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The Hubbard model

The 1-dimensional Hubbard Hamiltonian with open boundaries and
nearest neighbour hopping'

H = — 1y Z (CG l+10‘+c ClO')+U2 Hiphy)
1 =1
c=1,1

* Foundational model to capture some qualitative behaviour of correlated
fermions on a lattice.

« Ground-state properties of the Hamiltonian describe the behaviour.

How hard is it to find this ground-state?
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Classical algorithms

Exact diagonalization

- Exact calculation of the eigenvalues and eigenvectors of H;.
- Hilbert space dimension (D) for N fermions and N, spin-| fermions

D = (A}
={w, )
» Memory: O(D?), Number of operations: O(D?)

Lanczos algorithm

* Finding the low lying eigenstates and eigenvalues by repeated
application of Hy; | ).

« Memory: O(nD), Number of operations: O(nLD), where n is the
number of Lanczos iterations.
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Classical algorithms

Bethe-ansatz equations
Non-linear algebraic equations for quantum numbers {k;, k,...ky} and {4;, 4,.. ./1Nl}.

N,
2k(L + 1) =2zl + Z Z $(2sink; + 2b4,) where ¢p(x) = — 2 arctan(2x/U)
b==x=1 r=1

N N,
Z Z $(2bsink,+24,) = = 2nJ, + Z Z P4, + bAy) IJ = J,J. = r for ground-state
b=%1 I=1 b=1 s#1

N
E=—22005kj s |
J=1 10

3L —15 A
EN equations for a half-filled lattice 2N = N=1)

» Need to be solved numerically for finite L.

—35

« Root finding — polynomial time in L R S

L
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Quantum annealing

Strategy of adiabatically evolving from the kinetic energy part to the full Hubbard
Hamiltonian:

H(s) = —ty Z (c c,+16+c+1 Cw)+SUZ N1y
i_

c=1,1

H(0) = —t,, (cf cirip et i) M H(L) = Hy,
+lo

_>II

: l

]
o =

By solving the TDSE, we can calculate state (s = 1) from y (s = 0),

'il (D)) = H@®) |w(2))
ldt Y = v
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Gate-based simulations of quantum annealing

Time required to find the ground-state using quantum annealing?
Simulate and find out.

* We simulate quantum annealing on a gate-based quantum computer.

Steps for the simulation of quantum annealing:

1. Transform fermionic Hamiltonian to qubit Hamiltonian
2. Construct circuit for preparing initial state y/(s = 0)
3. Prepare circuit for time evolution to (s = 1)

4. Calculate the energy (v | Hy | w)
‘ o0
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Gate-based simulations of quantum annealing

Jordan-Wigner transformation

* We need to map the fermionic operators to qubit operators
« JW transformation:

1

l

1
Ci —> Ezl. . ’Zl—l(Xl + lYl)’

 Using this, the annealing Hamiltonian transforms into,

tH 2L—1 sU L
H(s) = - EY i; (XiXip + 1Y) + e 1221 U —=2Z)I—-2Z,p)
i#L
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Gate-based simulations of quantum annealing

Initial-state preparation

_ — T AT i i
Ground-state of H(0) — |y(0)) clecsz...ckNTT...CkNll 10)

where ¢/ = - isin(k')cT k = e withm = 1,2,..., L
o \/L_I_lj:l J)Cip I+ 1 2., L.

/C]jl\ (Cif\ It turns out: Q = GG, . .. Gng
=0l cos(6,) —sin(6,)
here G (0) =
) ) T A0) <sin(9a) cos(8),)

Zhang Jiang et al., PRA 9, 044036 (2018) ]
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Gate-based simulations of quantum annealing

Initial-state preparation

Given (), the sequence of Givens rotations can be calculated in an efficient way.

A circuit that implements a Givens
rotation on neighbouring sites

o(3)()
I o ¢

Full circuit to prepare initial-state for a
systemwith L =N =5,N, =2 —

Zhang Jiang et al., PRA 9, 044036 (2018)
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n, = O(L?)
Depth =L — 1
for2Ny =N =1L
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Gate-based simulations of quantum annealing

Suzuki-Trotter product-formula algorithm
The final state after quantum annealing is given by the solution to the
TDSE,

lw(T,)) = U(T4,0) | w(0)) under H(s) with s = TL
A

We use the second order product-formula algorithm

Ty

n=—- T
g7 Unt? - IHT Unt? IH?
U(TAao) ~ I I (elTXXQ_l n ZZ@ 2 YYe_l E ZZe TXX)

2L—1 2L—1 L

XX= Y XX, YY = Z YYir,  ZZ=Y (U-Z)I~Zy)
i=1 =1 i=1
o P £ L
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Gate-based simulations of quantum annealing

Circuits o
H
The circuits contain sequences of only gates of the form % =2 XX ry
2
__;unt
and e~ 8 4%
oA XX = oYY
RX
qlo] . I RZ7 . q[0] - atol I (l}ZZ) <p /z>
tyTt RX HT
an ¢« B a [l | R%3, al1] i
o @y @ o
RZZ Y (tr )
q[3] . (ta) . q(3] - as]
° o °
° o °
° o ¢

- Gates required to implement one trotter-step — O(L)
- Gates required to implement complete time-evolution — O(L X T,(L))
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Results

- After constructing circuits for L up to 20 and a range of 7, we simulate them using
the high-performance Julich Universal Quantum Computer Simulator.

« We calculate AE = (w(T,) | Hy |w(Ty)) — E,.

_/V"
] v
100_ -/r.
1 101 4 /,J‘/‘
1071 3 ] _—T _ .m
P‘/‘ ’P””
Ly -
< 10_2_5 3 ’,fF”
] \ 3 AE’ -
] ’\‘ g 1004 =77
1072 5 1 oy ’’’’’’
] Ult, = 4 \l‘wy | ® Uty=4 —— 0.04L1*
1075 H | W Uty=8 --- 0241219
| : 1074 vV Uty=16 —— 1.64L1%
10 T - | | T
Ta L
for a certain value of the energy For a desired precision 1238
residue E(L), when AE < G(L) AE* ~ €(L*) if [ < L* < a(L) XX L .
a(L) 0.62
AE ~ = . T L .
X —— 4
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Results

AE

[, = lattice size

(a)
1] -
1019 % —— 0.09L70:68 x -
] el 0.03 4%
L s 101 5
100 4 >
10° 5
1071 -
:
1071 5
1072 5
1072 4
10734 ...
1073 5
10° 10! 10°

For L > L*, where AE* > e¢(L*),

T,<T,~ &L)
4 e(L)

Ty < Ty o LY
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Comments on the adiabatic theorem

 From the adiabatic theorem, we have a bound for the transition
probability:

2
1 | [|HO H(1 . HI||? H
A 0

AZ(0) AZ(1) A(s)?  A(s)?

. Large 1, — TA_2 behaviour of the transition probability.

. If H(0) = H(1) = 0, the leading order term in the bound changes to
T*.
A

Sabine Jansen et al., J. Math. Phys. 48, 102111 (2007) |
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Results

Sinusoidal schedule

(i.j)0

L
H(s) = —ty Z (c;cja + ijjcl-(,) +

[ = lattice size

L
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sin(zs — m/2) + 1
:Z lt[:z:fllirr%i
]
_ (b)
| —— 0.02L2478 4
10?4
(]
AE * 100
10714 : : : —

2 x 100 3x10%° 4 x10° 6 x 10° 10!

L

For a desired precision

2.487
AE* ~ e(L¥), L < L* | = all) <L

LO.62
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Summary

» We discussed classical algorithms to find the ground state of the one-
dimensional Hubbard model.

* We demonstrated how to implement the algorithm of quantum
annealing on a gate-based quantum computer detailing the involved
steps for the problem under consideration.

« Concluding with the analysis of the simulation results, we showed that
the time required to find a reasonable estimate of the ground state of
the one-dimensional Hubbard model scales at most linearly using
gquantum annealing.

Thank you very much!
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