 
a pre-defined setup. During the training stage metrics and provenance 
are tracked using the DTE core modules (i.e., itwinai and yProv). Once 
the training is completed, the resulting model can be stored on a ML 
model registry. As the training process requires GPUs to be carried out 
efficiently, the whole workflow (e.g., training, testing and evaluation) 
can be offloaded on HPC machines using interlink to deploy software con-
tainers. Docker images, including the DTE core frameworks and libraries 
for climate data processing, are provided for supporting the execution of 
the DT applications in a portable way. Such images are then translated 
into Singularity images in order to be deployed on HPC infrastructures. 
In particular, a testbed has been implemented in the context of the inter-
Twin project allowing users to specify their images from a JupyterHub 
interface which can be transparently deployed via interLink (following 
Section 5.2) on multiple HPC infrastructures, such as the Vega EuroHPC 
cluster.

In the second workflows, the DT user can select a pre-trained ML 
model from the registry for running analysis on extreme events. Jupyter 
Notebooks are provided as main tools for interactive analysis and visual-
ization using the pipelines provided by the thematic software modules. 
Workflows based on Ophidia can be used as part of the pipelines (e.g., 
pre-processing). Also in this case, the containers for running the note-
books can be offloaded on a Cloud or HPC machine.

For both workflows, training and inference data is accessible from 
the interTwin Data Lake based on Rucio.

6.3.  Non ML-based digital twins application

The DTE supports the development of non ML-based DT Applica-
tions, based on physics-based models such as the Post-Flood Analysis 

in coastal regions whose description is available on the interTwin web-
site44

7.  Interoperability with destination earth (DestinE)

A cornerstone of the interTwin project is its emphasis on interoper-
ability, crucial for the seamless integration and collaboration between 
different DTs initiatives across the globe. Although interoperability as a 
whole is desirable, realistically interTwin focuses on the interoperabil-
ity with the important EC initiative of DestinE for which there will be 
some examples in the following sections.

The interTwin architecture is designed with a strong focus on stan-
dards compliance, ensuring that its components and interfaces adhere 
to internationally recognized standards for data exchange, security, and 
communication. By aligning with standards such as TOSCA and CWL, 
interTwin ensures that its DTs can interact seamlessly with other sys-
tems, regardless of their underlying technology platforms. This also al-
lows multiple digital twins deployed on DTE to access the same curated 
datasets through standardized APIs, rather than duplicating ingestion 
pipelines. For example, if two DTs require Sentinel-2 imagery, both can 
query the federated catalog and retrieve harmonized EO products

A commitment to open-source development underpins the interTwin 
project’s approach to interoperability. By making key components of its 
architecture open source, interTwin encourages community contribu-
tions and the development of complementary tools and extensions. This 
openness fosters a vibrant ecosystem around the interTwin platform, en-
hancing its interoperability through community-driven innovation and 
adoption.

To validate its interoperability strategies, interTwin employs exten-
sive testing methodologies centered around real-world use cases. By en-
gaging with partners from various domains to conduct interoperability 
tests, the project identifies potential integration challenges and refines 
its approaches accordingly. This use case-driven testing ensures that the 
interTwin infrastructure remains adaptable and capable of integrating 
with a broad spectrum of Digital Twin initiatives.

Interoperability with external initiatives like DestinE is essential for 
maximising the potential of the DTE. DestinE, a flagship initiative of the 
European Commission, aims to develop a high-precision digital model 
of the Earth to monitor and predict environmental phenomena. The in-
teroperability of the DTE with DestinE focuses mainly on data sharing to 
enable environmental DTs from interTwin to access and expose datasets 
from/to DestinE.

7.1.  Overview of DestinE and interoperability points

DestinE45 is designed to develop a Digital Twin of the Earth that 
can simulate the interactions between natural and human activities with 
high fidelity. It incorporates various domains, such as climate, weather, 
oceans, and biodiversity, to provide insights into global change and sup-
port decision-making at both local and global levels. By linking the DTE 
with DestinE, the project aims to improve the accuracy of environmental 
modelling and forecasting.

7.2.  DestinE digital twin engine (DTE)

The DestinE DTE is the backbone for developing and operating Dig-
ital Twins. The interTwin DTE’s interoperability with DestinE ensures 
that models and data from the DTE are compatible with DestinE’s in-
frastructure, allowing DTs developed within the DTE to be deployed in 
DestinE’s environment.

Key integration features include:

44 https://www.intertwin.eu/intertwin-use-case-flood-early-warning-in-
coastal-and-inland-regions
45 https://destination-earth.eu/
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• Standardized Data Formats: The DTE adheres to data standards 
used by DestinE, such as NetCDF, Zarr, and other geospatial data 
formats.

• Federated Data Management: The DTE supports federated data 
management, aligning with DestinE’s data lake approach, which al-
lows for seamless access to distributed datasets across multiple do-
mains.

7.3.  DestinE data lake

The DestinE Data Lake is a federated data infrastructure designed 
to store and manage vast amounts of Earth observation data, climate 
models, and other geospatial datasets. Interoperability between the DTE 
and the DestinE Data Lake ensures that data generated or processed by 
the DTE is available to the broader scientific community involved in 
DestinE.

Key points of interoperability include:
• Data Ingestion and Sharing: The DTE can ingest data from the Des-
tinE Data Lake allowing models within the DTE to use the most cur-
rent and comprehensive datasets available.

• Data Contribution: Simulations and models generated by the in-
terTwin DTE, especially in environmental domains like flood risk 
assessment or climate impact simulations, can be accessed via the 
DestinE Data Lake, contributing to the overall repository of data for 
global environmental monitoring.

• APIs for Data Access: The DTE provides APIs that are compatible 
with DestinE’s data access protocols (based on STAC APIs46), ensur-
ing that researchers can retrieve data from both the DTE and DestinE 
without technical barriers.

7.4.  DestinE core service platform (DESP)

The Core Service Platform (DESP) of DestinE provides the computa-
tional resources and tools necessary for running services user oriented 
simulations and data processing tasks close to where the Data are gener-
ated. DestinE offers the possibility to onboard services on the DESP cloud 
platform and to integrate with the suite of services available there. The 
onboarding of some of the interTwin services into the DESP is one of 
the aspects which will ensure sustainability of the interTwin services.

Another challenge is ensuring secure and authorised access to shared 
data and computational resources. The DTE integrates AAI systems that 
are compatible with DestinE’s security protocols, ensuring that data 
sharing and model execution comply with strict security standards.

8.  Conclusions

interTwin’s contributions to the field of Digital Twins are multi-
faceted and impactful. By developing a federated computing framework 
and an advanced data management system, interTwin has addressed 
the critical needs for scalability and efficient data integration in Digital 
Twin deployments. In our contribution, integration is a multi-faceted 
approach that involves AAI across the distributed infrastructures and 
services provided; seamless usage of distinct compute resource provi-
sioning models (cloud orchestration, batch system, etc.); automated ex-
ecution of multi-step workflows across geo-distributed infrastructures 
that involve Cloud and HPC and a federated data storage layer com-
posed by multiple data storage providers with different technologies.

One of the hallmark achievements of interTwin is its advancement 
of interoperability among Digital Twin initiatives. Through the adop-
tion of international standards, the implementation of flexible integra-
tion mechanisms, and active participation in collaborative frameworks, 
interTwin has played a pivotal role in fostering a more unified and col-
laborative Digital Twin ecosystem. This emphasis on interoperability not 

46 https://stacspec.org/

only facilitates seamless data exchange and system integration but also 
encourages innovation and shared advancements in the technology.

The impact of the interTwin project extends beyond the immedi-
ate advancements in Digital Twin technologies. By enabling more effi-
cient, scalable, and interoperable Digital Twin solutions, interTwin con-
tributes to the acceleration of research and development across various 
fields, from environmental monitoring and healthcare to smart cities and 
advanced manufacturing. Looking forward, the project’s open-source 
approach and community engagement initiatives promise to sustain a 
vibrant ecosystem of developers, researchers, and industry practitioners 
who will continue to evolve and expand the capabilities of Digital Twin 
technologies.

Future directions for interTwin and other similar initiatives are to-
wards interoperability, using a common architectural framework (be-
yond efforts by NIST and others) and developing a common language 
and glossary.
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