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Understanding the physical nature of the D-Wave annealers remains a subject of active investigation. In this
study, we analyze the sampling behavior of these systems and explore whether their results can be replicated
using quantum and Markovian models. Employing the standard and the fast annealing protocols, we observe
that the D-Wave annealers sample states with frequencies matching the Gibbs distribution for sufficiently long
annealing times. Using Bloch equation simulations for single-qubit problems and Lindblad and Markovian
master equations for two-qubit systems, we compare experimental data with theoretical predictions. Our results
provide insights into the role of quantum mechanics in these devices.
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I. INTRODUCTION

How crucial is quantum theory in describing the results of
D-Wave annealers? Put differently, can the data produced by
these systems be explained or replicated using nonquantum
models? If so, to what extent can these machines truly be
considered “quantum”? These questions have been around
since the introduction of the D-Wave annealers [1–16].

The role of quantum phenomena in determining the per-
formance of D-Wave quantum annealers has been a subject of
intense debate since their introduction [3,5,6]. A fundamental
question is whether the observed behavior of these devices can
be explained using nonquantum models or whether quantum
effects, such as entanglement and tunneling, have to be in-
corporated to reproduce experimental results. Addressing this
question is crucial for understanding the extent to which these
machines leverage quantum mechanics for computational ad-
vantage [7,10,14,17].

Given the complexity of these large-scale annealers, an
effective approach to investigate their behavior is to focus on
minimal problems that retain the essential characteristics of
these systems while being amenable to analytical and numer-
ical methods. As demonstrated in our previous work [18], in
theory, even 1- and 2-qubit problems can capture key features
of the underlying dynamics, including the role of quantum
coherence and thermal effects. Indeed, these small problem
instances have been an excellent testbed for evaluating the
quantum nature of these devices [8,9].

In this work, we analyze the statistics of the states sampled
by D-Wave quantum annealers for specific problem instances.
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We study the frequency distributions of these sampled states,
construct theoretical models, investigate the dynamical evo-
lution of these systems by employing numerical simulations
based on the Schrödinger equation, the Lindblad master equa-
tion [19], and the Markovian master equation, and scrutinize
the extent to which the experimental data aligns with the
different simulation results.

In our previous work, we studied the behavior of the D-
Wave quantum annealers using the reverse annealing protocol
and found that for long annealing times the sampling probabil-
ities of the states approach the Gibbs distribution [18]. In the
same vein, the present work examines the behavior of these
systems under the standard annealing protocol and the more
recently introduced fast annealing protocol.

Our results contribute to the broader discussion on the
quantum nature of D-Wave devices and the extent to which
their behavior can be emulated by classical processes. By
systematically comparing theoretical predictions with exper-
imental data, we provide insights into the role of quantum
effects in quantum annealing and their implications for prac-
tical applications.

It is important to emphasize that the present work ex-
plores regimes that are complementary to those studied in
Refs. [12–14,20], particularly in terms of problem complexity
and scale. First, our study focuses on a fundamental aspect,
the frequencies with which the D-Wave annealer samples dif-
ferent states, and compares them to theoretical expectations
from Schrödinger, Lindblad, and Markovian dynamics and
is not based on the behavior of some derived quantity (e.g.,
the kink density and kink-kink correlation in Refs. [12,20]).
This approach offers a raw and direct perspective on the
system’s behavior. Second, our analysis is centered on 1-
and 2-spin systems, which allow for a more controlled and
detailed examination of the underlying physical processes.
These small-scale problems provide the best opportunity to
observe signatures of quantum coherence; failure to detect
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such effects at this level would significantly diminish the
prospects of observing them in larger, more complex sys-
tems. Lastly, unlike Refs. [12–14,20], we do not employ the
“shimming” technique which involves varying the problem
parameters (h′s and J ′s) dynamically at each point in time,
making it a resource-intensive approach. Our objective is to
probe the uncorrected, or “raw,” performance of the D-Wave
system in the context of a more elementary investigation.

Additionally, it is necessary to emphasize that in this work,
we find numerical models that can reproduce the D-Wave data
well. However, this agreement by itself does not identify the
physical mechanisms within the D-Wave systems responsible
for the observed behavior.

The paper is structured as follows: Sec. II outlines the
methods and problems considered in this study. Section III
presents the results obtained from the D-Wave annealer, while
Sec. IV discusses the corresponding simulation results. Fi-
nally, Sec. V summarizes the key findings of the paper.

II. METHODS AND PROBLEMS

The Hamiltonian for the quantum annealing process, im-
plemented on the D-Wave annealers, is given by [21]

H (t )

h̄
= πA(s = t/ta)

h
HD + πB(s = t/ta)

h
HP,

HD = −
∑

i

σ x
i ,

HP =
∑

i

hiσ
z
i +

∑
i> j

Ji jσ
z
i σ z

j , (1)

where ta is the annealing time, σ x
i , σ z

i are the Pauli ma-
trices, hi are effective local fields, and Ji j are the effective
coupling terms between qubits i and j. Functions A(s) and
B(s) (expressed in units GHz) define the annealing schedules
and are vastly different for the standard and the fast anneal-
ing protocols (see Appendix A). Under the conditions that
A(0) � B(0), A(1) � B(1), and that ta is sufficiently large,
the adiabatic theorem [22,23] guarantees that the system will
find the ground state of the problem Hamiltonian HP, if the
system is initialized in the ground state

|+ + · · · +〉N = 1
√

2
N (|0〉 + |1〉)⊗N , (2)

of the driver Hamiltonian HD, where N is the number of
qubits.

In the standard annealing protocol, the annealing signal
is shaped by an external current source to ensure a linear
increase in the qubits’ persistent current Ip(s). In contrast,
the fast annealing protocol linearly ramps the flux �CCJJ (s)
applied to all qubits [21]. This approach enables the QPU to
complete an anneal in a few nanoseconds, significantly faster
than with the standard protocol. However, the fast annealing
protocol requires that the fields in Eq. (1) have to be zero [21].
A workaround for implementing problems with nonzero h′

is is
to use an additional qubit for every variable that has a nonzero
hi [21]. The state of the additional qubit is set by applying a
fixed flux bias offset to it. Then, the coupling Ji j = hi between
the original qubit i and the additional qubit j effectively im-
plements the original problem. For a 1-spin problem with a

magnetic field hz
1, the resulting annealing Hamiltonian reads

H ′(t )

h̄
= −πA(s)

h

(
σ x

1 + σ x
2

) + πB(s)

h
J12σ

z
1σ z

2 + hFBσ z
2 ,

(3)

where J12 = hz
1 and hFB � π max(A(s), B(s)h1)/h is the con-

stant flux bias offset applied to the second qubit.
Similarly, for a given 2-spin problem with fields h1 and h2,

and coupling J , the corresponding annealing Hamiltonian for
the fast annealing protocol reads

H ′′(t )

h̄
= − πA(s)

h

(
σ x

1 + σ x
2 + σ x

3 + σ x
4

) + hFB
(
σ z

3 + σ z
4

)
+ πB(s)

h

(
J12σ

z
1σ z

2 + J13σ
z
1σ z

3 + J24σ
z
2σ z

4

)
, (4)

where J13 = h1 and J24 = h2.
We study the annealing time dependence of the probabil-

ities of all the relevant energy levels, assigned by using their
sampling frequencies. All the results presented in this paper
are obtained by averaging over multiple runs across different
qubits available in the D-Wave systems. Additionally, these
multiple runs are performed either sequentially, where only
one instance of the problem is executed at a time, or simul-
taneously, where multiple instances are submitted in parallel.
All results presented in the main text correspond to sequential
runs of the problems.

To numerically study the annealing process of the D-Wave
systems, we use the Bloch equations, the Lindblad master
equation, and the Markovian master equation. We use the
functions obtained by fitting to the D-Wave annealing sched-
ule data for the standard and, in addition, the newly introduced
fast annealing protocols (see Appendix A).

We study a set of simple yet diverse 1- and 2-spin
problems. In the case of 1-spin problems, the only tunable
parameter is the local field h. For 2-spin problems, three pa-
rameters must be specified: h1, h2, and the coupling strength J .
To introduce variation in the solution landscape, we selected
three 2-spin problem instances with differing ground state
degeneracies, specifically, one-, two-, and threefold degenera-
cies. This choice covers the most relevant/interesting spectra
for two spins. Additionally, we examine ferromagnetic spin
chains. The following are the relevant details for the problems
used in this paper.

(i) 1-spin problems: We choose three instances corre-
sponding to h1 = 0.10, h1 = 0.20, and h1 = 0.25. For all
these instances, the state |↓〉 is the ground state while the |↑〉 is
the first excited state. The ground state energy and energy gap
for the instance h1 = 0.10 are −0.10 and 0.20, for instance
h1 = 0.20 are −0.20 and 0.40, and for instance h1 = 0.25 are
−0.25 and 0.50, respectively.

(ii) 2-spin problems: We consider the following three in-
stances.

(1) h1 = −1.00, h2 = −1.00, J12 = 0.95: The |↑↑〉
with an energy of −1.05 is the ground state, while the states
|↑↓〉 and |↓↑〉 with energy −0.95 are the degenerate first
excited state. The second excited state |↓↓〉 has an energy
of 2.95.

(2) h1 = −1.00, h2 = −1.00, J12 = −1.00: The
ground state is threefold degenerate corresponding to
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FIG. 1. D-Wave data obtained using the standard annealing protocol for a 1-spin problem with (a) h1 = 0.10 and (b) h1 = 0.20.

states |↑↑〉, |↑↓〉, and |↓↑〉 with energy −1.00. The first
excited state is given by |↓↓〉 and has an energy of 3.00.

(3) h1 = −0.95, h2 = −0.95, J12 = 1.00: The states
|↑↓〉 and |↓↑〉 with energy −1.00 are the degenerate
ground states. The first excited state |↑↑〉 and the second
excited state |↓↓〉 have energies −0.9 and 2.90, respec-
tively.
(iii) Ferromagnetic spin chain problems: We use instances

of ferromagnetic spin chains with up to N = 1000 spins. We
set the magnetic field h = 0 for each spin and set the coupling
J = −0.1 between the adjacent spins. States |↑↑ · · · ↑〉 and
|↓↓ · · · ↓〉 with energies J (N − 1) are the two degenerate
ground states. Excited states are equally spaced in energy,
with each successive level lying higher by −2J relative to the
previous one.

III. D-WAVE RESULTS

In this section, we show representative results obtained by
executing the standard and the fast annealing protocols on the
D-Wave annealers.

While we mainly focus on the results from the D-Wave
Advantage_5.4 system in this paper, the results from the
Advantage_4.1 system show similar behavior. The former
comprises over 5000 qubits arranged in the Pegasus topol-
ogy, where each qubit is connected to 15 others. The system
supports annealing times ranging from 0.5 to 2000 µs under
the standard annealing protocol, and from 0.005 to 2000 µs
using the fast annealing protocol. Ising problems with param-
eters hi ∈ [−4, 4] and J ∈ [−2, 1] can be executed without
enabling the autoscaling feature. The D-Wave data reported
here is reproducible and systematic.

A. Standard quantum annealing

Figure 1 shows the results for the 1-spin problem with
h1 = 0.10 and h1 = 0.20 for different values of ta. We note
that with an increasing annealing time ta, the probabilities
p(ta) tend to stabilize. For the case with h1 = 0.10, p↑ ≈ 0.2
and p↓ ≈ 0.8 for annealing time ta = 1000 µs on the quantum
annealer, while for h1 = 0.20, p↑ ≈ 0.06 and p↓ ≈ 0.94. The
corresponding p(ta = 1000 µs) for the states |↑〉 and |↓〉 for
the 1-spin problem with h1 = 0 (results not shown) are close
to 1/2 for different values of ta.

Next, in Fig. 2, we show the D-Wave data for the three
2-spin instances. We find that the probabilities p(ta) tend to a

stable value for long annealing times, even if not as stabilized
as by using the reverse annealing protocol [18].

A persistent, unexpected feature that accompanies these
scans as a function of ta is that the value of p(ta) for ta � 2 µs,
where we find that the probability for state |↑↑〉 starts from a
value close to zero till it eventually reaches relatively close to
the stable value. Consequently, the probabilities for the states
|↑↓〉 and |↓↑〉 are larger for these annealing times than their
stable values for the larger annealing times. We will refer
to this feature as the “dips-and-bump”, respectively, in the
subsequent parts of this paper. Since even the annealing time
ta = 0.5 µs is more than sufficient for the success probabil-
ity [i.e., probability of finding the ground state(s)] of ideal
quantum annealing to be close to one for problems of this
size, the success probability being close to zero demands an
explanation.

Given the results for these simple problems and similar
conclusions for reverse annealing [18], we expect that the
probabilities p(ta) eventually tend to their equilibrium values
given by

pi = gie−βEi∑
i gie−βEi

, (5)

where gi and Ei are the degeneracy and the energy, respec-
tively, of the ith level of the problem Hamiltonian, with
Ei+1 > Ei, and β = C/T for C = h B(s = 1)/(2kB) × 109 =
0.206 K and some effective temperature T (expressed in
kelvin). The computational basis states |↑〉 and |↓〉 correspond
to the spin eigenvalues S = +1 and S = −1, respectively, and
are related to the index i through i = (1 − S1)/2 for a 1-spin
and i = (1 − S1)/2 + (1 − S2) for the 2-spin systems.

For testing the equilibration idea, we determine the value of
β for the 1-spin problem with h1 = 0.10 and use the obtained
value to calculate the corresponding values of pi for the other
problems. From Fig. 1(a), we find β = 6.93, which corre-
sponds to an effective temperature of T = 29.7 mK, of similar
order of magnitude as the cryogenic temperature 13 mK of the
D-Wave Advantage_5.4 system. Moreover, this value of β is
the same as that obtained from the waiting time scan of this
problem using reverse annealing [18]. For the 1-spin prob-
lem with h1 = 0.20, β = 6.93, Eq. (5) yields p↑ = 0.06 and
p↓ = 0.94, values that closely match the frequencies obtained
from the annealer.

Considering the three 2-spin instances next, we find the
same equilibrium probabilities as in reverse annealing [18].
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FIG. 2. D-Wave data obtained using the standard annealing protocol for a 2-spin problem instances with (a) 2S1, (b) 2S2, and (c) 2S3.

More specifically, for 2S1, this results in p↑↑ = 0.50, p↑↓ =
p↓↑ = 0.25, and p↓↓ = 0. For 2S2, we obtain p↑↑ = p↑↓ =
p↓↑ = 0.33 and p↓↓ = 0, while for 2S3, Eq. (5) yields
p↑↑ = 0.20, p↑↓ = p↓↑ = 0.40, and p↓↓ = 0. The corre-
sponding D-Wave data agree very well with these theoretical
values, suggesting that the D-Wave annealers tend towards
thermal equilibrium for sufficiently long annealing times.

Instead of reusing the β extracted using the D-Wave data
for the 1-spin problem to compute the sampling probabilities
according to the Gibbs distribution for the 2-spin problems
and comparing them with the corresponding D-Wave data, we
can also directly extract and compare the β values for each
instance. This results in β = 7.1 for instance 2S1 and β = 7.9
for instance 2S3, which are close to β = 6.93 obtained for the
data of the 1-spin problem. As the ground state of instance
2S2 is three-fold degenerate and the first excited state is never
sampled in the D-Wave device, it is not possible to uniquely
determine a value of β in this case.

Next, to consolidate our conclusions, we move to the ferro-
magnetic spin chains with up to N = 1000 variables and the
homogeneous coupling J = −0.1. In Fig. 3(a), we show the
mean energy values of the samples obtained from the annealer
as a function of annealing times ta for various problem sizes.
Figure 3(b) shows the mean energy 〈E (1950 µs)〉 as a function
of the problem size. As the energies and the degeneracies of
all the energy levels of this problem are known analytically,
we fit

〈E〉 =
∑

i giEie−βEi∑
i gie−βEi

= −J (N − 1) tanh βJ, (6)

to the empirical data via the parameter β. The excellent agree-
ment of the resulting fit with the data, along with a value of
β = 7.48, which is close to the one found earlier, corroborates
the conjecture of relaxation to the equilibrium distribution.
A similar procedure, when applied using the fast annealing
protocol [see the solid lines in Fig. 3(a)] for an overlapping
range of annealing times with the standard annealing protocol,
yields nearly identical results.

Recall that the results presented above are obtained by
averaging over multiple sequential runs. While similar be-
havior is observed at the individual run level, we observe
clear systemic biases in the data (not shown in the paper). A
careful consideration is therefore required when interpreting
their output, as discussed in Appendix B. However, choosing
the simultaneous mode of collecting data is found to introduce
an overall bias in the results, which can be mitigated using
spin-reversal transformations, as detailed in Appendix C.

B. Fast annealing

The results presented in the previous section, obtained us-
ing standard quantum annealing, show no recognizable signs
of coherent evolution. This begs the question: What happens
for shorter annealing times than those permitted for the stan-
dard annealing protocol? We address this question using the
recently introduced fast annealing feature [21], focusing on
the 1- and 2-spin instances.

The resulting data for the 1-spin problem with h = 0.25 is
shown in Fig. 4. In contrast to the data obtained using standard
quantum annealing, in this case, we find that for the initial

〉
〈

〉
〈

FIG. 3. D-Wave data for the ferromagnetic spin chain of length N = 10, . . . , 1000. (a) Absolute value of the average energy 〈E (ta)〉 as a
function of annealing time ta obtained using the standard annealing protocol (markers) and fast annealing protocol (adjacent lines), and (b) the
average energy at ta = 1950 µs as a function of chain length N obtained by the standard annealing protocol.
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FIG. 4. D-Wave data obtained using the fast annealing protocol
for 1-spin problem with h1 = 0.25.

times (ta � 20 ns), the ground state probability increases with
increasing the annealing time. This can be a signature of an
underlying coherent evolution of the initial state, which neces-
sitates further investigation (see below). On further increasing
the annealing time, the probabilities tend to relax to their
stationary values.

Moving next to the case of the 2-spin problems, Fig. 5
shows the D-Wave data for the three 2-spin instances. In
this case, although we do not observe an initially increas-
ing ground state probability with the annealing time [except
for 2S3 in Fig. 5(c)], the initial trend of the probabilities is
significantly different than those corresponding to standard
annealing. Another important difference to the latter is the ab-
sence of the “dips-and-bumps” (around 0.5 µs � ta � 1.2 µs)
in this case.

IV. SIMULATION RESULTS

After analyzing the standard and fast annealing results ob-
tained from the D-Wave annealers, we now focus on modeling
these outcomes through appropriate simulations. Specifically,
we employ Bloch equation simulations for 1-spin problems
and utilize Lindblad and Markovian master equation simula-
tions for 2-spin problems. Additionally, in Appendix D, we
present an alternative approach based on a spin system inter-
acting with a heat bath, along with the corresponding results.

A. Standard quantum annealing

The qualitative agreement between the results from the
annealer and the equilibrium probabilities observed so far

makes it evident that the ideal quantum annealing simulations
cannot reproduce the data obtained from the D-Wave anneal-
ers. Therefore, we use the Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) master equation, which approximates the
Schrödinger dynamics of a density matrix for a system inter-
acting with an environment [19,24,25].

The reduced master equation in Lindblad diagonal form
reads

dρ(t )

dt
= − i

h̄
[H (t ), ρ(t )]

+ 1

2

∑
j

γ j (2Ljρ(t )L†
j − L†

j L jρ(t ) − ρ(t )L†
j L j ),

(7)

where ρ(t ) is the density matrix of the system and γ j � 0
are the dissipation rates corresponding to the operators Lj .
In general, the operators Lj are linear combinations of the
matrices that form a basis for the matrices operating on the
Hilbert space of the system [25].

1. 1-spin problems: Bloch equations

In general, the Hamiltonian for a system of one spin-1/2
object reads

H = − 1
2 B · σ, (8)

where B is the applied magnetic field and σ = (σ x, σ y, σ z )
are the Pauli matrices. Choosing dissipation operators L1 =
σ+ = (σ x + iσ y)/2, L2 = σ− = (σ x − iσ y)/2 and L3 = σ z,

we find that the Lindblad master equation becomes equiv-
alent to the Bloch equations [18], given by

dSx(t )

dt
= Sy(t )Bz(t ) − Sz(t )By(t ) − Sx(t )

T2
,

dSy(t )

dt
= Sz(t )Bx(t ) − Sx(t )Bz(t ) − Sy(t )

T2
,

dSz(t )

dt
= Sx(t )By(t ) − Sy(t )Bx(t )) − Sz(t ) − M0

T1
, (9)

with T2 = 2/(γ1 + γ2 + 4γ3), T1 = 1/(γ1 + γ2), M0 = (γ1 −
γ2)/(γ1 + γ2) denoting the transverse and longitudinal relax-
ation time and the equilibrium magnetization, respectively.
Furthermore, this choice of the dissipation operators yields
T2 � 2T1 [18].

In Fig. 6, we show the numerically obtained results for
the 1-spin problem with h1 = 0.10 and h1 = 0.20 correspond-
ing to T1 = 500 ns, T2 = 125 ns, and M0 = 0.8 (0.85) for

FIG. 5. D-Wave data obtained using the fast annealing protocol for a 2-spin problem instances with (a) 2S1, (b) 2S2, and (c) 2S3.
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FIG. 6. Comparison of Bloch equations simulation results with those from the D-Wave annealer for (a) h1 = 0.10 and (b) h1 = 0.20. For
(a) T1 = 500 ns, T2 = 125 ns, and M0 = −0.58 while for (b) T1 = 500 ns, T2 = 125 ns, and M0 = −0.85. In all figures with simulation results,
the data points obtained from our simulations are, for improved legibility, represented by lines.

h1 = 0.10 (0.20). The close agreement of these results with
those obtained from the annealer clearly shows that the Bloch
equations with appropriate choices for T1, T2, and M0 can
reproduce the D-Wave results rather well. Note that the values
of the fitting parameters T1 and T2 have no direct relation to
the actual relaxation and decoherence time.

2. 2-spin problems: Lindblad master equation

Next, we move on to the 2-spin instances. For consistency,
we use the same set of seven dissipation operators in Eq. (7) as
those used to study the reverse annealing protocol [18]. These
are given in Appendix F.

The D-Wave data for these problems are shown in Fig. 2.
As the annealing times chosen are much longer than those
required for an adiabatic evolution of the initial uniform super-
position state to the ground state of the problem Hamiltonian,
it is not possible to reproduce the initial “dip-and-bump” (ini-
tial p↑↑ ≈ 0) through ideal quantum annealing simulations.
Furthermore, unless somehow the stationary state for these
problems itself changes for these problems as a function of the
annealing time, within the Lindblad master equation picture,
one cannot justify the probability of state |↑↑〉 being close to
zero for the initial values of ta (see Fig. 15 in Appendix E
for an attempt to capture the behavior of resulting p(ta) for
instance 2S2 with Lindblad master equation). However, these
“dips-and-bumps” are absent in the corresponding results of
fast annealing, i.e., in the absence of magnetic fields h′

is. This

hints at a significant effect of nonzero magnetic fields during
the initial phase of the annealing process.

On the physical level, the D-Wave QPU is made up of
superconducting flux qubits, and the effective Hamiltonian for
this system is given by [1]

Hphys = − 1

2

∑
i

�q(�CCJJ(s))σ i
x − 2hi|Ip(�CCJJ(s))|�i

x(s)σ i
z

+
∑
i> j

Ji jMAFMIp(�CCJJ(s))2σ i
zσ

j
z , (10)

where �q is the energy difference between the two eigen-
states of the qubit (|0〉 ± |1〉 /

√
2) with zero external flux, Ip

represents the magnitude of the current flowing in the body
of the qubit loop, MAFM is the maximum mutual inductance
generated by the couplers between the qubits, �i

x(s) is an
external flux applied to the qubits, and �CCJJ(s) is an external
flux applied to every qubit’s compound Josephson-junction
structures to change the potential energy shape of the qubit.

To map Hamiltonian Eq. (10) on to Eq. (1), �x
i needs to

be set equal to MAFM|Ip| in the standard annealing protocol,
yielding

A(s) = �q(�CCJJ(s)),

B(s) = 2MAFM|Ip(�CCJJ(s))|2. (11)

However, as per [21], for the very fast ramps in �CCJJ(s) it is
difficult to maintain the relative energy ratio between hi and

FIG. 7. Comparison of the D-Wave with that from Lindblad master equation simulation for 2-spin instance (a) 2S1, (b) 2S2, and (c) 2S3,
with (a) T = 35 mK and c = 0.01, (b) T = 28 mK and c = 0.003, and (c) T = 28 mK and c = 0.001.
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FIG. 8. Comparison of the D-Wave with that from Markovian master equation simulation for 2-spin instance (a) 2S1, (b) 2S2, and (c) 2S3,
with (a) T = 35 mK and c = 0.01, (b) T = 28 mK and c = 0.003, and (c) T = 28 mK and c = 0.001.

Ji j terms (by adjusting �x
i = MAFM|Ip|). This knowledge, in

combination with the D-Wave data showing the “dips-and-
bumps” and the fact that nonzero values of hi are not permitted
on D-Wave for fast annealing motivates us to the following.

Conjecture. For the initial values of the annealing times,
�x

i (s) starts from a value close to zero and only gradually
catches on to match the value set by the product MAFM|Ip|.

With this conjecture, it already seems possible to generate
the “dips-and-bumps” for the three instances of the 2-spin
problems. If �x

i starts from a value close to zero, the D-Wave
annealer effectively implements a problem with h1 = h2 = 0.
For these altered problems, states |↑↓〉 and |↓↑〉 are the two
degenerated ground states, while the other two states are
the first excited states. However, reproducing these dips and
bumps does not establish the validity of this conjecture at the
hardware level.

To implement this idea, we adopt two separate annealing
schemes for the linear and quadratic parts of the problem
Hamiltonian, i.e.,

Ĥ (t )

h̄
= π

h

⎡
⎣B′(s)

∑
i

σ z
i + B(s)

∑
i> j

Ji, jσ
z
i σ z

j

⎤
⎦, (12)

H (t )

h̄
= −πA(s)

h

∑
i

σ x
i + Ĥ (t ), (13)

|↑〉
|↓〉

FIG. 9. Comparison of D-Wave data using the fast annealing
protocol for 1-spin problem with h1 = 0.25 with ideal quantum an-
nealing simulations.

where

B′(s) = B′(t/ta)=

⎧⎪⎪⎨
⎪⎪⎩

0, t � t start
onset

sin

(
π
2

(
t−t start

onset

)
t end
onset−t start

onset

)
B(s), t start

onset � t � t end
onset

B(s), t > t end
onset,

(14)

and t start
onset and t end

onset control the start and end of times for
this “out-of-synchronization” feature, respectively. However,
modifying the annealing schedule is by itself insufficient for
reproducing the “dips-and-bumps”. It is also necessary to let
the dissipation rates depend on time.

The dissipation rates for the Lindblad master equation are
related to the stationary state probabilities through [18]

γ2 p↑↑ = γ1 p↓↓, γ5 p↑↑ = γ4 p↓↑, γ7 p↑↑ = γ6 p↑↓. (15)

In the absence of the “dips-and-bumps”, t end
onset = 0 and we use

the Hamiltonian Ĥ (ta)/h̄ to determine probabilities according
to the Gibbs distribution [Eq. (5)]. The dissipation rates are
then obtained from Eq. (15) such that the probabilities match
those obtained from the D-Wave annealers for an appropriate
value of β [18]. However, as per the conjecture mentioned
above, the Hamiltonian, according to Eq. (12), depends on the
total annealing time ta and parameters t start

onset and t end
onset. Conse-

quently, following the same approach, according to Eq. (14),
the dissipation rates for the Lindblad master equation now
change as a function of time t and are, as in the case of
the absence of “dips-and-bumps”, obtained from the Gibbs
distribution with Hamiltonian Eq. (12). To this end, we choose
a value of β that yields similar probabilities as those obtained
from the D-Wave annealers at ta = 1950 µs, set γ1 = γ3 =
γ4 = γ6 = c where c is a fitting parameter, and determine γ2,
γ5, and γ7 using Eq. (15).

In Fig. 7, we show the results for the 2-spin instances
by setting t start

onset = 0 µs and t end
onset = 1.2 µs, and choosing the

dissipation operators given in Appendix F. The qualitative
agreement between the numerical results and the D-Wave data
increases our confidence in the conjecture. Although it might
be possible to obtain a better match of the simulation results
by tailoring the B′(t ) annealing function to the D-Wave data,
the focus of the current paper is to only capture the qualitative
behavior of the data, not to tweak parameters for the best
match.
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FIG. 10. Comparison of the D-Wave using the fast annealing protocol with ideal quantum annealing simulations for 2-spin instance (a) 2S1,
(b) 2S2, and (c) 2S3. The dashed line in panel (c) corresponds to ta = 20 ns.

3. Larger problems: Markovian master equation

In our reverse annealing study [18], we noted that it is pos-
sible to reproduce the D-Wave behavior using the remarkably
simple procedure of ignoring the nondiagonal elements of the
density matrix ρ(t ) and setting A(s) = 0 [18]. Likewise, in
the case at hand, except for the initial part of the annealing
process, the simulations of the Lindblad master equation show
that the absolute values of the nondiagonal elements of the
density matrix quickly tend to be rather small.

In the present section, we investigate whether ignoring the
nondiagonal elements of ρ(t ) can still reproduce the results in
the regime of interest. This approach amounts to solving

dP(t )

dt
= W (t )P(0), (16)

where P(t ) = (p1(t ), ..., p4(t ))T is a vector of non-negative
elements which sum to one and W (t ) is a real-valued matrix,
and

W (t ) =

⎛
⎜⎜⎝

−γ2 − γ5 − γ7 γ4 γ6 γ1

γ5 −γ4 0 0
γ7 0 −γ6 0
γ2 0 0 −γ1

⎞
⎟⎟⎠, (17)

where γ ′
i s are time-dependent and are chosen in the same way

as for the simulations of the Lindblad master equation. As the
columns of W [Eq. (17)] add to zero, it follows immediately
that Eq. (16) describes a Markov process.

In Fig. 8, we show the results obtained from the Markovian
master equation simulation in comparison to the data from
D-Wave. As for the Lindblad simulations, we incorporate
different annealing schedules for the hi and Ji j terms in Eq. 12
and as for Fig. 7, we choose t start

onset = 0 µs and t end
onset = 1.2 µs.

The close agreement between these two demonstrates that it
is possible to reproduce the D-Wave results by circumventing
the problem of finding the appropriate dissipation operators
even for the standard quantum annealing protocol, that is, by
a simple (nonquantum) Markovian model.

B. Fast annealing

Next, we move on to the fast annealing simulations for
the 1- and 2-spin problems. Although, as explained above,
running these problems with the fast annealing feature on
the D-Wave requires using an extra qubit for each qubit with
a nonzero hi, we carry out the numerical implementation
in a straightforward way, i.e., without introducing additional

qubits in our simulations. Furthermore, as the “dips-and-
bumps” observed in the D-Wave data obtained with the
standard annealing protocol are absent when using the fast an-
nealing protocol, one does not need to implement the different
annealing schedules for the linear and quadratic terms of the
problem Hamiltonian. This is in concert with the conjecture
captured by Eq. (13). Moreover, as the D-Wave results for
the 1- and 2-spin problems eventually tend to equilibrium
values, an effect that has been demonstrated to be described
well by the master equation simulations, the most interesting
information that can be extracted using the fast annealing
feature is a signature for quantum coherence. Therefore, in
this section, we compare the D-Wave results with the ideal
quantum annealing simulations.

Shown in Figs. 9 and 10 are the comparison of the ideal
quantum annealing simulations with the D-Wave annealer
data for 1- and 2-spin problems, respectively. From these
figures, it can be noted that the numerical results match the
D-Wave data closely only for the shortest annealing time
permitted on the D-Wave systems, i.e., ta = 5 ns. Beyond this
value, the D-Wave data starts to deviate from the coherent
simulation results, suggesting that only for times less than
ta = 5 ns, can we imagine quantum coherence to play a role in
the dynamics of the Advantage_5.4 machine. Note that other
systematic biases/imperfections in the D-Wave systems, e.g.,
the systematic decrease in the probabilities corresponding to
|↑↑〉 state in Fig. 10(c) can be misleading and be mistaken
for a sign of longer coherence times (ta ≈ 20 ns) for specific
problems, as in the case of problem 2S3.

For completeness, in Appendix G, we show the fast an-
nealing results for additional 2- and 3-spin problems that have
zero magnetic fields h′

is.

V. CONCLUSION

Focusing on simple 1- and 2-spin problems, we demon-
strated that for sufficiently long annealing times, both the
standard and fast annealing protocols on D-Wave annealers
sample states with frequencies approaching thermal equilib-
rium, as has also been shown for reverse annealing [18].

By numerically solving the GKSL master equation with
appropriately chosen dissipation operators and rates, we suc-
cessfully reproduced the D-Wave data obtained from the
standard forward annealing protocol. In most cases, this was
achievable using the annealing schedule provided by D-Wave.
However, in certain instances, replicating the results required
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modifications to the annealing schedule. Additionally, the em-
pirical data aligned well with a classical Markovian process,
suggesting that nonquantum models can effectively describe
the system’s behavior. It should be noted, however, that agree-
ment between these numerical models and the D-Wave data
cannot, by itself, uniquely determine the physical mechanisms
responsible for the observed behavior in the D-Wave systems.

A comparison between empirical data from fast annealing
and ideal quantum annealing simulations revealed no clear
evidence of quantum behavior beyond annealing times of
about 5 ns.

Our study adds to the understanding of the physical mecha-
nisms governing D-Wave annealers and underscores the need
to explore strategies that leverage these insights for improved
utilization in optimization problems. Importantly, our findings
do not diminish the potential of D-Wave annealers as opti-
mization solvers but rather provide a deeper understanding of
the underlying physical processes driving their operation.

If, as usual, the solution to the optimization problem is
encoded in the ground state of the Ising Hamiltonian, one
possible approach to leverage D-Wave systems to solve the
problem efficiently is to lower the QPU temperature. Refer-
ence [26] shows that a finite temperature annealer requires
logarithmically, or possibly polynomially, decreasing tem-
peratures for solving problems with increasing sizes. An
alternative strategy is to encode the solution close to the mean
energy of the problem Hamiltonian, a strategy that requires
further investigation. One possible direction to explore is the
quantum annealing correction Hamiltonian [27] which effec-
tively encodes the solution to the optimization problem not
solely in the ground state but also within a small block of
low-energy excited states.
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APPENDIX A: ANNEALING SCHEDULES FOR STANDARD
AND FAST ANNEALING

The D-Wave data for the annealing scheme are provided as
tabulated values of A(s)/h and B(s)/h (in GHz) [21]. For our

FIG. 11. Annealing schemes for the standard (A1(s)/h, B1(s)/h)
and the fast (A2(s)/h, B2(s)/h) annealing protocols for the D-Wave
Adv_5.4 system, and the corresponding fits ( fA1 (s)/h, fB1 (s)/h) and
( fA2 (s)/h, fB2 (s)/h), see Eqs. (A1) and (A2).

numerical simulation, we fit the functions

fA1 (s)/h = (1 − s) exp(a1 + a2s + a3s2 + a4s3),

fB1 (s)/h = b1 + b2s + b3s2, (A1)

for standard quantum annealing with a1 = 2.27, a2 = −8.22,
a3 = 16.14, a4 = −27.59, b1 = 0.26, b2 = 2.46, and b3 =
5.86, and the functions

fA2 (s)/h = exp( f0(s)(c1 + c2s + c3s3 + c4s4)

+ (1 − f0(s))(c5 + c6s)),

fB2 (s)/h = exp(d1 + d2(1 − s) tanh(d3s3/2)

+ d4 tanh(d5s2)),

f0(s) = 0.5(1 + tanh(a0(b0 − s)) (A2)

for the fast annealing protocol with c1 = 2.15, c2 = −2.66,
c3 = −35.29, c4 = 143.48, c5 = 8.99, c6 = −30.63 d1 =
−1.21, d2 = −1.24, d3 = 4.79, d4 = 3.38, d5 = 5.87, a0 =
5.00, and b0 = 0.40. Figure 11 shows the D-Wave data for
the annealing schemes along with the corresponding fits.

APPENDIX B: EXTRACTING MODEL PARAMETERS
FROM D-WAVE DATA

It is well known that the parameters specified to the
D-Wave systems are subject to inherent noise, which can
impact the accuracy and reliability of the annealing process.
An important question is whether, using the empirical data
(frequencies corresponding to the four energy states of the
2-variable problems) from the D-Wave annealers, we can de-
termine a model that best describes the data.

Application of the principle of maximum entropy to the
D-Wave data, subject to constraints

∑
i pi = 1 and 〈Ek〉 =∑

i piEk (xi ), k = 1, . . . , K , where pi = p(xi|〈E1〉, . . . , 〈Ek〉Z )
is the probability for the event xi, the 〈Ek〉 are the mean
values of the Ek (xi )′s and Z encodes all other facts, yields a
probability distribution of form

pi = e−λ1E1(xi )−...−λK Ek (xi )∑
i e−λ1E1(xi )−...−λK Ek (xi )

, (B1)
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where λ0, . . . , λK are the Lagrange multipliers introduced
to maximize the entropy, S = −∑

i pi ln pi, conditioned on
the specified constraints. Obviously, Eq. (B1) has the same
structure as Gibb’s distribution [Eq. (5)]. As is well known,
invoking the principle of maximum entropy to determine the
probability distribution that describes the empirical data is
equivalent to describing the empirical data by the probability
distribution of equilibrium statistical mechanics [30,31].

The problem parameters βh1, βh2, and βJ can be extracted
by determining the Lagrange multipliers. We use two methods
based on two different sets of constraints.

Method 1. From the empirical frequencies f1, f2, f3,
and f4 for energy levels corresponding to states x1 =
(S1 = +1, S2 = +1), x2 = (S1 = +1, S2 = −1), x3 = (S1 =
−1, S2 = +1), and x4 = (S1 = −1, S2 = −1), respectively,
one can calculate the spin averages Ŝ1, Ŝ2, and the correlation
Ŝ12 using

Ŝ1 = f1 + f2 − f3 − f4, Ŝ2 = f1 − f2 + f3 − f4,

Ŝ12 = f1 − f2 − f3 + f4. (B2)

Considering the three averages in Eq. (B2) as constraints for
the maximum entropy, from Eq. (B1) it follows

pi = e−λ1S1−λ2S2−λ3S12∑
S1,S2=±1 e−λ1S1−λ2S2−λ3S12

, (B3)

where the three Lagrange parameters have to be determined
such that the three constraints

Ŝ1 =
∑

S1,S2=±1

S1 p(S1, S2), Ŝ2 =
∑

S1,S2=±1

S2 p(S1, S2),

Ŝ12 =
∑

S1,S2=±1

S12 p(S1, S2), (B4)

are satisfied. These equations can be solved analytically for
λ1, λ2, and λ3, yielding

λ1 = 1

4
ln

(a + b − c − 1)(a − b + c − 1)

(a − b − c + 1)(a + b + c + 1)
,

λ2 = 1

4
ln

(a − b − c + 1)(a + b − c − 1)

(a − b + c − 1)(a + b + c + 1)
,

λ3 = 1

4
ln

(a − b − c + 1)(a − b + c − 1)

(a + b − c − 1)(a + b + c + 1)
, (B5)

where a = Ŝ1, b = Ŝ2, and c = Ŝ12. In terms of the frequen-
cies, we have

λ1 = 1

4
ln

f2 f4

f1 f3
, λ2 = 1

4
ln

f3 f4

f1 f2
, λ3 = 1

4
ln

f2 f3

f1 f4
. (B6)

From Eq. (B6) it immediately follows that this method for ex-
tracting the parameters will fail if one of the four frequencies
is zero. In practice, this is to be expected when the theoretical
probability of sampling a state is very small.

Next, to determine the inverse temperature β we use the
parameters h1, h2, J that are input to the D-Wave annealer to
define

f (β ) = (βh1 − λ1)2 + (βh2 − λ2)2 + (βJ − λ2)2, (B7)

TABLE I. Parameters extracted using Methods 1 and 2 for three
different 2-spin instances.

Method 1 Method 2

Instance h1 h2 J β T (mK) β T (mK)

2S4 −0.069 0.046 0.103 5.64 36.5 5.59 36.9
2S1 −1.025 −1.022 0.899 2.58 80.0 6.36 32.4
2S2 −1.001 −0.996 1.002 2.75 74.9 5.00 41.2

and minimize Eq. (B7) with respect to β, which yields

β = λ2
1 + λ2

2 + λ2
3

h1λ1 + h2λ2 + Jλ3
. (B8)

The estimated effective model parameters obtained from the
D-Wave data are then given by ĥ1 = λ1/β, ĥ2 = λ2/β, and
Ĵ = λ3/β.

Method 2. Instead of using the spin averages and the cor-
relations as the constraints, an alternative is to employ the
average energy empirically obtained from the D-Wave data.
Assuming the specified parameters to be the same as the ones
implemented by the D-Wave annealers, the application of the
principle of maximum entropy with E1(xi ) = h1S1 + h2S2 +
JS1S2 and K = 1 yields

h1Ŝ1 + h2Ŝ2 + JŜ12

=
∑

S1,S2=±1(h1S1 + h2S2 + JS1S2)e−β(h1S1+h2S2+JS1S2 )∑
S1,S2=±1 e−β(h1S1+h2S2+JS1S2 )

,

(B9)

where λ1 = β can be extracted by solving the nonlinear
Eq. (B9).

We use these two methods to extract the parameters for
three 2-variable instances. These are 2S4 with h1 = −0.07,
h2 = 0.05, and J = 0.1 and previously-mentioned instances
2S1 and 2S2.

In Table I, we show the values of the extracted parameters
by averaging over the 450 samples for each of the 2807
sequential (using only one pair of qubits at a time) runs of
the 2-variable problems on all 2807 available pairs of qubits
on the D-Wave Advantage_4.1. For 2S4, both Methods yield
very similar values for β and T .

For instances 2S1 and 2S2, it is noted that the theoreti-
cal equilibrium probability for sampling state |↓↓〉 at β ≈ 7
is O(10−13). For these problems, the statistical error on f4

is O(10−3), which is much too large to reliably extract the
parameters as indicated by the disparity between the values of
the β ′s and T ′s extracted using Method 1 and Method 2.

APPENDIX C: SIMULTANEOUS EXECUTION OF
MULTIPLE COPIES OF 2-VARIABLE PROBLEMS

In Appendix B, we presented the D-Wave results for vari-
ous 2-spin problems by collecting the data using all available
qubit pairs sequentially, i.e., by employing only one pair at
a time. A more resource-efficient alternative is to run many
copies of the problem on the required number of qubit pairs
simultaneously.
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FIG. 12. D-Wave data using the standard annealing protocol for 2-spin instance 2S2 running (a) 100, (b) 1000, and (c) 2500 copies of the
problem simultaneously.

In Fig. 12, we show the annealing time dependence of the
probabilities for instance 2S2 for different numbers of copies.
From the figure, it can be noted that as the number of copies,
or in turn the number of qubits being simultaneously used,
increases, the difference in the final probabilities for sampling
state |↑↑〉 from those of states |↑↓〉 and |↓↑〉 increases sys-
tematically. The emergence of a reproducible, systematically
increasing difference in the sampling probabilities can be re-
garded as an artefact, possibly arising from the bias created by
the massive utilization of the qubits.

One way to remedy the above-mentioned artefact is to
apply a spin-reversal transformation on the different copies,
whereby we change the sign of the magnetic fields h′

is for each
spin with a certain probability and change the sign of the J ′

i js
accordingly.

In Fig. 13, we show the probabilities, averaged over 2500
copies of problem instance 2S1, with reversal probabilities
1/2. From these results, it becomes clear that this treatment
removes the artefact. This might suggest that the observed
artefact in the annealing time scans originates from the net
biases on the level of individual qubits in D-Wave systems
and can, therefore, be eliminated by averaging the results for
the copies after the spin-reversal transformation.

Although there are systematic errors involved in sequential
runs as well, the error model and hence the strategies for
mitigation are different compared to the simultaneous runs. In
case of sequential runs, the systematic biases involved at the

FIG. 13. D-Wave data using the standard annealing protocol for
2-spin instance 2S2 running 2500 copies of the problem simultane-
ously with a spin reversal probability of 0.5.

level of individual qubits can be averaged out by performing
more runs on different sets of qubits.

APPENDIX D: SCHRÖDINGER DYNAMICS OF TWO
SPINS INTERACTING WITH A SPIN BATH

Focusing on the “dips-and-bumps” phenomenon (see
Sec. III), in this Appendix, we consider a microscopic model
in which the two-qubit system interacts with a bath (B) of
pseudospins (impurities, other qubits...) and question if the
mechanism of the turn-on of the magnetic field proposed in
the Sec. IV A 2 also explains the appearance of the “dips-and-
bumps” on the microscopic level.

The Hamiltonian of the system (S) + bath (B) takes the
generic form

H(t ) = H (t ) + HB + gHSB, (D1)

where H (t ) is defined in Eq. (1) and HB and HSB are the bath
and the system-bath Hamiltonians, respectively. The overall
strength of the system-bath interaction is controlled by the
parameter g. The Hamiltonian for the system-bath interaction
is chosen to be

HSB =
2∑

m=1

NB∑
n=1

∑
α=x,y,z

Kα
nmIα

n σα
m , (D2)

where NB is the number of spins in the bath, the Kα
n s are

uniform random couplings in the range [−K,+K] and Iα
n

is the α-th component of the bath spin In. As the overall
system-bath interaction strength is controlled by g, without
loss of generality, we may set K = 1 GHz. Note that according
to Eq. (D2), each of the two system spins interacts with each
of the NB bath spins. For the bath Hamiltonian, we take

HB =
NB∑

n=1

∑
α=x,y,z

�α
n Iα

n , (D3)

where the �α
n s are uniform random fields in the range [−�,�]

(� in units of GHz). The Hamiltonian Eq. (D3) describes a
collection of spin-1/2 objects interacting with local fields.

The time evolution of a closed quantum system defined by
a time-dependent Hamiltonian Eq. (D1) is governed by the
time-dependent Schrödinger equation (TDSE)

ih̄
∂

∂t
|
(t )〉 = H(t )|
(t )〉. (D4)
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FIG. 14. Data obtained using a 2-spin system interacting with a
spin bath for problem instance 2S1. The number bath spins NB = 16,
g = 0.001, � = 0.1, t start

onset=0, and t end
onset=900 ns.

The pure state |
(t )〉 of the system-bath at time t can be
written as

|
(t )〉 =
4∑

i=1

DB∑
p=1

c(i, p, t )|i, p〉, (D5)

where the complete set of the orthonormal states in the up-
down basis of the system and bath spins is denoted by {|i, p〉},
i labels the four states of the two system spins, and DB = 2NB

denotes the dimension of the Hilbert space of the bath. The
coefficient c(i, p, t ) is the complex-valued amplitude of the
state |i, p〉. From the knowledge of the c′s in Eq. (D5), we can
compute any physically relevant property of the system S, the
bath B, and the whole system.

Given the random couplings, it is highly unlikely that H (t )
and HSB commute. Therefore, the system and the bath will
exchange energy. Solving Eq. (D4) and tracing out the bath
degrees of freedom implicitly accounts for non-Markovian
processes and leads to decoherence and dissipation in a natural
manner.

To account for the explicit time dependence of H (t ), we
use a second-order decomposition formula for ordered ma-
trix exponentials [32–34] to solve the TDSE Eq. (D4). The
numerical method generates all c(i, p, t )′s in a time-stepping
fashion. All TDSE simulation results reported in this sec-
tion have been obtained by running a massively parallel,
quantum spin dynamics simulator (in house software) with a
time step of 10 ps for up to 200 000 time steps (depending
on the annealing time ta) and NB = 16, the latter chosen to
carry out the quantum annealing runs for different ta, different
choices of the parameters (g, �, h-field onset parameters, etc.)
within a reasonable time span.

The initial state of the whole system is constructed using
the random state technology [35]. The key feature of random
state technology is that if the dimension D of Hilbert space is

Lindblad,

Lindblad,

Lindblad,

Lindblad,

DW,

DW,

DW,

DW,

|↑↑〉
|↑↓〉
|↓↑〉
|↓↓〉

|↑↑〉
|↑↓〉
|↓↑〉
|↓↓〉

FIG. 15. Comparison of the D-Wave data with that from
Lindblad master equation simulation with the standard annealing
schedule for 2-spin instance 2S1 with c = 0.002 and T = 35 mK.

large enough, we can obtain an accurate estimate of Tr X, the
trace of a matrix X , by computing D〈�|X |�〉 where |�〉 is a
pure state chosen randomly [35]. This reduces the calculation
of averages by a factor D, which usually is a (very) large
number.

In the case at hand, the initial state is taken to be a product
state of the initial state of the system S and a pure random
state of the bath B. The initial state of the system S is itself
a product state of the two spins aligned along the x direction
(see Sec. II). The state of the whole system is then given by

|
(t = 0)〉 = | + +〉 ⊗ |�〉, (D6)

where |�〉 is a random state of the bath.
Figure 14 shows the time-dependent probabilities obtained

from the simulation of the two spins interacting with the spin
bath for problem instance 2S1. From these results, it is evident
that even by following this general microscopic approach, it is
possible to qualitatively capture the “dips-and-bumps” feature
observed in Fig. 2.

APPENDIX E: LINDBLAD MASTER EQUATION RESULTS
WITH THE STANDARD ANNEALING SCHEDULE

As seen in Sec. III, the D-Wave results for the 2-spin prob-
lems show the so-called “dips-and-bumps”. In Sec. IV A 2, we
reproduce this feature by implementing different annealing
functions for the linear and quadratic terms of the problem
Hamiltonian in our simulations. Figure 15 shows the result
for the problem instance 2S1, without altering the annealing
functions, from where it becomes evident that while these
simulations capture the long annealing time behavior well,
they do not produce the “dips-and-bumps”.
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FIG. 16. Comparison of D-Wave data using the fast annealing protocol with ideal quantum annealing simulations for (a) 2-spin problem
instance with J12 = 0.05 and (b) 3-spin problem instance with J12 = 1.00, J13 = −0.05, and J23 = −0.1.

APPENDIX F: DISSIPATION OPERATORS FOR THE
LINDBLAD MASTER EQUATION FOR 2-SPIN PROBLEMS

Following Ref. [18], we use the dissipation operators

L1 =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, L2 = LT

1 ,

L3 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, L4 = LT

3 ,

L5 =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, L6 = LT

5 ,

L7 =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ (F1)

for the Lindblad master equation of the 2-spin problems.

APPENDIX G: FAST ANNEALING RESULTS
FOR ADDITIONAL PROBLEMS

Section IV B compares the D-Wave data for fast annealing
with the corresponding simulations for problems involving
nonzero h′

is. We find the coherence times for these problems to
be approximately 5 ns. In the present section, we do a similar
comparison, but for problems with hi = 0. To this end, we
choose a 2-variable problem with J12 = 0.05 and a 3-variable
problem with J12 = 1.00, J13 = −0.05, and J23 = −0.1 such
that no extra physical qubits are required. The results for these
problems with the fast annealing feature do not suffer from
any additional effects that might arise from using extra qubits
to implement problems with nonzero h′

is. The D-Wave data
shown in Fig. 16 indeed shows lesser fluctuations compared
to the data for the 2-spin instances with nonzero magnetic
fields, shown in Fig. 5. However, the D-Wave data shows
quantitative agreement with the data from the TDSE only up
to approximately 5 ns.
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