001050211 001__ 1050211
001050211 005__ 20260109202558.0
001050211 0247_ $$2doi$$a10.1021/acs.chemmater.5c02303
001050211 0247_ $$2ISSN$$a0897-4756
001050211 0247_ $$2ISSN$$a1520-5002
001050211 037__ $$aFZJ-2026-00029
001050211 082__ $$a540
001050211 1001_ $$0P:(DE-HGF)0$$aGoldmann, Benedek A.$$b0$$eFirst author
001050211 245__ $$aRotational Stacking Faults in the Ionic Conductor $Li_3 ScCl_6$
001050211 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2025
001050211 3367_ $$2DRIVER$$aarticle
001050211 3367_ $$2DataCite$$aOutput Types/Journal article
001050211 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767958787_11978
001050211 3367_ $$2BibTeX$$aARTICLE
001050211 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001050211 3367_ $$00$$2EndNote$$aJournal Article
001050211 520__ $$aHalide-based solid electrolytes have gained recent interest due to their promising ionic conductivity and wide electrochemical stability window, but the influence of synthesis conditions on structure is not fully characterized. Here, we report a combined experimental and computational study of the effect of thermal treatment temperature on the structure and $Li^+$ conduction dynamics of the superionic halide $Li_3ScCl_6$. Synchrotron diffraction analysis shows that samples treated between 450 °C and 750 °C form the monoclinic $Li_3ScCl_6$ structure and contain rotational stacking faults, whose density increases with thermal treatment temperature and mechanical processing time. Impedance spectroscopy, nuclear magnetic resonance spectroscopy, and molecular dynamics simulations using machine-learned interatomic potentials, however, indicate that these faults have a negligible effect on long-range $Li^+$ conductivity, though local $Li^+$ dynamics are modified. This work demonstrates that $Li_3ScCl_6$ maintains robust transport properties despite rotational stacking faults, and highlights the importance of in-depth structural analyses for understanding the relationships between synthesis protocols, structure, and ionic transport in halide solid electrolytes.
001050211 536__ $$0G:(DE-HGF)POF4-1111$$a1111 - Effective System Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x0
001050211 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001050211 7001_ $$0P:(DE-HGF)0$$aRosenbach, Carolin$$b1$$eFirst author
001050211 7001_ $$0P:(DE-HGF)0$$aEvans, Hayden A.$$b2
001050211 7001_ $$0P:(DE-HGF)0$$aHelm, Bianca$$b3
001050211 7001_ $$0P:(DE-Juel1)203320$$aWankmiller, Björn$$b4$$ufzj
001050211 7001_ $$0P:(DE-HGF)0$$aMaus, Oliver$$b5
001050211 7001_ $$0P:(DE-HGF)0$$aSuard, Emmanuelle$$b6
001050211 7001_ $$0P:(DE-HGF)0$$aNazar, Linda F.$$b7
001050211 7001_ $$0P:(DE-HGF)0$$aHansen, Michael Ryan$$b8
001050211 7001_ $$0P:(DE-HGF)0$$aMorgan, Benjamin J.$$b9
001050211 7001_ $$0P:(DE-HGF)0$$aIslam, M. Saiful$$b10$$eCorresponding author
001050211 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang$$b11$$eCorresponding author
001050211 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.5c02303$$gVol. 37, no. 24, p. 9858 - 9868$$n24$$p9858 - 9868$$tChemistry of materials$$v37$$x0897-4756$$y2025
001050211 8564_ $$uhttps://juser.fz-juelich.de/record/1050211/files/revised_manuscript.pdf$$yRestricted
001050211 909CO $$ooai:juser.fz-juelich.de:1050211$$pVDB
001050211 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)203320$$aForschungszentrum Jülich$$b4$$kFZJ
001050211 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b11$$kFZJ
001050211 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1111$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
001050211 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-16$$wger
001050211 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2022$$d2024-12-16
001050211 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
001050211 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
001050211 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
001050211 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
001050211 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
001050211 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
001050211 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-16
001050211 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
001050211 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
001050211 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
001050211 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM MATER : 2022$$d2024-12-16
001050211 920__ $$lyes
001050211 9201_ $$0I:(DE-Juel1)IMD-4-20141217$$kIMD-4$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001050211 980__ $$ajournal
001050211 980__ $$aVDB
001050211 980__ $$aI:(DE-Juel1)IMD-4-20141217
001050211 980__ $$aUNRESTRICTED