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The 1-dimensional Hubbard Hamiltonian with open boundaries and 
nearest neighbour hopping:  

 HH = − tH
L−1

∑
i = 1

σ = ↑ , ↓

(c†
iσci+1σ + c†

i+1σciσ) + U
L

∑
i

ni↑ni↓

• Foundational model to capture some qualitative behaviour of correlated 
fermions on a lattice. 

• Ground-state properties of the Hamiltonian describe the behaviour. 

How hard is it to find this ground-state?
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The Hubbard model
 lattice sizeL =
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 lattice sizeL =
Classical algorithms
Exact diagonalization

Lanczos algorithm

• Exact calculation of the eigenvalues and eigenvectors of . 
• Hilbert space dimension ( ) for  fermions and  spin-  fermions 

. 

• Memory: , Number of operations: 

HH
D N N↓ ↓

D = ( N
N↓)

2

O(D2) O(D3)

• Finding the low lying eigenstates and eigenvalues by repeated 
application of . 

• Memory: , Number of operations: , where  is the 
number of Lanczos iterations.

HH |ψ⟩
O(nD) O(nLD) n
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 lattice size L =

Non-linear algebraic equations for quantum numbers  and . {k1, k2…kN} {λ1, λ2…λN↓
}

2kj(L + 1) = 2πIj + ∑
b=±1

N↓

∑
r=1

ϕ(2 sin kj + 2bλr)

∑
b=±1

N

∑
l=1

ϕ(2b sin kl + 2λr) = − 2πJr + ∑
b=±1

N↓

∑
s≠1

ϕ(λr + bλs)

where ϕ(x) = − 2 arctan(2x /U )

 equations for a half-filled lattice 
3L
2

(2N↓ = N = L)

• Need to be solved numerically for finite  
• Root finding  polynomial time in  

L
→ L

 for ground-stateIj = j, Jr = r

E = − 2
N

∑
j=1

cos kj

Classical algorithms
Bethe-ansatz equations



H(s) = − tH
L−1

∑
i = 1

σ = ↑ , ↓

(c†
iσci+1σ + c†

i+1σciσ) + sU
L

∑
i

ni↑ni↓

H(0) = − tH
L−1

∑
i = 1

σ = ↑ , ↓

(c†
iσci+1σ + c†

i+1σciσ) adiabatic H(1) = HH

Strategy of adiabatically evolving from the kinetic energy part to the full Hubbard 
Hamiltonian:

Quantum annealing
 lattice sizeL =

6

i
d
dt

|ψ(t)⟩ = H(t) |ψ(t)⟩

By solving the TDSE, we can calculate state  from ,ψ(s = 1) ψ(s = 0)



Gate-based simulations of quantum annealing

• We simulate quantum annealing on a gate-based quantum computer. 

Steps for the simulation of quantum annealing: 

1. Transform fermionic Hamiltonian to qubit Hamiltonian 

2. Construct circuit for preparing initial state  

3. Prepare circuit for time evolution to  

4. Calculate the energy 

ψ(s = 0)

ψ(s = 1)

⟨ψ |HH |ψ⟩

Time required to find the ground-state using quantum annealing? 
Simulate and find out.



• Using this, the annealing Hamiltonian transforms into,

H(s) = −
tH
2

2L−1

∑
i = 1
i ≠ L

(XiXi+1 + YiYi+1) +
sU
4

L

∑
i=1

(I − Zi)(I − Zi+L)

Gate-based simulations of quantum annealing

• We need to map the fermionic operators to qubit operators 
• JW transformation:

Jordan-Wigner transformation

c†
i →

1
2

Z1…Zi−1(Xi − iYi)

ci →
1
2

Z1…Zi−1(Xi + iYi),

 lattice sizeL =



c†
k1.

c†
kN

= Q
c†

i1.
c†

iN

It turns out:       

where  

Q = G1G2 . . . Gng

Ga(θ) = (cos(θa) −sin(θa)
sin(θa) cos(θa) )

Zhang Jiang et al., PRA 9, 044036 (2018)
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Gate-based simulations of quantum annealing
Initial-state preparation

Ground-state of   

where ,       with .

H(0) → |ψ(0)⟩ = c†
k1↑

c†
k2↑

…c†
kN↑↑…c†

kN↓↓ |0⟩

c†
kσ =

2
L + 1

L

∑
j=1

sin(kj)c†
jσ k =

mπ
L + 1

m = 1,2,…, L

↓

 lattice sizeL =



Given , the sequence of Givens rotations can be calculated in an efficient way.Q

 
 

for   

ng = O(L2)
Depth = L − 1

2N↓ = N = L
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Zhang Jiang et al., PRA 9, 044036 (2018)

A circuit that implements a Givens 
rotation on neighbouring sites         

           G ( π
2 ) (

c†
j

c†
j+1)

q[0]

q[1] RY
(pi / 2)

 lattice sizeL =
Gate-based simulations of quantum annealing
Initial-state preparation

Full circuit to prepare initial-state for a 
system with L = N = 5,N↓ = 2 →

↓



The final state after quantum annealing is given by the solution to the 
TDSE, 

               under  with |ψ(TA)⟩ = U(TA,0) |ψ(0)⟩ H(s) s =
t

TA
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We use the second order product-formula algorithm

U(TA,0) ≈
n= TA

τ

∏
n=1

(ei tHτ
4 XXe−i Unτ2

8 ZZei tHτ
2 YYe−i Unτ2

8 ZZei tHτ
4 XX)

XX =
2L−1

∑
i = 1
i ≠ L

XiXi+1, YY =
2L−1

∑
i = 1
i ≠ L

YiYi+1, ZZ =
L

∑
i=1

(I − Zi)(I − Zi+L)

Gate-based simulations of quantum annealing
Suzuki-Trotter product-formula algorithm

 lattice sizeL =
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ei tHτ
2 XX ei tHτ

2 YYe−i unτ2
8 ZZ

Gate-based simulations of quantum annealing
Circuits

The circuits contain sequences of only gates of the form ,  

and .

ei tHτ
2 XX ei tHτ

2 YY

e−i unτ2
8 ZZ

⋮⋮⋮
• Gates required to implement one trotter-step   
• Gates required to implement complete time-evolution  

→ O(L)
→ O(L × TA(L))

q[0]

q[1]

q[2]

q[3]

H

H

H

H

RZZ
(pi/2)

RZZ
(pi/2)

H

H

H

H

q[0]

q[1]

q[2]

q[3]

RX
(-pi / 2)

RX
(-pi / 2)

RX
(-pi / 2)

RX
(-pi / 2)

RZZ
(pi / 2)

RZZ
(pi / 2)

RX
(pi / 2)

RX
(pi / 2)

RX
(pi / 2)

RX
(pi / 2)

q[0]

q[1]

q[2]

q[3]

RZ
(-pi)

RZ
(-pi)

RZ
(-pi)

RZ
(-pi)

RZZ
(pi / 2)

RZZ
(pi / 2)



α(L) ∝ L1.238

TA ∝
L0.62

ΔE*
→

←

Results
• After constructing circuits for  up to 20 and a range of , we simulate them using 

the high-performance Jülich Universal Quantum Computer Simulator. 
• We calculate . 

L TA

ΔE = ⟨ψ(TA) |HH |ψ(TA)⟩ − E0

 lattice sizeL =

for a certain value of the energy 
residue , when  ϵ(L) ΔE ≤ ϵ(L)

ΔE ≈
α(L)
T2

A

For a desired precision 
, if  ΔE* ≈ ϵ(L*) L < L*

U/tH = 4
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ϵ(L) ∼ L−0.7

Results

↓

 lattice sizeL =

For , where , 

  

L > L* ΔE* > ϵ(L*)

TA < T′￼A ≈
α(L)
ϵ(L)

→

←

TA < T′￼A ∝ L0.995
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• From the adiabatic theorem, we have a bound for the transition 
probability:

1 − ∥⟨E0 |ψ(TA)⟩∥2 ≤
1

T2
A

∥ ·H(0)∥
Δ2(0)

+
∥ ·H(1)∥
Δ2(1)

+ ∫
1

0 (7
∥ ·H∥2

Δ(s)3
+

∥ ··H∥
Δ(s)2 ) ds

2

Comments on the adiabatic theorem

• Large    behaviour of the transition probability. 

• If , the leading order term in the bound changes to 
.

TA → T−2
A

·H(0) = ·H(1) = 0
T−4

A

Sabine Jansen et al., J. Math. Phys. 48, 102111 (2007)



H(s) = − tH
L

∑
⟨i, j⟩,σ

(c†
iσcjσ + c†

jσciσ) +
sin(πs − π /2) + 1

2
u

L

∑
i

ni↑ni↓

Results
Sinusoidal schedule

 lattice sizeL =

α(L) ∝ L2.487←When  ΔE ≤ ϵ(L)
ΔE ≈

α(L)
T2

A

For a desired precision 
, if  ΔE* ≈ ϵ(L*) L < L*

TA ∝
L0.62

4 ΔE*
→



• We discussed classical algorithms to find the ground state of the one-
dimensional Hubbard model. 

• We demonstrated how to implement the algorithm of quantum 
annealing on a gate-based quantum computer detailing the involved 
steps for the problem under consideration. 

• Concluding with the analysis of the simulation results, we showed that 
the time required to find a reasonable estimate of the ground state of 
the one-dimensional Hubbard model scales at most linearly using 
quantum annealing. 
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Summary

Thank you very much!


