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Performance of quantum annealing for 2-satisfiability problems with multiple satisfying assignments
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Using a specially constructed set of hard 2-satisfiability problems with four satisfying assignments, we study
the scaling and sampling performance of numerical simulation of quantum annealing as well as that of the
physical quantum annealers offered by D-Wave. To this end, we use both the standard quantum annealing
and reverse annealing protocols in both our simulations and on the D-Wave quantum annealer. In the case
of ideal quantum annealing the sampling behavior can be explained by perturbation theory and the scaling
behavior of the time to solution depends on the scaling behavior of the minimum energy gap between
the ground state and the first-excited state of the annealing Hamiltonian. The corresponding results from the
D-Wave quantum annealers do not fit to this ideal picture, but suggest that the scaling of the time to solution
from the quantum annealers matches those calculated from the equilibrium probability distribution.
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I. INTRODUCTION

Optimization problems are an important class of compu-
tational problems that find their applications across many
fields that include finance, medicine, logistics, scheduling,
chemistry allocation of resources, etc. [1–13]. All real-world
optimization problems involve a large number of variables,
which makes them intractable for exact solvers. This is mainly
due to the commonly observed exponential growth of the
search space as the size of such a problem grows, thus im-
posing a limitation on the computational resources required to
implement a brute-force search for the optimal solution.

To circumvent this issue, various heuristic methods have
been proposed for finding the solutions to the optimization
problems, for example, gradient-based methods, variational
methods, and simulated annealing [14–22]. Quantum an-
nealing is a metaheuristic algorithm, inspired by simulated
annealing, wherein thermal fluctuations are replaced by
quantum fluctuations [23–27]. It is conjectured that owing
to mechanisms like quantum tunneling, quantum annealing
might be more efficient for searching the solution space of
an optimization problem compared to simulated annealing
where the state of the system can get trapped in a narrow
potential barrier if it becomes high [28–38]. The availability
of commercial quantum annealers in recent years, for exam-
ple, the ones offered by D-Wave Quantum Systems Inc. with
more than 5000 qubits, has facilitated research in the direction
of finding applications for quantum annealing and also in
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gauging its performance for solving them compared to other
approaches [33,34,39–45].

Most of the previous studies [29,33,34], including ours
[46,47], have focused on the performance of quantum anneal-
ing for solving optimization problems with unique solutions.
In this paper, we shift our attention to the efficiency of the
approach for solving cases that have more than one possible
solution, which is the case for many real-world optimization
problems. Apart from this, from a practical point of view,
for real-world optimization challenges, it might be useful to
obtain solutions that satisfy all the constraints, even if they
are not the optimal solutions. In such cases, the capability
of quantum annealing to yield low-energy solutions, even
if not the optimal ones, becomes a relevant measure for its
performance.

The suitability of a certain method to solve problems with
more than one solution can be judged using several criteria.
The most obvious of them is the success probability, which
is defined as the sum of the probabilities of obtaining the
possible solutions. If the objective is to assess the scaling per-
formance of an algorithm, a convenient metric is the scaling
of the success probability or the time to solution (TTS) as a
function of the problem size. Another relevant criterion for
cases with more than one solution is the efficiency of the al-
gorithm to yield all its solutions. This aspect has been tackled
in the past for the transverse Ising model in Ref. [32], where it
was observed that for certain problems, the addition of higher-
order transverse couplings to the annealing Hamiltonian might
help alleviate the issue of unequal sampling probabilities of
the ground states.

In this study, we focus on the sampling and scaling perfor-
mance of the numerical implementation of the ideal standard
quantum annealing algorithm as well as that of the ideal
reverse annealing protocol and compare them with those ob-
tained from a real quantum annealing system for solving sets
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of hard 2-satisfiability (2-SAT) problems with four satisfying
assignments. It is worth noting that in our paper, we do not
assume the point of view that quantum annealing should sam-
ple all solutions fairly (certainly not uniformly). Instead, we
investigate whether quantum annealing (ideally or physically
implemented) can be a suitable approach when the goal is
to sample many different solutions to an optimization prob-
lem. In general, the sampling probabilities depend on the
quantum annealing trajectory. Previous works [32,48,49] have
shown that the standard quantum annealing Hamiltonian with
1-local driving Hamiltonian is insufficient to guarantee a fair
sampling. Adding higher-order terms in the transverse initial
Hamiltonian of quantum annealing has been shown to be one
of the ways for improving the fairness of the sampling [32,49].
Another approach to tackle this matter is shown in Ref. [50].

The standard algorithm for quantum annealing requires the
system to start in the ground state of an easy-to-prepare initial
Hamiltonian, typically chosen to be the uniform transverse
field Hamiltonian, i.e.,

HI = −
N∑

i=1

σ x
i , (1)

where σ x
i is a Pauli matrix. With the help of the annealing

parameter, defined as s = t/TA where TA is the total anneal-
ing time, the system is slowly swept towards the problem
Hamiltonian HP encoding the optimization problem to be
solved, so that

H (s) = A(s)HI + B(s)HP, (2)

where functions A(s) and B(s) controlling the anneal-
ing scheme are chosen such that A(0)/B(0) � 1 and
A(1)/B(1) � 1. In our simulations, we use a linear anneal-
ing scheme, defined by A(s) = 1 − s and B(s) = s, whereas
the D-Wave systems implement nonlinear, machine-specific
annealing schedules. The problem Hamiltonian is the Ising
Hamiltonian of the form

HP = −
N∑

i=1

hz
i σ

z
i −

∑
〈i, j〉

Jz
i, jσ

z
i σ z

j , (3)

where σ z
i is a Pauli matrix, hz

i is the applied field acting along
the z direction, Jz

i, j is the coupling between the ith and jth
spins, and 〈i, j〉 denotes the set of coupled spins.

A comparatively less explored variation of the quantum
annealing algorithm is the reverse annealing protocol. Starting
from one of the low-lying eigenstates of Eq. (3), the system is
slowly swept backward (by decreasing s and therefore increas-
ing the strength of the transverse field) until a certain reversal
distance sr [3,51–60]. From there, the system continues again
towards s = 1, like in the standard annealing algorithm, with
an optional waiting time twait at sr . It is conjectured that doing
this might yield a better solution to the encoded optimization
problem than the state in which the algorithm started [58]. In
this work, we explore this version of annealing to study its
efficiency in the context of fairly sampling all the degenerate
ground states of HP using both simulations and D-Wave Ad-
vantage_5.1 (DWAdv).

Our results show that the sampling behavior of the ideal
standard quantum annealing (in the long annealing time

regime and in the absence of temperature effects and noise)
can be explained using perturbation theory. This is in agree-
ment with the idea proposed in Ref. [49]. This, however, is not
found to be the case for sampling probabilities obtained using
DWAdv, which are almost uniform for most of the studied
cases. On the other hand, shifting our focus from the ensemble
of the 2-SAT problems to a specific 14-variable instance that
is found to have an almost zero sampling probability of one
of the ground states using the standard quantum annealing
simulations, we find that the sampling behavior obtained using
the simulations for an ideal implementation of reverse anneal-
ing vastly depends on the choice of the relevant parameters.
Furthermore, in this case, we note a better match of the
sampling probabilities from DWAdv with those obtained nu-
merically.

Furthermore, using both the numerical implementation of
standard quantum annealing and DWAdv, we find an expo-
nential scaling of the time to solution as a function of the size
of the problem, as was the case for the 2-SAT instances with a
unique satisfying assignment in Ref. [47], although the scaling
exponents obtained with DWAdv are significantly smaller.

The content of this paper has been organized as follows.
In Sec. II, we discuss first the problem sets used for this
work. Section III showcases the sampling and scaling results
using standard quantum annealing for degenerate problem
Hamiltonians. In Sec. IV, we show the results for the sam-
pling behavior of the degenerate ground states using reverse
annealing obtained from simulations and DWAdv. Finally, we
summarize our observations in Sec. V.

II. PROBLEM SETS

In this work, we consider sets of hard 2-SAT problems for
testing the scaling and the sampling efficiency of quantum
annealing. A 2-SAT problem is made up of several clauses,
each consisting of two Boolean literals (a Boolean variable xi

or its negation xi for i = 1, . . . , N), i.e.,

F = (L1,1 ∨ L1,2) ∧ (L2,1 ∨ L2,2) ∧ · · · ∧ (LM,1 ∨ LM,2), (4)

where Lα, j represents the jth literal in the αth clause for j =
1, 2 and α = 1, . . . , M. A solution to the 2-SAT instance is
then an assignment to the variables xi’s that makes each clause
true, and hence the 2-SAT problem satisfiable.

In the following sections, we first describe the employed
method for creating these problems, and subsequently, some
of the properties of the resulting sets of cases. We then discuss
the mapping of these problems to a form suitable for quantum
annealing for solving them.

A. Creation of the problems

As the first step in creation of 2-SAT problems, we fix
the number of clauses M. Since the satisfiability threshold,
defined as the ratio of the number of clauses to that of the
variables (N) for which a SAT problem changes from being
satisfiable on average to being unsatisfiable, lies around M ≈
N for 2-SAT problems, we choose M = N + 1. Each clause is
then made to satisfy the following constraints:

(i) the two literals chosen for a clause should correspond
to different variables,
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(ii) each variable should be used at least once in one of the
clauses,

(iii) none of the clauses should be repeated.
We impose these constraints as our objective is to have a

fixed number of variables and clauses in the resulting prob-
lems. In instances where the first or the third constraint is
not satisfied, the effective number of clauses is reduced. The
constraint for using each variable at least once ensures that the
resulting 2-SAT problems indeed involve the desired number
of variables.

After obtaining the 2-SAT problems with clauses subject
to the above-mentioned constraints, we first identify the cases
which are satisfiable. For this, we use the Kosaraju-Sharir’s
algorithm [61] which identifies the strongly connected com-
ponents (sets of vertices reachable from one another) for every
problem from its implication graph, and if a variable and its
negation are found to belong to the same strongly connected
component, the given 2-SAT instance is unsatisfiable. Next,
we discard the cases that are not satisfiable, and from the
resulting set, we find the number of satisfying assignments
of every problem using brute-force search. We then select
the cases with 1, 2, or 4 satisfying assignments. Since the
number of possible assignments grows exponentially with the
size of the problems, it is not possible to obtain problems
with a large number of variables in this way. For this reason,
we restrict ourselves to sets with 6 � N � 20. To this end,
we used workstations equipped with Intel Core i7-8700 and
32 GB memory for problems with N � 13, while for the larger
problems we employed the supercomputer JUWELS of the
Jülich Supercomputing Centre at Forschungszentrum Jülich
[62]. Each set corresponding to a given N and one of the
chosen values for the number of satisfying assignments has
at least 100 instances.

B. Properties of the 2-SAT problems

Next, we focus on discussing some of the properties of the
sets of problems that have been obtained as explained in the
previous section.

For any bit string of N binary variables, the probability that
one K-SAT clause, involving K different variables, is satis-
fied is 1 − 2−K , K � N . Assuming that there are M different
clauses, formed without imposing additional constraints, the
probability that all M clauses are simultaneously satisfied is
(1 − 2−K )M . Summing over all different bit strings of the N
binary variables, the expected number of satisfying assign-
ments is [63,64]

〈μ〉 =
(

1 − 1

2K

)M

2N . (5)

In Fig. 1 we show the number of satisfying assignments,
that is the average degeneracy of the ground state of the 2-SAT
problems, as a function of the problem size for M = N + 1 for
6 � N � 20. From this figure, it is clear that for the obtained
set of 2-SAT instances, the average degeneracy of the ground
state matches well with its theoretical estimate according to
Eq. (5), although there are some differences in the two values.
These are a consequence of the additional constraints that are
imposed while creating the clauses of the 2-SAT problems.
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FIG. 1. Average number of satisfying assignments μ for the
2-SAT problems as a function of the problem size where 6 � N � 20
and M = N + 1.

Next, while keeping the problem size fixed at N = 16,
we study the dependence of the average degeneracy of the
ground state of the 2-SAT problems as a function of the
number of clauses M = N + c, where c varies from 0 to 6.
The corresponding result is shown in Fig. 2. While there is
an overall similarity in the trend of the average degeneracy,
also here there are slight deviations between the theoretical
value of the degeneracy and the one obtained for the sets of
2-SAT problems created which can be attributed to the way in
which these instances are created. Additionally, Figs. 1 and 2
suggest that it becomes progressively difficult to find instances
with ground-state degeneracy 1, 2, or 4. Indeed, the frequency
with which we find cases with a unique satisfying assignment
scales exponentially (data not shown) with increasing problem
size. For example, for the 18-variable set, we only found
around four instances with unique solutions per 1 × 107 cases
generated. This limits the number of problems that can be
created in this way.
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FIG. 2. Average number of satisfying assignments μ for the
2-SAT problems as a function of the number of clauses M, for
N = 16.
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FIG. 3. Average degeneracy of the first-excited states (FES) of
the problem Hamiltonians corresponding to the 2-SAT problems as a
function of the problem size where 6 � N � 20 and M = N + 1.

We now look at the scaling of the average degeneracy of
the first-excited state (FES) for the obtained sets of 2-SAT
cases with 1, 2, and 4 satisfying assignments as a function
of the problem size, where 6 � N � 20 and M = N + 1. This
is shown in Fig. 3. From these results, we see that for all three
cases with different ground-state degeneracies, the average
degeneracy of the first-excited state increases exponentially
as the problem size grows with a similar scaling exponent of
0.311. This suggests that for every two additional variables in
these problems the degeneracy of the first-excited state almost
doubles.

C. Reformulation of 2-SAT problems as Ising Hamiltonian

To employ quantum annealing for solving the 2-SAT prob-
lems, we first need to bring them to a form that is suitable for
the quantum annealing algorithm. For the D-Wave systems,
this is the QUBO or Ising representation of the problem.
In this work, we choose to reformulate the obtained set of
problems to Ising problems. For this, we map every clause of
a given 2-SAT instance to the Ising model with Hamiltonian

C2-SAT =
M∑

α=1

(ε(α,1)si[α,1] − 1)(ε(α,2)si[α,2] − 1), (6)

where i[α, j] represents the variable i that is involved in the
jth term of the αth clause for i = 1, . . . , N , j = 1, 2, and α =
1, . . . , M. If this variable is xi then ε(α, j) = 1, whereas if it is
its negation xi then ε(α, j) = −1.

At this point, it should be noted that while 2-SAT problems
can be solved in polynomial time as decision problems, the
problem of counting all solutions of a 2-SAT problem is
#P-complete [65].

III. STANDARD QUANTUM ANNEALING

As discussed previously, the standard quantum annealing
Hamiltonian starts from the transverse Ising Hamiltonian,
with a decreasing strength of the transverse field and an in-
creasing strength of the longitudinal fields and couplings. For

numerically solving the time-dependent Schrödinger equa-
tion (TDSE), we make use of the second-order product
formula algorithm [46,47] and work with the full Hilbert
space. The sampling probabilities of the four ground states
are then obtained by computing the overlap of the result-
ing state with the known ground states of the problem
Hamiltonian. On the other hand, the sampling probabilities
using the quantum annealer are obtained by determining
the ratio of the number of times one of the ground states
is sampled to the total number of samples. Using the
above-mentioned set of 2-SAT problems with four satisfying
assignments, we first assess the fairness of quantum annealing
in sampling the four ground states of the problem Hamilto-
nian. Furthermore, using the obtained success probabilities
we also study the scaling of the time to solution (TTS) and
inverse of success probability (1/p) obtained using quantum
annealing for solving these instances and compare it with
that for the 2-SAT problems with a unique solution studied
previously [47].

A. Sampling efficiency

We start our analysis by focusing on the efficiency of stan-
dard quantum annealing to fairly sample the four ground states
of the 2-SAT problems fairly. More specifically, we test if
quantum annealing can yield the different degenerate ground
states of a problem with comparable probabilities.

1. Simulation results

We start by discussing the numerically obtained sampling
results for solving the given set of 2-SAT instances with four
satisfying assignments using standard quantum annealing. To
this end, we choose three different annealing times, namely,
TA = 10, 100, 1000, and record the resulting sampling prob-
abilities for all the 100 instances belonging to sets with 6 �
N � 20. It is worth noting here that in the D-Wave energy
scales, the annealing times TA = 10, 100, and 1000 in our
simulations approximately correspond to 0.5, 5, and 50 ns.

The first observation is that for a majority of the prob-
lems, the sampling probabilities of the four ground states are
comparable. This observation can be understood based on the
typical energy spectra of these problems (obtained here using
the Lanczos algorithm working with the full Hilbert space),
an example of which is shown in Fig. 4 for a 14-variable
2-SAT problem. We find that the energy spectrum exhibits
a concatenation of anticrossings between the ground state of
the annealing Hamiltonian and its fourth-excited state, i.e.,
the anticrossings between the subsequent energy levels oc-
cur at increasing values of the annealing parameter s. When
the annealing times are not sufficiently long for an adiabatic
evolution, this arrangement facilitates the leakage of the am-
plitude present in the ground state out of the ground state
subspace. In such cases, quantum annealing might fail in
finding all the solutions to the problem.

Inspecting more closely, we find that while for a majority
of the cases under consideration, the sampling probabilities
of the four ground states are fair for long annealing times,
there are a considerable number of instances for which it is
not the case. In what follows, we focus on three examples
of 14-variable 2-SAT problems, specified in Table VIII of
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FIG. 4. Energy spectrum of a 14-variable 2-SAT problem
Hamiltonian labeled as the problem “230” with four degenerate
ground states.

Appendix A, that exhibit three distinct sampling behaviors
that are observed in the regime of sufficiently long annealing
times.

(i) Fair sampling. As our first case, we choose the
14-variable instance labeled as problem “1” for which quan-
tum annealing can yield the four ground states fairly for TA =
100 and 1000. However, for the short annealing time TA = 10,
the state of the system can deviate from the ground state
following the cascade of anticrossings that these problems
typically exhibit in the spectrum (see Fig. 4). This can lead
to a significant decrease in the total success probability, and
the sampling behavior of the four ground states might vastly
vary.

(ii) Unfair sampling. For a few other cases like instance
labeled “3” in Table VIII, the sampling probabilities of the
four ground states remain unequal even for long annealing
times. Table I shows the sampling probabilities for this prob-
lem for different annealing times, from where it is clear that
the sampling probabilities of the ground states |ψ1

0 〉 and |ψ4
0 〉

remain significantly different from those of the states |ψ2
0 〉 and

|ψ3
0 〉 for all the chosen annealing times. It is also noted that

the sampling probabilities of states |ψ1
0 〉 and |ψ4

0 〉 (|ψ2
0 〉 and

|ψ3
0 〉) are exactly the same up to numerical precision for all the

shown annealing times (see Appendix B for an explanation).
(iii) Total suppression. In more extreme cases, we find

that the sampling probability of one of the ground states can

TABLE I. Sampling probabilities of the four degenerate ground
states |ψ i

0〉, i = 1, 2, 3, 4, of problem “3,” corresponding to different
annealing times TA, as obtained by standard quantum annealing.

State TA = 10 TA = 100 TA = 1000

|ψ1
0 〉 0.0219 0.0917 0.1388

|ψ2
0 〉 0.0622 0.2321 0.3612

|ψ3
0 〉 0.0622 0.2321 0.3612

|ψ4
0 〉 0.0219 0.0917 0.1388

Total 0.1682 0.6476 1.000

TABLE II. Sampling probabilities of the degenerate ground
states |ψ i

0〉, i = 1, 2, 3, 4, of problem “230,” corresponding to differ-
ent annealing times TA, as obtained by standard quantum annealing
Hamiltonian.

State TA = 10 TA = 100 TA = 1000

|ψ1
0 〉 0.1233 0.4427 0.4986

|ψ2
0 〉 0.0742 0.2605 0.2507

|ψ3
0 〉 0.0648 0.0131 9.56 × 10−10

|ψ4
0 〉 0.0589 0.2214 0.2506

Total 0.3212 0.9377 0.9909

be totally suppressed. One such 14-variable instance is given
in Table VIII referred to as problem “230.” The sampling
probabilities of the ground states for this problem are given
in Table II, from where it can be seen that the sampling
probability of the ground state |ψ3

0 〉 is nearly zero for TA =
1000. Such problem instances can, therefore, serve as good
benchmark cases to study whether there is a difference in the
sampling behaviors using ideal implementations of forward
and reverse annealing. Furthermore, such cases can also be
useful for benchmarking the D-Wave annealers against the
ideal behavior.

2. D-Wave results

After having seen the behavior of ideal quantum anneal-
ing using the standard annealing Hamiltonian for sampling
problems with degenerate ground states, we perform similar
experiments using DWAdv. We choose here the default value
TA = 20 µs for the annealing time and set the number of
samples to 10 000. In this case, we find comparable sampling
probabilities of the four ground states for nearly all the in-
stances in the set. Even for the problem “230” which was
noted to have a totally suppressed sampling probability of
the ground state |ψ3

0 〉 in our simulations for TA = 1000, the
four sampling probabilities from DWAdv are given as 0.1552,
0.2470, 0.2765, and 0.3124. Since the annealing time chosen
for our runs on DWAdv is much longer than those used in the
simulations, the differences in the two sampling behaviors are
indicative of the presence of noise and temperature effects in
the D-Wave system which in this case, can be beneficial for
finding all the solutions to the given problems.

3. Perturbation theory

In Sec. III A 1, we discussed the three kinds of sampling
behaviors that were observed for our set of 2-SAT problems
with four satisfying assignments using quantum annealing.
In this section, we attempt to understand the reasons behind
this using perturbation theory. In the long annealing time
limit, the sampling behavior of the ideal quantum annealing
algorithm can be determined by the overlap of the ground
states of the problem Hamiltonian with the ground state of the
instantaneous Hamiltonian in the vicinity of s ≈ 1. The in-
stantaneous ground state of this Hamiltonian can be obtained
using perturbation theory by treating the initial Hamiltonian
HI as a small perturbation to the problem Hamiltonian HP.
However, since the ground state of the problem Hamilto-
nian is degenerate, the choice for the basis vectors for the
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degenerate subspace of the problem Hamiltonian becomes
arbitrary (since in this subspace the problem Hamiltonian
is equivalent to the identity matrix times the ground-state
energy). To apply perturbation theory, it is expedient to
choose a basis that diagonalizes the perturbation matrix within
this subspace. The eigenvectors of perturbation matrix V =
〈ψ i

0|HI |ψ j
0 〉 are thus a valid choice for the basis, where |ψ i

0〉
are the ground states of the problem Hamiltonian in the
computational basis and for i, j = 1, 2, 3, 4. If the lowest
eigenvalue of the perturbation matrix V is nondegenerate, the
addition of a perturbation to the problem Hamiltonian lifts
the degeneracy of the latter. The sampling probabilities of
the ground states of the problem Hamiltonian are then given
as |ai|2 where ν0 = ∑4

i=1 ai|ψ i
0〉 is the ground state of the

perturbation matrix. Next, we take up the example problems
“1” and “30” presented in Sec. III A, and use perturbation
theory to calculate the theoretical sampling probabilities.

The four ground states of problem “1” are |ψ1
0 〉 =

|10101010000000〉, |ψ2
0 〉 = |10101011000000〉, |ψ3

0 〉 =
|10101010000100〉, and |ψ4

0 〉 = |10101011000100〉. The
first-order perturbation matrix for this problem is given by

V =

⎛
⎜⎜⎝

0 −1 −1 0
−1 0 0 −1
−1 0 0 −1
0 −1 −1 0

⎞
⎟⎟⎠. (7)

The ground state of this perturbation matrix is |ν1〉 =
1/2(1, 1, 1, 1). The sampling probabilities of the four ground
states of this instance can therefore be expected to be 0.25,
as is found to be the case for our simulations with long
annealing times. On the other hand, for problem “230” we
have |ψ1

0 〉 = |11110100100101〉, |ψ2
0 〉 = |11110100110101〉,

|ψ3
0 〉 = |10100101000111〉, and |ψ4

0 〉 = |11110100100111〉.
The perturbation matrix for this problem is thus

V =

⎛
⎜⎜⎝

0 −1 0 −1
−1 0 0 0
0 0 0 0

−1 0 0 0

⎞
⎟⎟⎠. (8)

It is evident from Eq. (8) that the ground state |ψ3
0 〉 of

the problem is decoupled from the rest of the subspace. The
ground state of this matrix is given by |ν1〉 = 1/2(

√
2, 1, 0, 1),

and thus for sufficiently long annealing times the sampling
probabilities of the four ground states can be expected to be
0.5, 0.25, 0, and 0.25, respectively. These values are in close
agreement with the sampling probabilities shown in Table II
obtained numerically for this problem for TA = 1000. On the
other hand, in cases where non-adiabatic mechanisms play a
significant role in the evolution of the system, for example
in our simulations corresponding to TA = 10 or for systems
where temperature effects and noise are present, the state of
the system can leak out of the ground-state subspace, and
the ground state of the instantaneous Hamiltonian no longer
dictates the sampling behavior.

As mentioned before, a majority of the cases exhibit
an approximately fair sampling behavior. Each clause of a
2-SAT problem consists of two literals (x1 ∨ x2) and a true
assignment to x1 makes the assignment to x2 flexible, leading
to multiple satisfying assignments that differ by a Hamming

distance of one. This situation often arises when variable x2

is at the end of a branch in the corresponding graph of the
2-SAT instance. Another possible scenario is the existence
of clauses like (x1 ∨ x2) ∧ (x2 ∨ x3), with variables x1 and
x3 being true, which once again makes x2 flexible. Although
there are other scenarios potentially leading to degeneracy, the
above-mentioned possibilities are more likely to happen in a
randomly generated ensemble. As a consequence of this, for
the majority of instances with four satisfying assignments, the
ground states differ by a Hamming distance of one from (some
of) the other ground states. This allows the 1-local driver
Hamiltonian to couple the ground states effectively, resulting
in an approximately fair sampling behavior in most cases of
these 2-SAT problems.

For general problems, when sampling all solutions is
necessary, the standard quantum annealing Hamiltonian, fea-
turing only single σ x terms in the initial Hamiltonian, may be
insufficient. To achieve a more uniform sampling of ground
states, one possible approach, as noted in Refs. [49,66,67],
is to incorporate higher-order transverse couplings into the
initial Hamiltonian.

B. Scaling performance

So far, we looked at quantum annealing using the standard
annealing Hamiltonian only in the context of its efficiency
in sampling the multiple ground states of problems with
more than one solution. We now shift our focus towards the
scaling of TTS99 using quantum annealing for solving such
problems. TTS99 is defined as the compute time required to
obtain the solution to the optimization problem at least once
in multiple anneals, with 99% certainty. Mathematically,

TTS = ln (1 − Ptarget )

ln(1 − p)
TA, (9)

where Ptarget is the target probability, and p is the total success
probability obtained from a single run of the algorithm with
an annealing time TA, which is the sum of the sampling proba-
bilities of the four ground states. In the following, we discuss
the scaling performance of standard quantum annealing using
the results obtained from both simulations and the D-Wave
quantum annealer DWAdv.

1. Simulation results

Using the numerically obtained total success probabilities
for the 2-SAT problems with 6 � N � 20 and four solutions,
we study the scaling of the average TTS99 of these instances
for the three annealing times TA = 10, 100, 1000.

Figure 5 shows the scaling of the median TTS99 as a
function of the system size N for annealing times TA =
10, 100, 1000. As expected from our previous scaling re-
sults for 2-SAT problems with a unique solution studied in
Ref. [47], TTS99 is also found to be exponentially growing
with N for the 2-SAT problems with four satisfying assign-
ments. The median TTS99 in this case scales with exponents
rTTS99 = 0.441, 1.015, and 1.006 for TA = 10, 100, 1000,
respectively. Although these values are slightly better com-
pared to the scaling exponents for the nondegenerate problem
Hamiltonians obtained using the standard quantum annealing
Hamiltonian from [47], in the long annealing time limit, the
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FIG. 5. Numerically obtained scaling of median TTS99 as a
function of the number of variables for TA = 10 (square), TA = 100
(circle), and TA = 1000 (triangle).

scaling behavior of the algorithm is still worse compared to
a simple enumeration of all the possible assignments which
scales with an exponent of 0.693.

Furthermore, from Fig. 5 we observe that while for TA =
1000 the median TTS99 values remain constant as the size of
the problems initially increases, they increase exponentially
for N � 14, and the median values coincide with those cor-
responding to TA = 100. Similarly, TA = 100 also results in
constant values of median TTS99 for a smaller initial range
of N compared to TA = 1000, before increasing exponentially
with the problem size and coinciding with those correspond-
ing to TA = 10 for a few intermediate values of N . One can
understand the reasons behind these observations from the
transition probability versus annealing time scan. This aspect
is discussed in Appendix C.

2. D-Wave results

Focusing next on the results for the success probability
from the DWAdv system for solving the sets of problems with
degenerate problem Hamiltonians, Fig. 6 shows the scaling of
the median TTS99 for TA = 20 µs. As was the case for the
nondegenerate problems in Ref. [47], the scaling exponent for
the given problem sets is also significantly smaller using the
D-Wave system than that obtained from simulations. In this
case, the median TTS99 is found to scale with an exponent of
0.303, which is also significantly smaller than the brute force
search exponent of 0.693. This observation suggests that noise
and temperature effects are dominant in the system and can be,
in some cases, advantageous for the performance of quantum
annealing.

Since our results indicate that DWAdv is not an ideal quan-
tum annealer, as an extension to our analysis, we also compare
the obtained scaling performance to that of the equilibrium
probability distribution. From the D-Wave results, we mainly
note the contribution of only the lowest two energy levels,
which is a manifestation of a low temperature, and therefore
we restrict ourselves to these two levels. The equilibrium
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FIG. 6. Scaling of median TTS99 as a function of the number of
variables obtained using DWAdv for TA = 20 µs.

ground-state probability for the ground state is then given by

pequil
0 = 1

1 + g1

g0
e−β�E

, (10)

where g0 = 4 is the ground-state degeneracy, and g1 is
that of the first-excited state β = C/T for C = h B(s = 1) ×
109/(2kB) = 0.206 K and some corresponding temperature T
(expressed in K), and �E is the energy between the lowest
two energy levels of the 2-SAT problem. Figure 7 shows a plot
of 〈1/p〉 obtained from DWAdv as a function of the problem
size, in comparison to that of 1/pequil

0 obtained from Eq. (10)
using the average value of the first-excited-state degeneracy
for each problem set corresponding to an N and β as a fitting
parameter. In this case, we obtain β = 1.42, which yields
T ≈ 145 mK. Furthermore, from each set of problems, we
show the success probabilities of one of the instances con-
stituting the median Med(1/p) of the DWAdv results, and
calculate the corresponding equilibrium success probabilities
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FIG. 7. Comparison of scaling of the mean and the median
cases obtained from DWAdv with those of the equilibrium1/p for
TA = 20 µs.
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TABLE III. Sampling probabilities of the degenerate ground states |ψ i
0〉, i = 1, 2, 3, 4, of the problem “230,” corresponding to different

annealing times TA, where the reverse annealing time is chosen to be same as the forward annealing time. The initial state is chosen to be |ψ1
0 〉,

the reversal distance is sr = 0.7, and no waiting times are added.

State TA = 10 TA = 50 TA = 90 TA = 100 TA = 1000

|ψ1
0 〉 0.1891 0.4348 0.9011 0.0296 0.2614

|ψ2
0 〉 0.4053 0.2822 0.0495 0.4051 0.3693

|ψ3
0 〉 1.47 × 10−4 2.73 × 10−5 2.87 × 10−6 4.92 × 10−6 3.21 × 10−8

|ψ4
0 〉 0.4031 0.2829 0.0493 0.4852 0.3692

Total 0.9976 0.9990 1.000 1.0000 1.000

for these cases, with the fitting parameter β = 1.53 which
corresponds to T ≈ 135 mK. From these results, we observe
a good agreement between the results from the quantum an-
nealer and the corresponding analytical expression, especially
in the case of 〈1/p〉. In Appendix D, we test this idea for two
other sets of problems and find the trend to still hold.

IV. SAMPLING EFFICIENCY OF REVERSE ANNEALING

We now shift our focus to the sampling efficiency of the re-
verse annealing protocol using both simulations and DWAdv.
In contrast to the previous section, we divert our attention
from the level of the ensemble of the 2-SAT problems to an
interesting instance of a 14-variable, namely, instance 230
whose third ground state is found to have a zero sampling
probability using standard quantum annealing. Starting from
one of the known ground states of this instance, we analyze
the sampling behavior of the four ground states at the end
of the protocol for different choices of relevant parameters.
It is worth mentioning that one of the main motivations for
using reverse annealing is to find states with lower energies
as compared to the initial state, our analysis cannot improve
the solution quality as we already start from the lowest-energy
solution. However, this choice for the initial state is reasonable
for studying the sampling behavior of the protocol.

1. Simulation results

We start by addressing the numerically obtained results
for an ideal implementation of reverse annealing, i.e., in the
absence of temperature and noise effects. In what follows, we
discuss the effects of controls like annealing time, reversal
distance, waiting time, and the initial state on the sampling
probabilities of the four ground states, one by one.

Different annealing times. To study the effects of the an-
nealing time on the sampling probabilities of the four ground
states, we first fix the values of the other parameters. We
choose sr = 0.7, TW = 0, and start with the ground state |ψ1

0 〉
as the initial state. It should be noted that while these choices
might not be optimal or useful in cases where sampling other
low-energy states is the motivation for using reverse anneal-
ing, they are reasonable choices if the aim is to sample other
ground states.

In Table III, we show the sampling probabilities of the four
ground states of problem “230” for various annealing times,
and various observations can be made. First, we see that the
total success probability is nearly one for all the annealing
times, especially for the longer ones. This can be understood

in connection with Fig. 4, which shows that in the regime of
s � 0.7, there are no anticrossings between the lowest four
ground states and the higher excited states which could result
in a leakage of the state of the system from the ground-state
subspace. The second observation worth noting is that the
sampling probability of the ground state |ψ3

0 〉 remains low
for all annealing times, and decreases as the annealing time
increases. As before, this can be explained on the basis of
Eq. (8), according to which the ground state |ψ3

0 〉 of the prob-
lem Hamiltonian or, equivalently, the second-excited state of
the instantaneous Hamiltonian, remains decoupled from the
other three ground states. Thus, the ground state |ψ3

0 〉 remains
inaccessible if one starts from one of the other ground states.
Another interesting observation that follows from Table III is
that the sampling probabilities of the ground states |ψ2

0 〉 and
|ψ4

0 〉 are nonzero, and vary with different annealing times.
This can be understood as follows. In the eigenbasis of per-
turbation matrix (8) |νi〉, the ground state |ψ1

0 〉 can be written
as ∣∣ψ1

0

〉 = 1√
2
|ν1〉 − 1√

2
|ν4〉, (11)

where |ν1〉 = 1/2(
√

2, 1, 0, 1), |ν2〉 = 1/
√

2(0,−1, 0, 1),
|ν3〉 = (0, 0, 1, 0), and |ν4〉 = 1/2(−√

2, 1, 0, 1). From
Fig. 8(a), showing the overlap of the state of the
system with the lowest four states of the instantaneous
Hamiltonian for TA = 100, it is clear that, except for minor
fluctuations, the amplitudes present in the first and fourth
instantaneous eigenvectors remain constant during the
annealing process. This suggests that, restricted to the
ground-state subspace, the state of the system at the end of
the annealing is given as

|ψ〉 = 1√
2

eiφ1 |ν1〉 + 1√
2

eiφ4 |ν4〉, (12)

where exp(iφ1(4)) is the phase acquired by the first (fourth) in-
stantaneous energy eigenstate. When measuring the sampling
probabilities in the eigenbasis of the perturbation matrix, the
acquired phases φi become irrelevant, as the eigenstates of the
perturbation matrix are mutually orthogonal. However, when
measured in the computational basis, as is generally the case,
all but the ground state |ψ3

0 〉 of the problem Hamiltonian has
a finite overlap with |ν1〉 and |ν4〉. Mathematically,

〈
ψ i

0

∣∣ψ 〉 = 1√
2

eiφ1
〈
ψ i

0

∣∣ν1
〉 + 1√

2
eiφ4

〈
ψ i

0

∣∣ν4
〉
, (13)

where i = 1, 2, 3, 4. Thus, these individual phases result in
interference, which causes the sampling probabilities of the
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FIG. 8. Overlap of the state of the system with the four lowest-energy instantaneous eigenstates of the Hamiltonian for (a) sr = 0.7,
(b) sr = 0.6, and (c) sr = 0.4 and TA = 100 during the reverse annealing segment (s changes from 1 to sr) followed by the annealing segment
(s changes from sr to 1).

ground states to oscillate. As the ground state |ψ3
0 〉 of the prob-

lem Hamiltonian has zero overlaps with the eigenvectors |ν1〉,
|ν2〉, and |ν4〉 of perturbation matrix, the sampling probability
of the third-excited state remains zero.

Different reversal distances. We now study the effects of
varying the reversal distance on the sampling probabilities of
the ground state, while keeping the annealing time fixed at
TA = 1000, waiting time TW = 0, and choosing |ψ1

0 〉 as the
initial state. The resulting sampling probabilities of the four
ground states are shown in Table IV. In this case, we note
that the total success probability decreases for smaller values
of reversal distances. This can be understood in relation to
Fig. 4 for the energy spectrum of the instantaneous Hamilto-
nian for this problem, which shows that the positions of the
anticrossings from where the state of the system can leak out
of the ground-state subspace. To understand this more clearly,
we show the overlap of the state of the system with the lowest
four eigenstates of the instantaneous Hamiltonian for sr = 0.6
and sr = 0.4 in Figs. 8(b) and 8(c), respectively.

Since we choose the ground state |ψ1
0 〉 of the problem

Hamiltonian as the initial state, states 1 and 4 have an equal
amplitude at the start of the annealing, in accordance with
Eq. (12). While the amplitude present in the first state stays
more or less constant, we see that most of the amplitude
present in the fourth state gets transferred to the fifth state
slightly before s = 0.6 due to the anticrossing at s ≈ 0.62
between the third- and the fourth-excited states of the instan-
taneous Hamiltonian (see Fig. 4). From the fifth state, some of
the amplitude is transferred to the sixth state. However, soon
after this point, the forward part of the protocol starts, and
most of the amplitude is transferred back to the fourth state.

TABLE IV. Sampling probabilities of the degenerate ground
states |ψ i

0〉, i = 1, 2, 3, 4, of the problem “230,” corresponding to
different reversal distances sr , with annealing time TA = 1000, |ψ1

0 〉
as the initial state, and without any waiting time.

State sr = 0.4 sr = 0.5 sr = 0.6 sr = 0.7 sr = 0.8

|ψ1
0 〉 0.0703 0.4507 0.8310 0.2614 0.6147

|ψ2
0 〉 0.2874 0.0513 0.0566 0.3693 0.1926

|ψ3
0 〉 0.0012 0.0010 1.84 × 10−6 3.21 × 10−8 8.66 × 10−10

|ψ4
0 〉 0.2739 0.0789 0.0579 0.3692 0.1926

Total 0.6396 0.5820 0.9454 1.0000 1.0000

Thus, the final state at the end of the algorithm mainly consists
of the first and the fourth states with comparable amplitudes,
as was the case for the initial state.

The overlap of the state with the low-lying instantaneous
energy eigenstates for sr = 0.4 case, shown in Fig. 8(c), looks
starkly different. In this case, we note the involvement of
several higher excited states compared to that for sr = 0.6.
This can once again be understood on the basis of the energy
spectrum of this instance (Fig. 4). As before, the system starts
in an initial state which is an equal superposition of the first
and fourth instantaneous eigenstates. Following the respective
anticrossings between the energy levels, the amplitude present
in the fourth state gets sequentially transferred to the higher
excited states, although Fig. 4 only shows up until the 10th
energy level. On the other hand, part of the amplitude present
in the first state is shifted to the second state at the anticross-
ing between these two levels at s ≈ 0.42. While most of the
transferred amplitude from the first state returns to the first
state in the forward part of the anneal, the final amplitude in
the fourth stays small.

As in the case of varying annealing times, we find that
the final sampling probabilities, which are measured in the
computational basis, fluctuate, except for the ground state
|ψ3

0 〉 whose sampling probability stays fairly low for all values
of reversal distances. This can be explained based on the
interference of the accumulated phases in the state of the
system. Furthermore, from Table IV we note that the sampling
probability of the ground state |ψ3

0 〉 increases as the value
of the reversal distance is lowered. This is due to the fact
that the third state of the instantaneous Hamiltonian becomes
accessible via the higher excited states or the anticrossings
within the ground-state subspace as the s values are made
small.

Different waiting times. After having studied the effects of
varying the annealing times and the reversal distances on the
sampling probabilities of the reverse annealing algorithm, we
now perform a similar analysis, but by altering the waiting
times TW from 0 to 40. For this case, we choose annealing
time TA = 1000, reversal distance sr = 0.7, and the ground
state |ψ1

0 〉 as the initial state. The resulting behavior of the
sampling probabilities of the ground states |ψ1

0 〉 and |ψ3
0 〉 is

shown in Fig. 9. Although on very different magnitudes, we
observe oscillations in the sampling probabilities of both these
states. This, once again, makes apparent that the accumulation
of different phases in the amplitudes of the wave function
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FIG. 9. Success probability of (a) the ground state |ψ1
0 〉 and (b) |ψ3

0 〉 as a function of different waiting times for TA = 1000.

(expressed in the instantaneous energy eigenbasis) leads to
interference, resulting in fluctuations in the sampling proba-
bilities. For the chosen set of parameters, we find that the total
success probability always remains close to one. Furthermore,
since the ground state |ψ3

0 〉 is decoupled from the rest of
the ground-state subspace according to perturbation matrix
Eq. (8), the sampling probability of |ψ3

0 〉 stays on the order
of O(10−8).

A different initial state. So far, we have only focused
on the results for which the ground state |ψ1

0 〉 was chosen
as the initial state. We now discuss the sampling results
obtained from the reverse annealing protocol starting from
the ground state |ψ3

0 〉. Keeping the reversal distance fixed
as sr = 0.7, and waiting time to zero, we study the effect
of varying the annealing time on the sampling probabilities.
The resulting sampling probabilities are shown in Table V.
Unlike the case shown in Table III where |ψ1

0 〉 is chosen as
the initial state, choosing |ψ3

0 〉 as the initial state does not
cause the sampling probability of the initial state to redis-
tribute to the other ground states, i.e., |ψ3

0 〉 is sampled with
a probability close to 1. This can once again be understood
on the basis of Eq. (8), from where it is evident that close
to s ≈ 1, the instantaneous second-excited state, which corre-
sponds to the ground state |ψ3

0 〉 of the problem Hamiltonian,
is completely decoupled from the rest of the four low-lying
instantaneous energy eigenstates. Therefore, the amplitude
present in the ground state |ψ3

0 〉 of the problem Hamiltonian

TABLE V. Sampling probabilities of the degenerate ground
states |ψ i

0〉, i = 1, 2, 3, 4, of the problem “230,” corresponding to
different annealing times TA, where the reverse annealing time is
chosen to be same as the forward annealing time. The initial state
is chosen to be |ψ3

0 〉, the reversal distance is sr = 0.7, and no waiting
times are added.

State TA = 10 TA = 100 TA = 1000

|ψ1
0 〉 1.47 × 10−4 4.92 × 10−6 3.21 × 10−8

|ψ2
0 〉 3.07 × 10−4 3.71 × 10−3 1.97 × 10−5

|ψ3
0 〉 0.9963 0.9928 0.9996

|ψ4
0 〉 4.28 × 10−4 3.41 × 10−3 1.72 × 10−5

Total 0.9968 1.0000 1.0000

cannot be transferred to the rest of the four lowest-lying en-
ergy states.

We note similar observations for the case where the rever-
sal distance is varied keeping TA = 1000 and TW = 0, and the
ground state |ψ3

0 〉 is chosen as the initial state. In this case,
the state |ψ3

0 〉 is sampled with a probability close to one for
large values of the reversal distances. However, upon lowering
the value of sr the total success probability of the ground state
decreases, and the other ground states can become accessible
via the anticrossings leading to the higher excited states.

2. D-Wave results

After having discussed the sampling behavior of the ideal
implementation of reverse annealing protocol, in this section,
we discuss the corresponding results obtained from DWAdv.
As before, we discuss the effects of varying the different
annealing controls available in the D-Wave systems on the
sampling probabilities of the 14-variable instance “230.”

Different annealing times. Keeping the reversal distance
fixed at sr = 0.7 and waiting time at TW = 0, and choosing
the ground state |ψ1

0 〉 of the problem Hamiltonian |ψ1
0 〉 as

the initial state, we start by studying the sampling efficiency
of the reverse annealing protocol on DWAdv by varying the
annealing times. As before, we set the total number of samples
to 10 000. The resulting sampling probabilities are given in
Table VI. The first observation that follows is that the total
success probability stays close to one for all annealing times.

TABLE VI. Sampling probabilities of the degenerate ground
states |ψ i

0〉, i = 1, 2, 3, 4, of the problem “230” obtained using
DWAdv, corresponding to different annealing times TA, where the
reverse annealing time is chosen to be same as the forward annealing
time. The initial state is chosen to be |ψ1

0 〉, the reversal distance is
sr = 0.7, and no waiting times are added.

State TA = 0.5 µs TA = 10 µs TA = 50 µs TA = 200 µs

|ψ1
0 〉 0.9991 0.9805 0.6709 0.5405

|ψ2
0 〉 0.0006 0.0091 0.1470 0.2490

|ψ3
0 〉 0 0 0 0

|ψ4
0 〉 0.0003 0.0099 0.0830 0.2105

Total 1.0000 0.9995 0.9909 1.0000
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TABLE VII. Sampling probabilities of the degenerate ground
states |ψ i

0〉, i = 1, 2, 3, 4, of the problem “230” obtained using
DWAdv, corresponding to different reversal distances sr , with an-
nealing time TA = 20 µs, |ψ1

0 〉 as the initial state, and without any
waiting time.

State sr = 0.3 sr = 0.4 sr = 0.5 sr = 0.6 sr = 0.7 sr = 0.8

|ψ1
0 〉 0.2173 0.4080 0.3412 0.3120 0.9287 1.0000

|ψ2
0 〉 0.2468 0.3235 0.4269 0.4075 0.0401 0

|ψ3
0 〉 0.1725 0.0065 0.0005 0 0 0

|ψ4
0 〉 0.2665 0.2556 0.2279 0.2751 0.0295 0

Total 0.9031 0.9936 0.9965 0.9946 0.9983 1.0000

Moreover, unlike the case for standard quantum annealing, the
sampling probabilities obtained with DWAdv using reverse
annealing are not fair. For all the values of the annealing time
chosen, we find that the sampling probability of the ground
state |ψ3

0 〉 is totally suppressed. Such a behavior resembles
the results obtained from both perturbation theory as well as
the simulation results, suggesting that even if the nonideal
elements like noise and temperature effects are present in this
regime, the state |ψ3

0 〉 is inaccessible in the quantum annealer
for s � 0.6 when starting from |ψ1

0 〉. However, unlike the case
of simulations where the sampling probabilities of ground
states |ψ1

0 〉, |ψ2
0 〉, and |ψ3

0 〉 were fluctuating with the annealing
time, we note that the sampling probability of ground state
|ψ1

0 〉 obtained from DWAdv is decreasing while those of states
|ψ2

0 〉 and |ψ4
0 〉 are increasing with an increasing annealing

time. Understanding the cause of such behavior calls for fur-
ther investigation, which has been addressed in Ref. [68].

Different reversal distances. Moving next to the effects of
varying the reversal distance on the sampling behavior of the
reverse annealing protocol on DWAdv, we set the reverse and
forward annealing times to TA = 20 µs and TW = 0, and as
before, start the protocol with the ground state |ψ1

0 〉 of the
problem Hamiltonian. The corresponding results are shown in
Table VII, from where we note that the total success proba-
bility is close to one for large values of the reversal distance
and decreases for the smaller values of the reversal distance.
As the value of the reversal distance is decreased, the chances
that the amplitude present in the ground-state subspace of the
instantaneous Hamiltonian leaks to the higher excited states
increase. Another important observation from Table VI is that
the sampling probability of the ground state |ψ3

0 〉 stays small,
especially for large values of the reversal distance. Neverthe-
less, as the value of the reversal distance is lowered, |ψ3

0 〉 is
noted to have an increasingly large sampling probability. Such
a behavior was also observed from the corresponding ideal
simulations.

Different waiting times. Next, we study the effects of vary-
ing the waiting time on the sampling probabilities of the
ground state of the degenerate instance under observation. For
this, we choose TA = 20 µs, sr = 0.7, and |ψ1

0 〉 as the initial
state. As for the case of varying TA, we find that the total
success probability for all values of TW is close to one, due
to the value of the reversal distance being large. Similar to the
results described above, we find that the sampling probability
of |ψ3

0 〉 stays zero.

A different initial state. Lastly, we discuss the case of vary-
ing the annealing controls when the protocol starts with the
ground state |ψ3

0 〉 of the problem Hamiltonian |ψ3
0 〉. As for the

corresponding results obtained numerically, in this case, we
find that for a large value of the reversal distance the ground
state |ψ3

0 〉 is sampled with a probability close to one.

V. CONCLUSION

There are various metrics using which the performance of a
heuristic approach for solving an optimization problem can be
gauged. The focus of this paper was to assess the performance
of quantum annealing in solving instances with more than
one feasible solution. To this end, we used both numerical
and physical implementation of standard as well as reverse
annealing protocols, as offered by the D-Wave quantum an-
nealers to solve a set of specially designed 2-SAT problems
with four known solutions. We then used the scaling of time to
solution (TTS) and the efficiency of the method to sample the
four solutions as the relevant measures for the performance.
It is worth mentioning that although 2-SAT problems are not
NP-hard, finding all the solutions of a 2-SAT problem with
multiple solutions is. While our analysis focuses on instances
with known ground states to enable systematic benchmarking,
the insights gained should also be applicable to real-world
applications.

Restricting ourselves first to the standard quantum anneal-
ing algorithm, we found that the sampling probabilities of the
four ground states were in agreement with the predictions
from perturbation theory if the chosen annealing time was
sufficiently long. From this observation, the sampling prob-
abilities could be expected to be more fair with the inclusion
of the higher-order coupling terms in the initial Hamiltonian.
On the other hand, despite of choosing much longer annealing
times, the sampling probabilities resulting sampling proba-
bilities from DWAdv were roughly uniform and therefore
different from our results from the simulations as well as
the perturbative analysis. Although advantageous in this case,
such a deviation in the sampling behavior hints towards the
presence of certain nonideal mechanisms during the evolution
of the state of the system in the annealer.

Regarding the scaling aspect, using standard quantum an-
nealing for these instances, we observed an exponentially
growing TTS99 with increasing size of the problems, for
our ideal simulations as well as for the quantum annealer.
However, although the scaling exponent for the former was
found to be worse compared to even a brute-force search for
the ground state in the long annealing time limit, the scaling
exponent obtained from DWAdv was significantly smaller.
Furthermore, it was found that the scaling behavior from the
annealer could fit well to equilibrium probability distribution
using β = 1/(kBT ) as the fitting parameter.

The sampling results using the reverse annealing protocol
obtained with the simulations and DWAdv were found to be
in close agreement, and the sampling probabilities depended
greatly on the values of the annealing controls. While the sam-
pling probabilities resulting from the simulations could once
again be justified on the basis of perturbation theory when the
chosen annealing times were sufficiently long, understanding
the mechanisms leading to seemingly similar behavior from
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TABLE VIII. Three instances of 2-SAT problems: problem “1”
with almost fair sampling, problem “3” with unequal sampling prob-
abilities of the four ground states, and problem “230” with zero
sampling probability of one of the ground states.

Clause Problem: “1” Problem: “3”
Problem:

“230”

1 x13 x14 x8 x10 x10 x13

2 x11 x13 x7 x14 x8 x13

3 x10 x12 x6 x11 x7 x14

4 x6 x8 x4 x11 x6 x14

5 x6 x11 x3 x5 x5 x12

6 x4 x6 x2 x14 x4 x8

7 x4 x10 x1 x11 x2 x9

8 x2 x14 x1 x4 x2 x12

9 x1 x5 x2 x12 x1 x11

10 x1 x9 x3 x6 x1 x3

11 x3 x5 x4 x14 x2 x8

12 x4 x14 x6 x11 x3 x12

13 x4 x9 x7 x10 x4 x9

14 x6 x10 x8 x13 x6 x11

15 x7 x13 x8 x9 x12 x13

the D-Wave quantum annealer calls for a careful, deeper in-
vestigation.
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APPENDIX A: 2-SAT PROBLEM INSTANCES

In this Appendix we list the three 14-variable problem
instances that have been discussed in this work as having a fair
sampling (problem “1”), having an unfair sampling (problem
“3”), and a problem with zero theoretical sampling probabil-
ity of one of the ground states (problem “30”). The clauses
constituting the three SAT problems are given in Table VIII.

APPENDIX B: TABLE I REVISITED

Problem 3 is a special instance, consisting of two disjoint
sets of variables which results from the presence of the clauses
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10−6

10−4

10−2

100
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1−
p

TA
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−2

e0.0144 TA
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−2

FIG. 10. Transition probability 1 − p as a function of annealing
time for chosen instances of problems with different N .

(x6, x11) and (x6, x11) (see Table VIII). As per Eq. (6), the
Ising coupling between spins s6 and s11 becomes zero. Thus,
the Hamiltonian describes two independent transverse Ising
systems of 11 and 3 spins, respectively. The low-lying energy
states of the three-spin system account for the observation that
the sampling probabilities of states |ψ1

0 〉 and |ψ4
0 〉 (|ψ2

0 〉 and
|ψ3

0 〉) are exactly the same up to numerical precision for all
the shown annealing times.

The Hamiltonian for the three-spin system is

H3(s) = − (1 − s)
(
σ x

3 + σ x
5 + σ x

6

)
+ s

(
σ z

3σ z
5 + σ z

3σ z
6 + σ z

5 − σ z
6

)
. (B1)

This Hamiltonian is invariant under a spin-reversal transfor-
mation and permutation of 1 and 3, dividing the Hilbert space
into two subspaces corresponding to the eigenvalues of this
symmetry. This reduces the number of relevant instantaneous
eigenstates within the ground subspace to two, with symmetry
forbidding transitions to the others.

Near s ≈ 1, the two relevant states are

ν1 = 1√
5 + √

5

(
1,

1

2
(1 +

√
5),

1

2
(1 +

√
5), 1

)
,

ν2 = 1√
5 − √

5

(
1,

1

2
(1 −

√
5),

1

2
(1 −

√
5), 1

)
. (B2)

Any superposition of these states has the special structure that
the first and fourth, and the second and third components are
equal, explaining the data shown in Table I.

APPENDIX C: TRANSITION PROBABILITY
AS A FUNCTION OF ANNEALING TIME

To understand the scaling behavior of the TTS99 from the
simulations III B 1, in Fig. 10 we show the transition probabil-
ity 1 − p as a function of the annealing time for instances of
N = 10 and N = 14-variable 2-SAT problems that constitute
the median success probability of the sets. From the figure, it
is evident that both problems show two distinct behaviors of
the transition probability as the annealing time increases. At
first, the transition probability decreases exponentially with TA
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for small values of TA, however, for longer times it exhibits a
polynomial [O(T −2

A )] dependence. This behavior is very sim-
ilar to the one observed for a two-level system [66]. The first
region reflects the Landau-Zener transition [69–71], while in
the second region the transition probability decreases as 1/T 2

A ,
as expected from the adiabatic theorem [40,72–74]. Moreover,
from Fig. 10 we see that the point transition to the adiabatic
region shifts to larger values of annealing times as the size
of the problems increases. Making use of this information
we can make a few remarks about the behavior of TTS99
observed in Fig. 5. In the second region, i.e., for small-N and
large-TA values, the right-hand side of Eq. (9) is proportional
to TA/(ln C − 2 ln TA)) ≈ −TA/2 ln TA because TA � C. Here
C is a parameter that depends on N . For small problem sizes
N , TTS99 remains constant for a fixed value of TA (e.g.,
TA = 1000) (see Fig. 5). For the larger problems, where both
TA = 100, 1000 lie in the first region [1 − p = exp(−C′TA)
where C′ is a fitting parameter] as seen for the N = 14 points
in Fig. 10, the right-hand side of Eq. (9) becomes proportional
to 1/C′. After this point, the scaling of TTS99 depends on the
scaling of C′, which in turn depends on the intricate properties
of the energy spectrum. This suggests that in this region the
TTS values for TA = 100, 1000 should coincide, in concert
with Fig. 5. Moreover, as also noted from [46,47] TA = 10
corresponds to a special case for these 2-SAT problems where
various nonadiabatic mechanisms play a prominent role dur-
ing the evolution that enhance the success probability, and
thus the picture described above does not necessarily hold for
this case.

APPENDIX D: SCALING RESULTS FOR OTHER
PROBLEMS

As seen in Sec. III B 2, the scaling of TTS99 obtained from
DWAdv for the 2-SAT problems shows a good agreement
with the analytical expression for the equilibrium distribu-
tion given by Eq. (10). To further increase our confidence in
this conjecture, we extend our analysis to two other sets of
problems: one derived from the original set of 2-SAT prob-
lems, and the ferromagnetic spin chain problem, as described
below.

1. Rescaled 2-SAT problems

We continue the investigation by introducing a parameter
α for rescaling the problem Hamiltonian HP correspond-
ing to the 2-SAT problems. Choosing 0 < α < 1 reduces
the energy gap �E between the lowest two levels of the
2-SAT problem. Setting α = 0.25 and selecting the median
cases corresponding to the original set, Fig. 11 shows the
resulting comparison of the inverse success probabilities 1/p
from DWAdv and 1/pequil

0 , corresponding to a much longer
annealing time TA = 1000 µs. We note a better agreement
between the two values in this case, suggesting that the sam-
pling probabilities from the D-Wave annealer approximately
match those from the equilibrium distribution. For this case,
we obtain β = 5.52 which corresponds to a temperature of
about 37 mK, which is of a similar order as the physical
temperature of about 12 mK, typical for the DWAdv an-
nealer. To understand the reasons for the differences in the
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FIG. 11. Comparison of scaling of the mean and the median
cases obtained from DWAdv with those of the equilibrium 1/p for
α = 0.25 with TA = 1000 µs.

values of the β parameter and, consequently, the tempera-
ture values for different values of the rescaling factor α, in
Fig. 12 we show the fit temperatures for various annealing
times. The plot suggests a slower convergence to equilib-
rium with increasing values of α, i.e., for larger gaps �E
between the lowest two levels of the 2-SAT problems. Further-
more, since for α = 1, we choose a relatively short annealing
time TA = 20 µs, the system is far from attaining equilib-
rium in this case and, therefore, the corresponding measure
of temperature is significantly different from the system
temperature.

2. Ferromagnetic spin chain problem

In our analysis so far, we have found the scaling of TTS99
from the D-Wave annealers to be exponential for our 2-SAT
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FIG. 12. Effective temperature calculated using the probabilities
resulting from DWAdv for one of the 20-variable 2-SAT problems
found in the median for the α = 1 set. The same problem was used
to perform the same analysis for α = 0.25 and 0.50.
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)
exp(−nβ�E ) as a function

of system size N for the ferromagnetic spin chain problem with TA =
500 µs.

problems, and we argued that this behavior is related to the
exponentially increasing degeneracy of the first-excited state
of these problems with their increasing size. To further test our
hypothesis, we create simple instances of spins connected via
ferromagnetic couplings with various sizes, that have an in-
creasing first-excited-state degeneracy. Each problem consists
of N spins that are connected via a ferromagnetic coupling
J = −0.5, with 10 � N � 100. The ground state of these
problems is twofold degenerate and the ground-state energy
is J (N − 1). The energy gap between the ground state and
the nth-excited states is 2nJ and the degeneracy of the nth-
excited state is 2

(N−1
n

)
. Furthermore, for improved statistics,

we create 200 spin-reversal instances for each N by randomly
selecting a few spins and flipping the sign of the coupling
between the chosen spin and its neighbors. Doing this only
alters the ground state of the new problem, while preserving
the other properties of the original problem. Figure 13 shows
the results for the analytical expression for 〈1/p〉 including
also the second-excited states in the partition function fit the
mean inverse success probabilities obtained from DWAdv
well.
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