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D-Wave quantum annealers offer reverse annealing as a feature allowing them to refine solutions to optimiza-
tion problems. This paper investigates the influence of key parameters, such as annealing times and reversal
distance, on the behavior of reverse annealing by studying models containing up to 1000 qubits. Through the
analysis of theoretical models and experimental data, we explore the interplay between quantum and classical
processes in describing the empirical data. Our findings provide a deeper understanding that can better equip
users to fully harness the potential of the D-Wave annealers.
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I. INTRODUCTION

Quantum annealing has emerged as a promising approach
for solving complex optimization problems by leveraging
quantum mechanical effects [1–5]. Among the commercially
available quantum annealers, D-Wave systems [6–13] are
at the forefront, offering specialized hardware designed to
solve optimization problems [14–27]. Some recent studies
have employed these annealers to explore complex physical
phenomena in systems utilizing the annealer’s architecture
to simulate intricate spin interactions and study emergent
behaviors [11,28–37]. While a considerable amount of re-
search has focused on the forward annealing process, recent
advancements have brought reverse annealing as an intriguing
variant that promises to enhance the performance of quantum
annealers [38]. In reverse annealing, instead of starting in
the uniform superposition state, the system is initialized in
a classical state, allowing the exploration of the local en-
ergy landscape [38]. This method has been suggested to be
beneficial in guiding the system toward optimal solutions,
particularly in challenging problem instances [39–42].

Despite the growing interest in reverse annealing, its
understanding remains a subject of active debate. The ex-
tent to which quantum effects, thermalization, and classical
dynamics affect the reverse annealing results is unclear.
Understanding these factors is crucial for unlocking the
full potential of quantum annealers. Reverse annealing has
demonstrated effectiveness in certain applications [42], but
questions about the interplay between quantum coherence,
thermal noise, and dissipation still need to be answered. While
some recent studies have addressed the amount of coherence
in the dynamics of standard quantum annealing on these
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annealers, they primarily focused on the collective behavior
of many qubits [32–35]. In contrast, this paper investigates
the detailed behavior of a small number of qubits using the
reverse annealing protocol.

In our previous work [43], we explored the effects of
various control parameters offered by these annealers on
the sampling probabilities of the multiple solutions of hard
(for quantum annealing) 2-SAT problems. However, although
these results hint at a tendency of the system to relax to equi-
librium, the theoretical description of the observed sampling
behavior is lacking. Using models like the Bloch equa-
tions and the Lindblad master equation, among others, in the
present paper, we aim to delve deeper into the mechanisms
that can describe such a behavior. More specifically, we ex-
perimentally study the reverse annealing feature of D-Wave
for different choices of the various control parameters and
incorporate features in our theoretical models that can re-
produce the D-Wave results, providing deeper insights into
understanding the extent to which quantum and classical pro-
cesses can describe the dynamics of reverse annealing.

The central finding of this paper is that under the reverse
annealing protocol and for sufficiently long annealing times,
the sampling probabilities of different states tend to converge
toward those predicted by the thermal equilibrium (Gibbs)
distribution. We emphasize that, although our simulation re-
sults exhibit strong agreement with the experimental data, it
is premature to draw definitive conclusions about the “true”
physical mechanisms underlying the system’s behavior. The
observed agreement does not uniquely establish the nature of
the system’s evolution.

The paper is organized as follows: we first provide a brief
description of the methods (Sec. II) employed to investigate
reverse annealing and of the specific problems that we study
(Sec. III). We then proceed to give an overview of the key
results produced by the quantum annealers (Sec. IV). Next, in
Sec. V we present results from numerical models, designed
based on the key results. This is followed by the analysis of
further results from the quantum annealers (Sec. VI). Finally,
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in Sec. VII we discuss the implications of these findings,
highlighting potential avenues for future research.

II. METHODS

In this section we focus on the methods and approaches
used to investigate the behavior of D-Wave systems. Specif-
ically, we limit our study to the reverse annealing protocol
provided by the quantum annealers and implement the equiv-
alent protocol in our simulations. The empirical data reported
in this paper are obtained from experiments on the D-Wave
Advantage_5.4 system at the Jülich Supercomputing Centre.

In theory the time evolution of the D-Wave annealer is
described by the Hamiltonian [6]

H (t )

h̄
= πA(s)

h
HD + πB(s)

h
HP,

HD = −
∑

i

σ x
i ,

HP =
∑

i

hiσ
z
i +

∑
i> j

Ji, jσ
z
i σ z

j , (1)

where A(s) and B(s) are expressed in GHz and are obtained
by fitting simple functions to the annealing schedule data
provided by D-Wave [6], and s is the annealing parameter
(see below). In Appendix A we show the D-Wave annealing
schedule data and the fitted functions used in our simulations.
In reality, the time evolution under Eq. (1) is modified by
interactions with external degrees of freedom, leading to de-
coherence and dissipation.

The idea of the reverse annealing protocol is to start in
one of the low-lying excited classical states of the problem
Hamiltonian (s = 1) and anneal backward, i.e., by decreasing
the strength B(s) and increasing the strength of A(s) up to
some reversal distance sr . After an optional pause at sr , the
protocol then continues towards s = 1, as in standard quantum
annealing.

The D-Wave implementation of the protocol offers several
control parameters, e.g., the reverse and the forward annealing
times treverse and tforward, respectively, the optional waiting time
twait, the value of sr , and the choice of the initial state. The
reverse annealing schedule is defined by

s =
⎧⎨
⎩

1 − (1 − sr ) t
treverse

, t � treverse

sr, treverse < t � treverse + twait,

sr + (1 − sr ) t−treverse−twait
tforward

, treverse + twait < t � tend,

(2)
where tend = treverse + twait + tforward.

The effects of varying these parameters on the performance
of reverse annealing in sampling the four degenerate ground
states of the 2-SAT problems have been studied in [43]. In this
work we focus on the behavior of the quantum annealers by
changing treverse, twait, and tforward, keeping the other parameters
fixed. More specifically, we employ two different procedures
described below. To simplify the notation, we denote by
p(tend ) the probability of a particular state at time t = tend:

Waiting time scans (WTS). In this scheme, we fix treverse =
tforward = 1 µs, and vary twait. For each value of tend, we then
determine the respective probabilities p(tend ) of finding the
relevant states of a given problem.

Annealing times scans (ATS). Fixing twait = 0, in this
scheme we vary treverse = tforward. As for the other scheme,
we determine the probabilities p(tend ) for the relevant energy
states for each value of tend.

To further clarify the terminology, we refer to Fig. 1 as an
example, which shows the p(tend ) for states |↑〉 and |↓〉 using
red (squares) and blue (circles) lines, respectively.

Note that, for WTS, the system spends a larger proportion
of time at a smaller s = sr compared to ATS. Therefore, for
the same tend, the average transverse field for WTS is larger
than for ATS, which, as shown later, affects the dynamics.

In the D-Wave experiments, for each problem, we collect
4500 samples for each value of tend corresponding to either
changing twait in the WTS or changing treverse = tforward in the
ATS. Furthermore, in most cases shown here, the collection of
the samples is carried out by sequentially submitting a given
problem ten times. In doing so, we use the minor embedding
feature of the annealers, which maps the given problem to a
set of physical qubits. In a few other cases, we simultaneously
submit many copies of the problem to the D-Wave annealer.
The values of probabilities for a given state are assigned by
averaging the number of times the state is sampled over the
ten sequential runs in the former case, or over the submitted
number of copies in the latter.

III. PROBLEM DESCRIPTION

In order to gain a more general understanding of the be-
havior of D-Wave quantum annealers, it is beneficial to study
their performance across different types of problems. To this
end we study three kinds of problems:

One- and two-spin problems. As the first class of problem
Hamiltonians HP’s we choose the simple instances of one- and
two-spin problems, with fixed hi’s and Ji, j . As these prob-
lems are simple, their ground state(s), first excited state(s),
and the corresponding energies and degeneracies are known.
Consequently they serve as ideal problems for studying and
demonstrating the behavior of the D-Wave systems. Therefore
the main focus of this paper is on these problems.

For the one-spin problem, we mainly study the cases with
h1 = 0 or h1 = 0.1. The states |↑〉 and |↓〉 are the two de-
generate ground states of the former case. For the latter, the
|↓〉 state with energy −0.1 is the ground state, while the other
state with an energy of 0.1 is the first excited state.

Moving to the two-spin problems, we consider three prob-
lem instances:

(i) Instance 2S1: h1 = h2 = −1 and J1,2 = 0.95. For this
problem the |↑↑〉 state with energy −1.05 is the ground state,
while the states |↑↓〉 and |↓↑〉 with energy −0.95 are the
degenerate first excited states. State |↓↓〉 with energy 2.95 is
the second excited state.

(ii) Instance 2S2: h1 = h2 = −1 and J1,2 = 1.00. For this
problem the states |↑↑〉, |↑↓〉, and |↓↑〉 are the threefold
degenerate ground states with energy −1.00, while the state
|↓↓〉 with energy 3.00 is the first excited state.

(iii) Instance 2S3: h1 = h2 = −0.95 and J1,2 = 1.00. For
this problem the states |↑↓〉 and |↓↑〉 are twofold degenerate
ground states with energy −1.00, while |↑↑〉 state with energy
−0.90 is the first excited state. State |↓↓〉 with energy 2.90 is
the second excited state.
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FIG. 1. (a), (b) WTS data and (c), (d) ATS data for the one-spin problem with h1 = 0.1 and sr = 0.7 obtained from the D-Wave annealer
with (a), (c) |↑〉 and (b), (d) |↓〉 as initial states. The legend in panel (d) also applies to panels (a), (b), and (c).

2-SAT problems. A 2-SAT problem is defined by M clauses,
each consisting of two Boolean literals (a Boolean variable xi

or its negation xi for i = 1, . . . , N) [44,45]. The goal is then
to determine whether there exists an assignment to the vari-
ables xi’s that makes each clause true, and thereby the 2-SAT
problem satisfiable. As the second class of problems, we use
a specially constructed set of hard (for quantum annealing)
2-SAT instances with four satisfying assignments [43].

To use quantum annealing for solving these problems, we
map them to the Ising Hamiltonian

C2SAT =
M∑

α=1

(
ε(α,1)si[α,1] − 1

)(
ε(α,2)si[α,2] − 1

)
, (3)

where i[α, j] represents the variable i that is involved in the
jth term of the αth clause for i = 1, . . . , N , j = 1, 2, and α =
1, . . . , M. If this variable is xi then ε(α, j) = 1, whereas if it its
negation xi then ε(α, j) = −1.

The resulting problem Hamiltonians have been found to
have an exponentially increasing degeneracy of the first ex-
cited state with growing problem size [43]. In this paper we
focus on 2-SAT problems with 6–14 variables.

Ferromagnetic spin chains. As the last class of problems,
we use instances of ferromagnetic spin chains, with neighbors
connected by a uniform ferromagnetic coupling J = −0.1.
The ground state of these problems is twofold degenerate

(|↑↑ . . . ↑〉 and |↓↓ . . . ↓〉) and has an energy of J (N − 1),
where N is the number of spins in the chain.

IV. KEY RESULTS

This section showcases a few key experimental results
produced by the quantum annealers which serve as the basis
for the subsequent investigation.

We start by looking at the simplest case, a one-spin prob-
lem, with h1 = 0.1. The results for the WTS and the ATS are
shown in Fig. 1. We initialize the system in the ground state
|↓〉 [Figs. 1(a) and 1(c)] or first excited state |↑〉 [Figs. 1(b)
and 1(d)]. We note that while p(tend ) for the state that the
system is initialized in starts from a value close to one for
small tend, it systematically decreases till a certain value of tend,
beyond which it seems to stabilize, especially for the WTS
(p↓ ≈ 0.8 for large tend). The other state shows an opposite
trend, i.e., the corresponding p(tend ) starts from a value close
to zero, increases to a certain value with increasing tend, and
tends to stabilize. Furthermore, it can be seen that the rate of
decrease (increase) of p(tend ) for the state which was (not) the
initial state is faster for the WTS as compared to the ATS.
The results shown here are from the D-Wave Advantage_5.4
system, but other D-Wave annealers also yield a similar sys-
tematic behavior of p(tend ) (data not shown).

In Fig. 2 we show the WTS for the three instances of
the two-spin problem, where we choose the state |↑↑〉 as the
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FIG. 2. WTS data for the two-spin problem instance (a) 2S1, (b) 2S2, and (c) 2S3 obtained from the D-Wave annealer with sr = 0.7. The
legend in panel (c) also applies to panels (a) and (b).

initial state. In this case we see that p(tend ) for the |↓↓〉 state
remains close to zero for all values of tend. For the other states,
as for the one-spin cases, we see a similar systematic decrease
(increase) in p(tend ) corresponding to the state in which the
system was (not) initialized, followed by a stabilization of the
p(tend ) values.

The results for the one- and the two-spin problems are,
apart from minor details, reproducible and independent of the
choice of the specific D-Wave system. This consistency points
to a distinctive behavior of D-Wave quantum annealers, which
is worth investigating further.

These initial observations combined provide a good moti-
vation to compare the final probabilities p(tend ) of the various
states of the problem with those resulting from the equilibrium
distribution.

Conjecture. For sufficiently large tend, the probabilities
p(tend ), converge to the values predicted by the thermal equi-
librium distribution.

According to statistical mechanics, the equilibrium distri-
bution is given by

pequil
i = gie−βEi∑

i gie−βEi
, (4)

where gi and Ei are the degeneracy and the energy, respec-
tively, of the ith level of the problem Hamiltonian, with Ei+1 >

Ei, and β = η/T for η = h B(s = 1)/(2kB) × 109 = 0.206 K
and some effective temperature T (expressed in kelvin). Using
Eq. (4) and the ground state success probability obtained from
the quantum annealer for the largest value of tend from the
WTS of the one-spin problem with h1 = 0.1 [Figs. 1(a) and
1(b)], we find β = 6.93, which corresponds to an effective
temperature T = 29.7 mK, a value that is of a similar order
as the cryogenic temperature of 15 mK, typical for the D-
Wave annealers [43]. Next, using the value β obtained, we
compute the ground state probabilities of the three two-spin
instances according to the equilibrium distribution. For in-
stance 2S1, this results in p↑↑ = 0.50, p↑↑ = p↑↓ = p↓↑ =
0.25, and p↓↓ = 0. For 2S2, we obtain p↑↑ = p↑↓ = p↓↑ =
0.33 and p↓↓ = 0, while for 2S3, Eq. (4) yields p↑↑ = 0.20,
p↑↓ = p↓↑ = 0.40, and p↓↓ = 0. These theoretical values
closely match the probabilities obtained from the D-Wave
annealer for long tend for these problems, thereby increasing
our confidence in the conjecture that the probabilities obtained
by reverse annealing on the D-Wave quantum annealers seem
to relax to equilibrium probabilities for sufficiently long total
annealing times.

V. SIMULATION RESULTS

As discussed in the previous section, the D-Wave results
are starkly different from those of ideal quantum anneal-
ing, according to which the success probability approaches
one for sufficiently long annealing times. For our numerical
model to capture the observed features, we need to incorporate
the elements of dissipation and decoherence. To this end,
we use the Gorini-Kossakowski-Sudarshan-Lindblad master
equation, which approximates the Schrödinger dynamics of
the reduced density matrix for a system interacting with an
environment [46–48].

The Lindblad master equation reads [48]

dρ(t )

dt
= − i

h̄
[H (t ), ρ(t )]

+ 1

2

∑
j

γ j[2Ljρ(t )L†
j − L†

j L jρ(t ) − ρ(t )L†
j L j],

(5)

where ρ(t ) is the density matrix of the system and γ j � 0 are
the damping rates corresponding to the dissipation operators
Lj . In general, the operators Lj are linear combinations of the
matrices that form a basis for the matrices operating on the
Hilbert space of the system [48].

The question that remains is whether there exist choices of
dissipation operators that can reproduce the results obtained
from the quantum annealers for the one- and the two-spin
problems presented in the previous section. In the following,
we tackle these cases one by one.

A. One-spin problems: Bloch equations

In general, the one-spin Hamiltonian can be written as

H = − 1
2 B · σ, (6)

where B is the applied magnetic field and σ = (σ x, σ y, σ z )
are the Pauli matrices. Substituting Bx = 2πA(s)/h, By = 0,
and Bz = −2πB(s)h1/h transforms Eq. (6) into Eq. (1) for a
single-spin system.

According to linear algebra, the 2 × 2 density matrix for
the state of a spin-1/2 object can be completely expressed in
the basis of the three Pauli matrices plus the unity matrix I,
i.e.,

ρ(t ) = 1

2

[
I +

∑
α

Sα (t ) · σα

]
, (7)
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FIG. 3. Comparison of Bloch equations simulation results with those from the D-Wave annealer for (a) WTS and (b) ATS for the one-spin
problem with h1 = 0.1 and sr = 0.7. For (a) T1 = 41.67 µs, T2 = 41.67 µs, and M0 = −0.66 while for (b) T1 = 909.09 µs, T2 = 909.09 µs, and
M0 = −0.66. To emphasize that each data point from the simulations is obtained from an independent run we show each simulation data point
as a marker. For improved legibility, in the subsequent figures, data points from our simulations are represented by lines through these points
instead of by markers. The legend in panel (b) also applies to panel (a).

where S(t) = (Sx(t ), Sy(t ), Sz(t )) is a vector of real numbers
satisfying

∑
α (Sα )2 � 1 for α = x, y, z. To solve the Lindblad

equation (5) for this system, we need to find the dissipation
operators Lj that can produce results comparable to those
obtained from the D-Wave annealers. One such choice for the
dissipation operators is

L1 = σ+ = 1

2
(σ x + iσ y) =

(
0 1
0 0

)
,

L2 = σ− = 1

2
(σ x − iσ y) =

(
0 0
1 0

)
,

L3 = σ z =
(

1 0
0 −1

)
. (8)

As outlined in Appendix B, with this choice, the Lindblad
equation (5) is equivalent to the Bloch equations given by

dSx(t )

dt
= Sy(t )Bz(t ) − Sz(t )By(t ) − Sx(t )

T2
,

dSy(t )

dt
= Sz(t )Bx(t ) − Sx(t )Bz(t ) − Sy(t )

T2
,

dSz(t )

dt
= Sx(t )By(t ) − Sy(t )Bx(t ) − Sz(t ) − M0

T1
, (9)

with T2 = 2/(γ1 + γ2 + 4γ3), T1 = 1/(γ1 + γ2), M0 =
(γ1 − γ2)/(γ1 + γ2) denoting the transverse and longitudinal
relaxation time and the equilibrium magnetization,
respectively. Note that this choice of the dissipation operators
yields T2 � 2T1. The numerical method used for solving
Eq. (9) is discussed in Appendix D.

Figure 3 shows a comparison of the D-Wave results with
those of the WTS and ATS for the one-spin problem with
h1 = 0.1 obtained from the simulations in which state |↑〉
was chosen as the initial state. From the same figure it is ev-
ident that with the above-mentioned choice of the dissipation
operators and with T1 = 41.67 µs, T2 = 41.67 µs, and M0 =
−0.66 for the WTS and T1 = 909.09 µs, T2 = 909.09 µs, and
M0 = −0.66 for the ATS, the simulation can reproduce both
the trend of the probability curves and the final value of the

probability for large tend rather well. The fact that the relax-
ation times T1 and T2 obtained from fitting Bloch equations to
the D-Wave data results in significantly different values for
WTS and ATS only reflects that the underlying procedures
are very different. Note that the relaxation times for a single
qubit are obtained by procedures very different from the WTS
or ATS.

A similar treatment of the one-spin problem with h1 = 0
results in an oscillatory behavior between the two states of the
system, as shown in Fig. 4. These oscillations are not present
in the data from the quantum annealers and signal the coherent
motion of the spin between the two degenerate states at s = 1.
However, slightly changing the value of the field h1 = 0.001
eliminates these oscillations from the simulation data and
produces results that closely match those from D-Wave. As
the D-Wave annealers are known to be prone to small errors
in implementing the specified h and J values of a problem ex-
actly, the absence of oscillations in the D-Wave data suggests
that a minute amount of error in problem representation can
lift the degeneracy between the energy levels. This suggests
that, in their current state, the D-Wave annealers are incapable
of implementing problems with exact degeneracies.

B. Two-spin problems: Lindblad master equation

We now turn to the two-spin problem instances discussed
in the previous section. Even for such simple cases, select-
ing the appropriate dissipation operators demands careful
deliberation. The mathematical considerations and the choice
of the dissipation operators for this case are presented in
Appendix C, while the other numerical aspects for the Lind-
blad master equation simulation are outlined in Appendix D.

In Fig. 5 we show the results obtained from the simula-
tions of the ATS for these problems, in comparison to those
from the annealers. Choosing a value of β that makes the
probabilities from the equilibrium distribution (4) close to
the probabilities p(tend ) obtained from D-Wave for the largest
value of tend, we determine ratios of the dissipation rates by
setting the coherent part of the dynamics [the first term of
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FIG. 4. Comparison of the WTS data from Bloch equation simulations (lines) for the one-spin problem with sr = 0.7 and (a) h1 = 0 and
(b) h1 = 0.001 with the D-Wave data (markers) for the same with h1 = 0. For both plots T1 = 25 µs, T2 = 25 µs, and M0 = 0. The legend in
panel (b) also applies to panel (a).

the right-hand side of Eq. (C2)] to zero. This approach is
described in more detail in Sec. V C. The resulting relations
between the equilibrium probabilities and the dissipation rates
are given by Eq. (13). We find that with this choice for the
dissipation rates, the simulations can reproduce the behavior
of the p(tend ) data produced by the D-Wave quantum annealers
rather well, except for a few points corresponding to small
tend; see, for instance, 2S3.

Recall that the ground state of the one-spin problem with
h1 = 0 is twofold degenerate, and that if the initial state
was chosen to be |↑〉, the simulation data show oscillations
between the two states. For the two-spin instance 2S2, the
ground state is threefold degenerate, and initializing the sys-
tem in state |↑↑〉 also results in an oscillatory behavior of
the corresponding probabilities (data not shown). However,
as noted for the above-mentioned one-spin problem, slightly
lifting this degeneracy by setting h1 = 1.001 and h2 = 0.999,
eliminates the oscillations. Figure 5(b) shows simulation re-
sults for this slightly modified version of instance 2S3.

C. Larger problems: Markovian master equation

Our numerical results show that in cases of good agreement
between the simulations and the D-Wave data, the absolute
values of the nondiagonal elements of the corresponding den-
sity matrix are rather small (data not shown), suggesting that

the contributions of the coherent part of the evolution can be
ignored. Indeed, in the regime of interest, i.e., for s � 0.7, the
effects of the transverse field produced by the σ x terms are
negligible since according to the annealing schedule given by
D-Wave A(s)/h � 0.002 � B(s)/h for s � 0.7. These obser-
vations suggest that it might be worthwhile to investigate the
case in which we set A(s) = 0 and retain only the diagonal
elements of the density matrix ρ(t ). The resulting ρ(t ) then
commutes with Hamiltonian, and the Lindblad equations for
the one- and two-spin problem reduce to

d

dt

(
p↑
p↓

)
=

(−γ2 γ1

γ2 −γ1

)(
p↑
p↓

)
, p↑ + p↓ = 1 (10)

and

d

dt

⎛
⎜⎜⎝

p↑↑
p↑↓
p↓↑
p↓↓

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

−γ2−γ5 − γ7 γ4 γ6 γ1

γ5 −γ4 0 0
γ7 0 −γ6 0
γ2 0 0 −γ1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

p↑↑
p↑↓
p↓↑
p↓↓

⎞
⎟⎟⎠,

p↑↑ + p↑↓ + p↓↑ + p↓↓ = 1, (11)

respectively. The stationary solutions for Eqs. (10) and (11)
are

γ2 p↑ = γ1 p↓ (12)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

(a)

p(
t e

nd
)

tend (μs)

ATS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

(b)

p(
t e

nd
)

tend (μs)

ATS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

(c)

p(
t e

nd
)

tend (μs)

Lindblad, state1

Lindblad, state2

Lindblad, state3

Lindblad, state4

DW, state 1

DW, state 2

DW, state 3

DW, state 4

ATS

FIG. 5. Comparison of the ATS data from D-Wave (markers) with that from Lindblad master equation simulation (lines) for two-spin
instances with sr = 0.7 (a) 2S1, (b) 2S2, and (c) 2S3, with dissipation rates (a) γ1 = γ3 = γ4 = γ6 = 1.5 Hz, γ2 = 0, γ5 = γ7 = 0.6582 Hz,
(b) γ1 = γ3 = γ4 = γ6 = 1.0 Hz, γ2 = 0, γ5 = γ7 = 0.9837 Hz, (c) γ1 = γ3 = γ4 = γ6 = 0.5 Hz, γ2 = 0, γ5 = γ7 = 1.1395 Hz. The legend
in panel (c) also applies to panels (a) and (b).
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FIG. 6. Comparison of the WTS data from D-Wave (markers) with that from a Markovian master equation (MME) simulation (lines) with
sr = 0.7 for (a) instance 2S1, an instance of (b) six-variable, (c) 12-variable, and (d) 14-variable 2-SAT problems, the last three cases with four
degenerate ground states (gs 1–4) for dissipation rates (a) γ1 = γ3 = γ4 = γ6 = 25 Hz, γ2 = 0, γ5 = γ7 = 12.5 Hz, (b) γ1 = γ2 = γ3 = γ4 =
γ5 = γ6 = γ7 = 20 Hz (c) γ1 = 20 Hz, γ2 = 0, γ3 = γ6 = γ7 = 10 Hz, γ4 = γ5 = 15 Hz, (d) γ1 = γ2 = γ3 = γ4 = γ5 = γ6 = γ7 = 20 Hz.
The legend in panel (d) also applies to panels (b) and (c).

and

γ2 p↑↑ = γ1 p↓↓, γ5 p↑↑ = γ4 p↓↑, γ7 p↑↑ = γ6 p↑↓, (13)

respectively.
Equations (10) and (11) are special cases of

dP(t )

dt
= W P(t ), (14)

where P(t ) = (p1(t ), . . . , pN (t ))T is a vector of non-negative
elements that sum to one, and W is a real-valued matrix. For
instance, in the case of the two-spin model, P(t ) and W are
given by the vector and matrix in Eq. (11), respectively.

The formal solution of Eq. (14) reads

P(t ) = etW P(0). (15)

As the columns of W add to zero, it follows immediately that
exp(tW ) is a Markov matrix.

For the 2-SAT problems with four satisfying assignments
[43], the dimension of the relevant subspace is four, and we
can still use Eq. (11) to study the relaxation processes.

The corresponding results for the two-spin problem, as
well as for larger instances of 2-SAT problems with four
satisfying assignments, are shown in Fig. 6. For the 2-SAT
problems, this figure shows the sampling probabilities of the

four known degenerate ground states of these problems (num-
bered in a different order than in Ref. [43]).

The good agreement between the numerical and the D-
Wave data suggests that the salient features of the results
produced by D-Wave’s reverse annealing protocol can indeed
be captured by this straightforward Markovian approach.

Figure 6(a) shows that this approach achieves a similar
level of agreement with the D-Wave data as by solving the
Lindblad master equation for the two-spin systems (see Fig. 5
for a representative example).

As discussed in [43], for the shown instances of the 2-
SAT problems, the ideal quantum annealing simulations show
a suppression of the sampling probabilities of one or more
ground states, a behavior that could be explained on the basis
of perturbation theory. While the standard forward annealing
protocol on the D-Wave annealer did not show any such
suppression of any of the ground states [43], the suppression
of these ground states using the reverse annealing protocol,
as evident in Figs. 6(b)–6(d), begs for further investigation.
However, it has been observed that ground states with sup-
pressed sampling probabilities have a large Hamming distance
from other ground states [43]. This idea can be visualized by
imagining the ground subspace as divided into two subspaces,
one containing states that are reachable by (a sequence of)
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single-spin flips starting from any of the other states, and the
other containing ground states that have a Hamming distance
greater than one from all the states in the first subspace.
Drawing an analogy to the Metropolis Monte Carlo algorithm,
at very low temperatures, only degenerate ground states sep-
arated by a Hamming distance of one can be reached when
starting from one of the lowest-energy configurations. Ac-
cessing other ground states requires traversing higher energy
states, which becomes more likely at higher temperatures.
This scenario bears resemblance to reverse quantum annealing
results from D-Wave annealers, where the system remains in a
regime of small quantum fluctuations, having been initialized
in one of the ground states [see Figs. 6(b)–6(d)]. A possible
explanation for the suppression of these ground states in the
D-Wave results could therefore be that quantum fluctuation
plus noise sources within the system act like thermal fluc-
tuations that are unable to couple the two ground subspaces
characterized by the Hamming distance among the ground
states.

Refocusing on the primary idea, we find that, remarkably,
using the simple nonquantum Markovian description makes
it possible to reproduce D-Wave results by circumventing
the problem of finding the appropriate dissipation operators
for the Lindblad equation for simulating these large prob-
lems, which is already a nontrivial task for the two-spin
problems. We initialize the system in the first excited state,
and for given values of h1 and sr , we perform the WTS
by fixing treverse = tforward = 1 µs for all 5000 copies of the
problem.

VI. FURTHER D-WAVE EXPERIMENTS

From the results presented so far, we have seen the effects
of varying the waiting time and the annealing times on the
probability values p(tend ) for the different states of the prob-
lem. However, these WTS or ATS were performed for specific
problems, and the reversal distance sr = 0.7.

As the next step, it is interesting to investigate how the
results of these scans change when either the energy gap
between the ground state and the first excited state of the
problem Hamiltonian, or the reversal distance in the reverse
annealing protocol, is varied. To this end we first perform
the WTS for the one-spin problem for various values of h1,
fixing sr = 0.7. The value of the corresponding energy gap is
given by


 = 2
√

A2(s) + B2(s)h2
1 (16)

at s = sr . Next, setting h1 = 0.3, we perform WTS for various
values of the reversal distance sr . To improve the statistics, we
embed 5000 copies of the problem on the D-Wave system for
each point of the scan.

The results obtained from these experiments are shown in
Fig. 7, where Figs. 7(a) and 7(c) show the mean success prob-
abilities 〈p0(tend )〉 (markers) for different values of h1 and sr ,
respectively, obtained by averaging over the 5000 copies. The
solid lines in these figures are obtained by fitting functions
f (tend ) = f1(1 − f2 exp(− f3tend )) to 〈p0(tend )〉 obtained from
the experiments for different values of h1 (sr) in Fig. 7(a)
[Fig. 7(c)]. Recall that each data point in these panels has been

obtained from an individual run with a fixed twait. Therefore,
it is remarkable that these points fit very well to f (tend ).

Furthermore, Fig. 7(a), where sr is fixed to 0.7, shows
that for h1 � 1.6, the 〈p0(tend )〉’s saturate to values given
by Eq. (4), in concert with the key results (Sec. IV). For
h1 > 0.16, the maximum annealing time (2000 µs) allowed
on the D-Wave systems is too short to access the regime
of equilibration. In Fig. 7(b) we present a plot of f3 ob-
tained from Fig. 7(a) with the energy gaps 
 calculated
using Eq. (16), which fits well to the exponential function
0.12 exp(−0.06
) for 
 > 1. The exponential decrease of
f3 with 
 suggests that if the thus far observed systematic
trend continues, increasing energy gaps between the ground
state and the first excited states of the problems should post-
pone the attainment of the equilibrium probabilities to larger
values of tend. Such a behavior is consistent with thermal
equilibration.

Next, keeping h1 fixed at 0.3, we perform the WTS while
varying the reversal distance 0.60 � sr � 0.75. Figure 7(c)
shows 〈p0(tend )〉 as a function of tend for different values of
sr and suggests that the approach of the 〈p0(tend )〉 to the equi-
librium value given by Eq. (4) becomes slower with increasing
values of sr . In the allowed maximum annealing time limit of
the D-Wave QPU of 2000 µs, this saturation can be observed
only up to sr � 0.68.

Figure 7(d) shows f3 as a function of sr . We find that f3 fits
well to 1615.79A(sr )2.31, hinting that a stronger involvement
of the transverse field leads to more fluctuations and a faster
decay of 〈p0(tend )〉. This observation could also explain the
requirement for larger dissipation rates in our simulations for
the one-spin case with h1 = 0.1, shown in Fig. 3, to fit well
to the D-Wave data in WTS as compared to the ATS. For
the former, the system spends a larger proportion of time
at a smaller s = sr , resulting in a larger effective transverse
field as compared to the latter where due to twait = 0, the
effective s � sr .

Next, we study the effects of varying the problem size on
the WTS using ferromagnetic spin chains for 10 � N � 1000.
For this class of problems, it is straightforward to compute the
equilibrium properties. This calculation shows that the ground
state probability pequil

0 vanishes exponentially as the size of
the problems increases, in concert with the corresponding
D-Wave data [as shown in Fig. 10(a) in Appendix E]. To
accurately estimate the ground state probability, one would
therefore require an exponentially increasing number of sam-
ples as the problem size grows. Given the impracticality of
this approach, a more feasible alternative is to analyze the
equilibrium behavior of these problems using, for instance,
the mean energy [see Fig. 10(b) in Appendix E for the absolute
value of the mean energies]. In Fig. 8 we show the mean
energy 〈E (1952 µs)〉 as a function of the problem size N . We
determine β by fitting

〈E〉 =
∑

i giEie−βEi∑
i gie−βEi

= −J (N − 1) tanh βJ (17)

to the empirical data for the average energy. We find that
β = 7.64, which corresponds to a temperature of approxi-
mately 27 mK. This remarkably good fit strongly supports the
equilibrium conjecture. In Appendix F we present the results
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FIG. 7. (a) Data (markers) of the WTS for the mean success probability 〈p0(tend )〉 obtained by averaging 5000 copies of one-spin problems
with different h1 and sr = 0.7 on the D-Wave annealer with the corresponding fits (lines) to f (tend ) = f1[1 − f2 exp(− f3tend )], (b) scaling of
the obtained f3 as a function of energy gap 
, (c) the same as (a) but for different values of reversal distance sr and h1 = 0.3, (d) the same as
(b) but as a function of sr .

of this compelling experiment using data from the Advan-
tage_4.1 system, as a demonstration that these observations
extend beyond a single D-Wave machine.

VII. CONCLUSION

We have shown that with the appropriate choice of dissi-
pation operators and rates for the Lindblad master equation,

µs

FIG. 8. Mean of empirical E (1952 µs) data obtained from the
D-Wave annealer fit to Eq. (17) with β = 7.64 corresponding to a
temperature of 27 mK.

it is possible to numerically reproduce the D-Wave results
for reverse annealing. We found that for sufficiently long
annealing times the D-Wave quantum annealer samples states
with frequencies approaching the thermal equilibrium proba-
bilities (i.e., in concert with the Gibbs distribution). The rate
at which equilibrium is attained depends on quantities like
the energy gap and the reversal distance, among other factors,
limiting the possibility of approaching equilibrium within the
maximum annealing time admitted by the D-Wave systems.
Furthermore, we have shown that by ignoring in the simu-
lations, the coherent parts, a nonquantum Markovian master
equation can also reproduce the salient features of the D-Wave
data. This suggests that the coherent part of the dynamics
does not play a crucial role in the reverse annealing regime
in D-Wave.

In light of these observations, it might be beneficial to
develop other strategies for formulating/solving optimization
problems using D-Wave quantum annealers.

Despite the strong agreement between our simulations and
experimental observations, the actual physical mechanisms
governing the system’s dynamics remain elusive and cannot
be conclusively identified based on the theoretical models
analyzed in this paper.

Carrying out a similar study using standard forward
annealing and the recently introduced fast annealing
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FIG. 9. Data for the annealing schedules A(s) and B(s) provided
by D-Wave, and the functions used in the simulations.

feature of the D-Wave quantum annealers is left for future
research.
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APPENDIX A: ANNEALING SCHEDULE

As the D-Wave data for the annealing scheme are provided
as tabulated values of A(s)/h and B(s)/h (in GHz), for numer-
ical simulation, it is expedient to fit functions

A(s)/h = (1 − s) exp(Aa + Abs + Acs2 + Ad s3),

B(s)/h = Ba + Bbs + Bcs2 (A1)

to these annealing schedule data. The values of the parame-
ters, obtained by fitting, are shown in Fig. 9.

APPENDIX B: MATHEMATICAL TREATMENT
OF THE ONE-SPIN CASE

The most general Hamiltonian for a single-spin system is
given by Eq. (6). From Eq. (7) it follows that the eigenvalues
of ρ(t ) are {1 + [

∑
k=x,y,z(Sk )2(t )]1/2}/2. Therefore, we must

have
∑

k=x,y,z(Sk )2(t ) � 1 for ρ(t ) to be a non-negative defi-
nite matrix with eigenvalues not exceeding one. From Eq. (7)
it also follows that the expectation values of the spin operators
are given by

〈σα (t )〉 = Tr ρ(t )σα = Sα (t ), α = x, y, z, (B1)

showing that in the case at hand, knowledge of Sα (t ) =
〈σα (t )〉 is equivalent to the knowledge of the density matrix
ρ(t ).

We start from Eq. (5) and derive the equation of motion for
the expectation values of the spin operators. This facilitates
the comparison with the Bloch equations and also helps to
give meaning to the damping rates that enter Lindblad equa-
tion (5). Multiplying Eq. (5) by σ l and computing the trace,
we obtain the equations of motion of the spin expectation
values [see Eq. (7)]. We have

dSl (t )

dt
= (S(t ) × B)l + 1

2

3∑
j=1

Tr σ l [Lj, L†
j ] + 1

4

3∑
j,k=1

γ jS
k (t )[2Tr σ lL jσ

kL†
j − Tr σ lL†

j L jσ
k − Tr σ lσ kL†

j L j]

= (S(t ) × B)l + 1

2

3∑
j=1

γ jTr σ l [Lj, L†
j ] + 1

2

3∑
j,k=1

γ jS
k (t )Tr[L†

j , σ
l ](Ljσ

k ). (B2)

With the specific choice of the dissipation operators given by Eq. (8), the right-hand side of Eq. (B2) can be worked out
analytically, yielding the Bloch equations (9). It shall also be noted that the reduction of the Lindblad master equation (5) to
Bloch equation (9) is associated with the specific choice of the dissipation operators (8). For a different choice of the dissipation
operators, the Lindblad master equation might not reduce to the Bloch equations.

APPENDIX C: MATHEMATICAL TREATMENT OF THE TWO-SPIN SYSTEM

For the two-spin systems, we need to choose an appropriate basis to represent 4 × 4 matrices. A convenient choice is the
set of 4 × 4 matrices constructed by taking direct products of two matrices from the set I, σ x, σ y, σ z, e.g., e1 = I ⊗ I/2, e2 =
I ⊗ σ x/2, e3 = I ⊗ σ y/2, e4 = I ⊗ σ z/2, . . . , e16 = σ z ⊗ σ z/2. We have

ρ(t ) =
16∑

k=1

xk (t )ek, (C1)
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where the xk (t )’s are real-valued variables. Using the properties of the ek’s, it follows that Tr ρ(t ) = 1 implies x1(t ) = 1/2. The
equation of motion for xk (t ) for k = 2, . . . , 16 is found by multiplying the Lindblad equation (5) by ek and computing the trace:

dxk (t )

dt
= dTr ρ(t )ek

dt
=

16∑
l=1

⎡
⎣−iTr[H, el ]ek + 1

2

∑
j

γ j (2TrLjel L
†
j ek − TrL†

j elek − Tr el L
†
j L jek )

⎤
⎦xl (t ). (C2)

Next, we have to choose the dissipation operators L’s that can describe the D-Wave data well, i.e., using which we can
reproduce the trend for probabilities p(tend )’s and the stationary value that they seem to approach. The minimal choice that is
found to describe this behavior is

L1 =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, L2 = LT

1 , L3 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, L4 = LT

3 , L5 =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠,

L6 = LT
5 , L7 =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠. (C3)

Using Mathematica to compute the explicit form of the equations of motion of the xk (t )’s we obtain

x1 = 1
2 ,

∂t x2 = 1
4 [8Bh1x3 + 8BJx15 + (γ1 − γ2 − γ4 − γ5 + γ6 − γ7)x14 − (γ1 + γ2 + 8γ3 + γ4 + γ5 + γ6 + γ7)x2],

∂t x3 = 1
4 [−8(Ax4 + Bh1x2 + BJx14) + (γ1 − γ2 − γ4 − γ5 + γ6 − γ7)x15 − (γ1 + γ2 + 8γ3 + γ4 + γ5 + γ6 + γ7)x3],

∂t x4 = 1
4 [8Ax3 + γ1 − γ2 + γ4 − γ5 + 2(γ1 − γ2 − γ4 − γ5)x16 − 2(γ1 + γ2 − γ4 + γ5)x7 − 2(γ1 + γ2 + γ4 + γ5)x4],

∂t x5 = 1
4 [8Bh2x6 + 8BJx13 + (γ1 − γ2 + γ4 − γ5 − γ6 − γ7)x10 − (γ1 + γ2 + 8γ3 + γ4 + γ5 + γ6 + γ7)x5],

∂t x6 = 1
4 [−8(Ax7 + Bh2x5 + BJx10) + (γ1 − γ2 + γ4 − γ5 − γ6 − γ7)x13 − (γ1 + γ2 + 8γ3 + γ4 + γ5 + γ6 + γ7)x6],

∂t x7 = 1
4 [8Ax6 − γ2 + γ6 − γ7 + γ1(−2x4 − 2x7 + 2x16 + 1) − 2(γ2 − γ6 + γ7)x4 − 2(γ2 + γ6 + γ7)(x7 + x16)],

∂t x8 = 1
4 [8Bh1x9 + 8Bh2x11 + (γ1 + γ2 − γ4 + γ5 − γ6 + γ7)x12 − (γ1 + γ2 + γ4 + γ5 + γ6 + γ7)x8],

∂t x9 = 1
4 [−8Ax10 − 8Bh1x8 + 8Bh2x12 − (γ1 + γ2 − γ4 + γ5 − γ6 + γ7)x11 − (γ1 + γ2 + γ4 + γ5 + γ6 + γ7)x9],

∂t x10 = 1
4 [8Ax9 + 8Bh2x13 + 8BJx6 + (γ1 − γ2 + γ4 − γ5 − γ6 − γ7)x5 − (γ1 + γ2 + 8γ3 + γ4 + γ5 + γ6 + γ7)x10],

∂t x11 = 1
4 [−8Ax14 − 8Bh2x8 + 8Bh1x12 − (γ1 + γ2 − γ4 + γ5 − γ6 + γ7)x9 − (γ1 + γ2 + γ4 + γ5 + γ6 + γ7)x11],

∂t x12 = 1
4 [−8(A(x13 + x15) + Bh2x9 + Bh1x11) + (γ1 + γ2 − γ4 + γ5 − γ6 + γ7)x8 − (γ1 + γ2 + γ4 + γ5 + γ6 + γ7)x12],

∂t x13 = 1
4 [−8(A(x16 − x12) + Bh2x10 + BJx5) + (γ1 − γ2 + γ4 − γ5 − γ6 − γ7)x6 − (γ1 + γ2 + 8γ3 + γ4 + γ5 + γ6 + γ7)x13],

∂t x14 = 1
4 [8Ax11 + 8Bh1x15 + 8BJx3 + (γ1 − γ2 − γ4 − γ5 + γ6 − γ7)x2 − (γ1 + γ2 + 8γ3 + γ4 + γ5 + γ6 + γ7)x14],

∂t x15 = 1
4 [−8(−Ax12 + Ax16+Bh1x14 + BJx2) + (γ1 − γ2 − γ4 − γ5 + γ6 − γ7)x3 − (γ1 + γ2 + 8γ3 + γ4 + γ5 + γ6 + γ7)x15],

∂t x16 = 1
4 [8A(x13 + x15) − γ5 + γ6 − γ7 + γ4(−2x4 + 2x7 − 2x16 + 1) − 2(γ5 − γ6 + γ7)x4 − 2(γ5 + γ6 + γ7)(x7 + x16)].

(C4)

Since Tr e1 = 2, and Tr e j = 0 for j > 1, from Eq. (C1) it follows that x1 = 1/2 implies that the trace of the density matrix
is always equal to one.

APPENDIX D: NUMERICAL SOLUTION

In matrix-vector notation, differential equations (B2) and
(C2) take the form

dx

dt
= [C(t ) + D]x(t ) + y, (D1)

where C(t ) is a time-dependent matrix describing the coherent
motion of the spin(s), D accounts for the decoherence and

dissipation, and the vector y is a time-independent source
term. In the case of the single-spin C(t ) is a 3 × 3 skew-
Hermitian matrix, D is a 3 × 3 nonpositive diagonal matrix,
and the value of y3 = M0/T1 determines the stationary value
of the longitudinal component of the spin. For the two-spin
system, excluding the trivial equation for x1(t ), C(t ) is a
15 × 15 skew-Hermitian matrix, and D is a 15 × 15 matrix
with no obvious symmetry properties, and the vector y with
15 elements determines the stationary values of the elements
of the density matrix.
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FIG. 10. Empirical data for the WTS for (a) success probability p0(tend ) and (b) absolute values of the mean energy for ferromagnetic Ising
spin chains of size 10 � N � 1000 and sr = 0.7. Lines in (b) serve as a guide to the eye. The legend in panel (b) also applies to panel (a).

Regarding C(t) to be piecewise constant within time in-
tervals of duration τ , i.e., assuming C(t ) = Cn for nτ � t <

(n + 1)τ , we obtain

x((n + 1)τ ) = eτ (Cn+D)x(nτ ) +
∫ τ

0
e(τ−λ)(Cn+D)ydλ (D2a)

= eτ (Cn+D)x(nτ )

+ (Cn + D)−1(eτ (Cn+D) − I)y. (D2b)

We employ two different algorithms for solving Eq. (D2)
numerically. The first method is numerical diagonalization.
Since the dimension of the involved matrices here is rather
small, we can compute the left-hand side of Eq. (D2b) through
repeated numerical diagonalization of M = Cn + D for suc-
cessive n, where here and in the following we suppress the
subscript n for notational simplicity. As M is a general,
real-valued matrix, we have

MR = R�, M = R�R−1, (D3)

where � is a diagonal matrix with complex-valued eigen-
values λ j of M on the diagonal, R is the matrix of the
eigenvectors of M as its columns, and R−1 is the inverse of

R, if it exists. If the latter is true, we have

x((n + 1)τ ) = Reτ�R−1x(nτ ) + R�−1(eτ� − I)R−1y,

(D4)

where the matrices appearing in Eq. (D4) are obtained by
matrix diagonalization and inversion, which is feasible for
these problems, given their small size. Clearly, this numeri-
cally exact method can be used only if the inverse of R exists.

The second alternative to solve Eq. (D2) is to make use
of a product-formula algorithm based on the decomposition
of matrix exponentials. We start by approximating the con-
tribution of the source term, represented by the last term
in Eq. (D2a). Approximating the integral in Eq. (D2a) by a
two-point trapezium rule we obtain

x[(n + 1)τ ] = eτ (Cn+D)x(nτ ) + τ

2
(1 + eτ (Cn+D) )y, (D5)

which is a second-order accurate approximation in time step
τ . To keep the algorithm second-order accurate, we use a
second-order accurate algorithm for computing the exponen-
tial exp(τ (Cn + D)).
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FIG. 11. Same as Fig. 10 except that the D-Wave Advantage_4.1 system was used to produce the data. The legend in panel (b) also applies
to panel (a).
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For the single-spin system, the simplest choice for the
decomposition is

eτ (Cn+D) ≈ eτA2/2eτA1(n)eτA2/2, (D6)

where

A1(n) =
⎛
⎝ 0 Bz(n) −By(n)

−Bz(n) 0 Bx(n)
By(n) −Bx(n) 0

⎞
⎠,

A2 =
⎛
⎝−1/T2 0 0

0 −1/T2 0
0 0 −1/T1

⎞
⎠. (D7)

Moving on to the two-spin system, we decompose the
matrix exponential in three components, such that

eτ (Cn+D) ≈ eτA1(n)/2eτA2(n)/2eτA3 eτA2(n)/2eτA1(n)/2, (D8)

with A1(n) being the part of Cn with B = 0 in Eq. (1) and
A2(n) being the one with A = 0 in Eq. (1), and A3 = D. While
the matrix exponentials of A1(n) and A2(n) can be calculated
analytically, we compute exp(τA3) by numerical diagonal-
ization (once). The product formula approach can be applied
when the inverse of R does not exist and, in practice, mainly
provides an independent check on the numerical results.

APPENDIX E: D-WAVE RESULTS FOR FERROMAGNETIC
SPIN CHAINS

Figure 10(a) shows empirical data of the ground state prob-
abilities obtained from the WTS for various problem sizes up
to N = 1000, averaged over 4500 samples. With increasing
problem size, the p0(2000 µs)’s saturate at decreasingly lower
values, up to N � 30. For larger N , the required number of
samples is prohibitive to make definite statements.

Figure 10(b) shows empirical data of the absolute value of
the mean energies obtained from the WTS for various problem
sizes up to N = 1000, averaged over 4500 samples. As dis-
cussed in Sec. VI, the values at tend = 2000 µs are in excellent

µs

FIG. 12. Same as Fig. 8 except that the D-Wave Advantage_4.1
system was used to produce the data.

agreement with the corresponding equilibrium values of the
one-dimensional ferromagnetic Ising chain.

APPENDIX F: D-WAVE RESULTS USING
THE ADVANTAGE_4.1 SYSTEM

While the main text focuses on results obtained from the
Advantage_5.4 system, the trends and conclusions discussed
are observed to hold more broadly across other D-Wave sys-
tems as well. As an illustration, we present results from an
experiment on the Advantage_4.1 system using ferromagnetic
spin chains of up to 1000 spins. In line with the findings
discussed in Sec. VI, Fig. 11(a) shows the ground state prob-
ability p0 as a function tend for various N , while Fig. 11(b)
demonstrates relaxation and eventual saturation of the mean
energy with increasing annealing time.

Figure 12 shows the scaling of the mean energy
〈E (1952 µs)〉 as a function of system size. The solid line rep-
resents a fit of Eq. (17) to the D-Wave data, yielding a fitting
parameter β = 6.19, which corresponds to a temperature of
approximately 33 mK.
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